TECHNICAL NOTE

COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

By

HIROSHI ISHIKAWA*

1. General Remarks

In connection with the paper entitled "Digital Simulation of Nonstationary Random Processes and Its Applications," which has appeared in the Kagawa University Economic Review, Vol. 52, No. 3 · 4 (1979—10), pp. 308~373, the present computer programs have been developed and are provided here for reader's reference to his better understanding of the paper and/or for his practical facility in the application of the data-based nonstationary random process models proposed in the paper.

These programs have been coded in FORTRAN language to meet the requirement of a particular Hewlett-Packard minicomputer (Model 2100A) of memory size 32 KB operated by the RTE-II system with an additional Tektronix terminal control system for graphic display purpose. However, the current RTE-II system for a HP minicomputer is deemed fo be so well designed, with special attention to the compatibility requirement, that it is undoubtedly believed a slight modification does suffice the feasibility of the present programs to any other type of com-

Ph. D., Associate professor, Junior College of Commerce, Kagawa University,
 2-1 Saiwai-cho, Takamatsu-shi 760 Japan.

puter system. One example for this follows: For plotting purpose in any of the present programs is used SUBROUTINE STUKO which, as mentioned earlier, utilizes a Tektronix terminal control system. Therefore, if, unfortunately, a computer system to be used has no graphic display option, then an appropriate action to be taken by the user will be either simply to take out such statements as are related to SUBROUTINE STUKO, or to replace them by other effective alternatives.

EXEC CALL's as well as other specific symbols germane to the present system are to be discussed in some detail whenever they are encountered.

2. Brief Explanation of the Programs Developed

The present programs consist of the following main or subroutine programs to each of which is given a brief explanation of the contexture. Readers are urged to refer to the aforementioned paper for symbolic notations in what follows.

2. 1 PROGRAM SIM 10 (listed on page 438)

This program gets such basic statistics of the given time history $x_0(t)$ of duration T_0 (sec) as temporal mean μ , maximum and minimum values within the duration, x_{0max} and x_{0min} , Fourier (amplitude) spectrum $|X_0(\omega)|$ and phase angle $\zeta_0(\omega)$ of the Fourier transform $X_0(\omega)$ of $x_0(t)$ as well as its Hilbert transform $\hat{x}_0(t)$. The following relations are intrinsic in this program:

$$\mu = \frac{1}{T_0} \int_0^{T_0} x_0(t) dt \tag{1}$$

$$x_{0max} = \max \left(x_0(t) \right) \tag{2}$$

$$x_{0min} = \min \left(x_0(t) \right) \tag{3}$$

$$x_0(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_0(\omega) \exp(i\omega t) d\omega \tag{4}$$

$$X_{0}(\omega) = \int_{-\infty}^{\infty} x_{0}(t) \exp(-i\omega t) dt$$

$$= |X_{0}(\omega)| \exp\{i\zeta_{0}(\omega)\}$$

$$\hat{x}_{0}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} |X_{0}(\omega)| \sin\{\omega t + \zeta_{0}(\omega)\} d\omega$$
(5)

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} x_0(\tau)/(t-\tau) d\tau$$

$$= x_0(t) * (1/(\pi t))$$
(6)

429 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 25 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

where an asterisk "*" indicates a convolution integral.

This program also plots, with the aid of SUBROUTINE STUKO, the original time history, its Fourier spectrum, phase angle and Hilbert transform.

For the computation of the Fourier transform is used FFT (Fast Fourier Transform) technique whose details are implicitly expressed in SUBROUTINE FFT discussed later. Hence, if the time series data are those sampled with inequality of time increment, then SUBROUTINE INTPL is applied to interpolate given data so as to produce such time series data as are placed equidistantly.

Required subroutines are STUKO, STATC, SPECT, PHASE, HLBRT, FFT and INTPL. Details of these subroutines are described in the corresponding subsections of this section.

2. 2 PROGRAM SIM 20 (listed on page 441)

This program generates and plots sample functions of the data-based nonstationary random process of the first kind defined as

$$x(t) = x_0(t)\cos\phi - \hat{x_0}(t)\sin\phi \tag{7}$$

where x(t) = simulated sample function of the process of the first kind,

 $x_0(t)$ = the original time history,

 $\hat{x}_0(t)$ = the Hilbert transform of $x_0(t)$ given in Eq.(6), and

 ϕ =a realization of random phase angle Φ whose distribution can be selected, according to the control parameter ICON, as follows:

If ICON=3, Φ is Gaussian.

If ICON=2, Φ is uniform between $-\pi/2$ and $\pi/2$.

Otherwise, Φ is uniform between $-\pi$ and π .

There appear, in this program, specific symbols ISSW(14) and ISSW(15), the meaning of which is the following: The symbol ISSW followed by parentheses and a positive integer J (0 to 15) inbetween represents the content of the switch register designated by the numeral J in such a way that ISSW(J) holds a negative integer value when the J-th switch register button is set on and a positive or zero otherwise. As a result, these specific symbols, if used in IF statements, will give those functions to be controlled externally by the user.

430

Parameters in EXEC CALL, EXEC (I, 1 JKB, Y, N), have the meaning:

- I=READ/WRITE control parameter such that it means READ when I=1, and WRITE when I=2, from and onto the peripheral assigned by the octal number "JK", respectively.
- JK=octal representation of the select code of READ/WRITE peripheral. For example, JK=10 means that READ/WRITE peripheral has select code of 10 in octal, that is, 8 in decimal, which corresponds to the mag-tape unit in the present system.

B as in IKB=data format in binary form.

Y=READ/WRITE buffer area, and

N=buffer length in terms of one word length. Hence, N= N_Y if Y is an integer array of size N_Y , and N=2 N_Y if Y a real array.

Required subroutines are STUKO, RANDU, SPECT, FFT, INTPL JNORM, and HLBRT, where RANDU is a uniform random number (0 to unity) generating subroutine.

2. 3 PROGRAM SIM 30 (listed on page 445)

This program gets and plots such ensemble and/or temporal statistics of the simulated data-based nonstationary random process as mean, maximum and minimum values, standard deviation and probability density function. Digitized values of sample functions of the simulated process and related parameters necessary for this statistical computation should be read out exactly in the same sequence and format from the peripheral on which they have been stored through EXEC CALL's in PROGRAM SIM 20.

Required subroutines are STUKO, STATC, HLBRT and FFT.

2. 4 PROGRAM SIM 40 (listed on page 450)

This program generates and plots sample functions of the data-based bivariate nonstationary random process of the first kind with random phase angles being jointly Gaussian. More specifically, data-based bivariate processes are simulated as

$$x_i(t) = x_{0i}(t)\cos \Phi_i - \hat{x}_{0i}(t)\sin \Phi_i \quad (i=1, 2)$$
(8)

431 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 27 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

where $x_i(t)$ = simulated component process

 $x_{0i}(t)$ = original record of each component

 $\hat{x}_{0i}(t)$ = Hilbert transform of $x_{0i}(t)$

 Φ_i 's=random phase angles which are Gaussian with the joint density func-

$$f_{\mathbf{\Phi}_{1}\mathbf{\Phi}_{2}}(\phi_{1},\phi_{2}) = \frac{1}{2\pi\sqrt{1-\rho^{2}\sigma_{1}\sigma_{2}}} \exp\left\{-\frac{1}{2(1-\rho^{2})}\left\{\left(\frac{\phi_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}\right\} - 2\rho\left(\frac{\phi_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{\phi_{2}-\mu_{2}}{\sigma_{2}}\right) + \left(\frac{\phi_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}\right\}\right\}$$
(9)

in which μ_i and σ_i =mean and standard deviation of Φ_i , respectively, and ρ =coefficient of correlation between Φ_i and Φ_2 .

This program also computes and plots Fourier spectra of the original record and simulated sample functions of each component process.

Required subroutines are STUKO, SPECT, RANDU, INTPL, JNORM, FFT and HLBRT.

2. 5 PROGRAM SIM 50 (listed on page 453)

This program computes and plots crosscorrelation function $R_{x_1x_2}(t_1, t_2)$ between component processes $x_1(t)$ and $x_2(t)$ of the data-based bivariate nonstationary random process of the first kind simulated with random phase angles Φ_1 and Φ_2 being jointly Gaussian as in Eq. (9).

Specific representation of $R_{x_1x_2}(t_1, t_2)$ is as follows:

$$\begin{split} R_{\mathbf{x}_{1}\mathbf{x}_{2}}(t_{1}, t_{2}) &= x_{01}(t_{1}) \ x_{02}(t_{2}) \cdot \mathbb{E}\{\cos \mathbf{\Phi}_{1} \cos \mathbf{\Phi}_{2}\} \\ &+ \hat{x}_{01}(t_{1}) \hat{x}_{02}(t_{2}) \cdot \mathbb{E}\{\sin \mathbf{\Phi}_{1} \sin \mathbf{\Phi}_{2}\} \\ &- \hat{x}_{01}(t_{1}) x_{02}(t_{2}) \cdot \mathbb{E}\{\sin \mathbf{\Phi}_{1} \cos \mathbf{\Phi}_{2}\} \\ &- x_{01}(t_{1}) \hat{x}_{02}(t_{2}) \cdot \mathbb{E}\{\cos \mathbf{\Phi}_{1} \sin \mathbf{\Phi}_{2}\} \end{split} \tag{10}$$

where $x_{0i}(t)$ and $\hat{x}_{0i}(t)(i=1,2)$ are the original record and its Hilbert transform, respectively

It is noted in the multivariate simulation that, for those Φ_i 's distributed uniformly, intermediate mode of dependence are very much cumbersome to consider since the joint density functions which involve Φ_i 's and produce uniform marginal distributions for Φ_i 's appear to be extremely difficult to obtain. However, when

- 28 - Vol. 52 No. 5 432

all Φ_i 's are Gaussian, arbitrary degrees of dependence (including those cases of complete independence and total dependence) can easily be introduced through the well known Gaussian joint density functions involving Φ_i 's. This fact is one definite advantage the Gaussian assumption can enjoy over the assumption of uniform distribution; hence, the use of random phase angles of jointly Gaussian distribution in this program.

Required subroutines are STUKO, RANDU, HLBRT, FFT, INTPL and JNORM.

2. 6 PROGRAM SIM 60 (listed on page 456)

This program generates and plots sample functions of the data-based non-stationary random process of the second kind with random phase angle being distributed uniformly between $-\pi/2$ and $\pi/2$.

Generation of a sample function x(t) of the process of the second kind is specified as:

$$x(t) = x_0(t) \cos \phi - \tilde{x_0}(t) \sin \phi \tag{11}$$

where

x(t) = a sample function of the process of the second kind,

 $x_0(t) = \text{roiginal record of duration } T_0$

 ϕ = a realization of random phase angle Φ

(distributed uniformly between $-\pi/2$ and $\pi/2$ in this program), and

$$\tilde{x}_0(t) = \hat{z}_0(t)v(t) \tag{12}$$

in which

v(t) = a temporal filter of the form

$$v(t) = U(t) - U(t - T_0)$$
(13)

with U(t) indicating the Heavyside unit step function, and

 $z_0(t)$ = the symmetric-periodic extension of the original record $x_0(t)$

$$=\lim \sum_{n=-N}^{N} y_0(t-2kT_0) \tag{14}$$

with $y_0(t)$ indicating the symmetric-extension of $x_0(t)$ given as

$$y_0(t) = x_0(t) + x_0(-t) \tag{15}$$

Fourier spectra of the original record and of generated sample functions as well as other statistical quantities are also computed and plotted.

433 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 29 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

This program includes in itself the following subroutines: AREA, SAMPL, FFT 0, ASYME and PHS 11.

Besides those subroutines stated above, this program also requires subroutines STUKO, RANDU, SPECT, ARNGE, HLBRT, INTPL and FFT.

2. 7 SUBROUTINE INTPL (listed on page 467)

This subroutine program interpolates time series data with inequality of time increment so as to produce a series of data with the same time increment of a given constant value.

2. 8 SUBROUTINE FFT (listed on page 468)

This subroutine takes one-dimensional Fourier transform $X(\omega)$ of the given time history x(t) or inverse Fourier transform x(t) of $X(\omega)$ with the aid of FFT (Fast Fourier Transform) technique.

The following two equations form a Fourier transform pair:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-i\omega t) dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(i\omega t) d\omega$$
(16)

It should be noted that FFT computation requires that array size, or the number of data, be a power of 2. Hence, if the number of data is given otherwise, an appropriate number of trailing zeroes must be added to meet the requirement.

Comment statements in the subroutine program help for better understanding of FFT algorithm.

2. 9 SUBROUTINE PHASE (listed on page 470)

This subroutine computes phase angle $\zeta_0(\omega)$ ranging between $-\pi$ and π of the Fourier transform $X_0(\omega)$ of the original time history $x_0(t)$.

The phase angle $\zeta_0(\omega)$ is given, if $\text{Re}(X_0(\omega))\neq 0$, by

$$\zeta_0(\omega) = \arctan \left\{ \operatorname{Im} \left(X_0(\omega) \right) / \operatorname{Re} \left(X_0(\omega) \right) \right\}$$
 (17)

while, if $Re(X_0(\omega))=0$, it is given by

$$\zeta_0(\omega) = \pm \pi/2 \tag{18}$$

where $\operatorname{Re}(X_0(\omega))$ represents real part of $X_0(\omega)$ and $\operatorname{Im}(X_0(\omega))$ imaginary part.

2.10 SUBROUTINE SPECT (listed on page 471)

- 30 - Vol. 52 No. 5 434

This subroutine computes power spectrum, Fourier (amplitude) spectrum or absolute value of Fourier complex coefficient of the given time history according to the assigned value of the control parameter MO as follows:

If MO=10, power spectrum in terms of frequency f (Hz),

If MO=11, power spectrum in terms of circular frequency ω (rad./sec),

If MO = 1, Fourier (amplitude) spectrum, and

If MO=2, absolute value of complex Fourier coefficient.

Reguired subroutine is FFT.

2.11 SUBROUTINE STATC (listed on page 473)

This is a subroutine to compute such basic statistics of the given data set as overall (temporal or ensemble) mean, unbiased variance, standard deviation, and maximum and minimum values.

2.12 SUBROUTINE HLBRT (listed on page 474)

This subroutine program takes the Hilbert transform $\hat{x_0}(t)$ of the given time history $x_0(t)$ by utilizing FFT technique mentioned earlier.

Originally the Hilbert transform of $x_0(t)$ is defined either in the time domain or in the frequency domain as

$$\widehat{x}_0(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} x_0(\tau)/(t-\tau) d\tau \tag{19}$$

$$= \frac{1}{\pi} \int_{0}^{\infty} |X_0(\omega)| \sin \{\omega t + \zeta_0(\omega)\} d\omega$$
 (20)

where $X_0(\omega)$ and $\zeta_0(\omega)$ are the Fourier transform of $x_0(t)$ and its phase angle. However, the direct performance of the integrals given in the above two equations is rather time-consuming. Therefore an effective practical method has to be developed. To this end, we first define the functions $Y_0(\omega)$ and $Z_0(\omega)$ as

$$Y_{0}(\omega) = |X_{0}(\omega)| \cdot \operatorname{sgn}(\omega)$$

$$Z_{0}(\omega) = X_{0}(\omega) \cdot \operatorname{sgn}(\omega)$$

$$= |X_{0}(\omega)| \cdot \operatorname{exp}\{i\zeta_{0}(\omega)\} \cdot \operatorname{sgn}(\omega)$$

$$= Y_{0}(\omega) \cdot \operatorname{exp}\{i\zeta_{0}(\omega)\}$$
(22)

where $\operatorname{sgn}(\omega)$ is a sign function of ω . $Y_0(\omega)$ thus defined is obviously an odd function since $\mid X_0(\omega) \mid$ is even and $\operatorname{sgn}(\omega)$ is odd. Then, we try to reduce Eq.

435 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION -31- OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

(20) into the form such that the FFT technique is applicable:

$$\widehat{X}_{0}(t) = \frac{1}{\pi} \int_{0}^{\infty} |X_{0}(\omega)| \sin \{\omega t + \xi_{0}(\omega)\} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(\omega) \sin \{\omega t + \xi_{0}(\omega)\} d\omega$$
(23)

where the fact has been used that $\sin \{\omega t + \zeta_0(\omega)\}\$ is an odd function of ω . Further, since $Y(\omega)$ is odd and $\cos \{\omega t + \zeta_0(\omega)\}\$ is even with respect to ω , Eq. (23) can be written as

$$\hat{X}_{0}(t) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} Y_{0}(\omega) \exp\left\{i\left\{\omega t + \xi_{0}(\omega)\right\}\right\} d\omega$$

$$= \frac{1}{2\pi i} \int_{-\infty}^{\infty} Y_{0}(\omega) \cdot \exp\left\{i\xi_{0}(\omega)\right\} \exp\left(i\omega t\right) d\omega$$

$$= \frac{1}{2\pi i} \int_{-\infty}^{\infty} Z_{0}(\omega) \exp\left(i\omega t\right) d\omega \tag{24}$$

Eq. (24) now possesses the form such that FFT can be directly applicable. Hence, for the ready computation of the Hilbert transform $\hat{x}_0(t)$ of $x_0(t)$, we first take the Fourier transform $X_0(\omega)$ of $x_0(t)$ with the aid of FFT technique, then form a function $Z_0(\omega)$ as in Eq. (22), take the inverse Fourier transform of $Z_0(\omega)$ and finally divide the result by the imaginary unit i.

2.13 SUBROUTINE JNORM (listed on page 475)

This subroutine generates either univariate Gaussian random number or jointly Gaussian bivariate with arbitrary degrees of dependence including those cases of complete independence and total dependence. Some comments on the bivariate case are also found in the subsection of PROGRAM SIM40 discussed earlier.

2.14 SUBROUTINE ARNGE (listed on page 477)

This subroutine arranges given array data y_i $(i=1, 2, \dots, N)$ in a symmetrical fashion so as to produce mirror image either around the origin or around a folding point $\left(i=\frac{N}{2}+1\right)$ for FFT computation. Refer also to the comment statements in the subroutine for detailed discussion.

2.15 SUBROUTINE STUKO (listed on page 479)

SUBROUTINE YOKO (listed on page 481)

PROGRAM CHIE (listed on page 487)

The above three are user supply plotting main and subroutine programs for

- 32 - Vol. 52 No. 5 436

the current Tektronix terminal control system with plotting library subroutines (discussed in the next subsection) in the system. When SUBROUTINE STUKO is to be used, the other two have to be relocated simultaneously. Details are provided through comment statements in each program or subroutine.

At least one week has been consumed with plenty of cumbersome tasks to produce these three of the present forms. Hence, for the celebration of their construction, they are named as follows: STUKO after the author's better half, CHIE and YOKO after his daughters.

Indeed, almost all of the figures in the paper referred to in the preceding section have been drawn automatically through the computer system with graphic dispay option involving these programs, which indicates their extremely wide applicability in the practical drawing.

2.16 Plotting Library Subroutines (listed on page 489)

Program listings on page 116 and after provide plotting library subroutines in tern named as follows:

SUBROUTINE	LVLCH	SUBROUTINE	MOVEA
SUBROUTINE	PARCL	SUBROUTINE	DRAWA
SUBROUTINE	DWIND	SUBROUTINE	WINCO
SUBROUTINE	V2ST	SUBROUTINE	REVCO
SUBROUTINE	CLIPT	SUBROUTINE	RESET
SUBROUTINE	NWPAG	SUBROUTINE	IOWAI
SUBROUTINE	XYCNT	SUBROUTINE	ALFMD
SUBROUTINE	RESCL	SUBROUTINE	MOVAB
SUBROUTINE	VECMD	SUBROUTINE	PLCHR
SUBROUTINE	INITT	SUBROUTINE	FINIT
SUBROUTINE	TOUTS	SUBROUTINE	BUFFK
SUBROUTINE	ADOUT	SUBROUTINE	TWIND
SUBROUTINE	PCLIP		

3 Computer Program Listings

The whole computer programs developed for the simulation of data-based

437 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 33 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

nonstationary random processes are listed at the end of this paper in such a sequential order as explained in the preceding section. In each program listing an effort has been made to place an effective number of comment statements for better understanding of the program. Together with the brief explanation given in the preceding section, they are believed to help readers understand what is going on there.

Acknowledgement

The author wishes to express his deep gratitude to Renwick Professor Masanobu Shinozuka, Department of Civil Engineering and Engineering Mechanics, Colombia University, New York, USA, for his technical advice and encouragement during the course of this research. Thanks are also due to Dr. Hidehiko Mitsuma, National Space Development Agency, Tokyo, Japan, and Dr. Dali Li, Research Associate of Columbia University, for their valuable suggestions and help offered in this program development.

REFERENCES

The following references are of crucial importance to understand the notion of the data-based nonstationary random processes and their statistical properties as well as those of the stationary random processes:

- (1) Shinozuka, M., Ishikawa, H., and Mitsuma, H., "Data-Based Nonstationary Random Processes," Proc. of the ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, Tucson, Arizona, USA, (1979—1), pp. 39~43.
- (2) Ishikawa, H., and Kimura, H., "Application of Stochastic Process Theory to the Fatigue Life Estimation under Random Loading," The Kagawa University Economic Review, Vol. 52, No. 1 2 (1979—6), pp. 96~183.
- (3) Ishikawa, H., Mitsuma, H., and Shihozuka, M., "Digital Simulation of Non-stationary Random Processes and Its Applications," The Kagawa University Economic Review, Vol. 52, No. 3 · 4 (1979—10), pp. 308~373.

```
HSIM10 T=00004 IS ON CR00002 USING 00027 BLKS R=0178
```

```
FTN4
0001
                             -----(MAIN PROGRAM SIM10)-----
2000
      C
0003
            PROGRAM SIM10
      C.... THIS PROGRAM GETS BASIC STATISTICS OF TIME HISTORY XO(T)
0004
            WITH DURATION TT (SEC) SUCH AS TEMPORAL MEAN, MAXIMUM AND
0005
            MINIMUM VALUES DURING DURATION TT, FOURIER AMPLITUDE SPECTRUM
0006
            AND PHASE ANGLE OF THE FOURIER TRANSFORM OF XO(T) AS WELL AS
0007
0008
            IIS HILBERT TRANSFORM.
            THIS PROGRAM ALSO PLOTS TIME HISTORY XO(T). ITS FOURIER
0009
            AMPLITUDE SPECTRUM, PHASE ANGLE AND ITS HILBERT TRANSFORM.
0010
0011
      C.... DESCRIPTION OF MAIN PARAMETERS:
0012
                       -- EQUIDISTANT TIME SERIES DATA TO BE ANALYZED.
      C
              X0(1)
0013
                           WHEN THE ORIGINAL DATA ARE NOT EQUIDISTANT,
0014
      С
                           PROGRAM AUTOMATICALLY INTERPOLATES TO GET
0015
      С
0016
      ¢
                           EQUIDISTANT DATA.
0017
      ¢
              TII
                        -- TIME ARRAY (SEC).
                        -- FREQUENCY ARRAY (RADIAN/SEC).
0018
      C
              w(1)
0019
      C
              PSD(I)
                        -- FOURIER AMPLITUDE SPECTRUM.
0020
              PHS(I)
                        -- PHASE ANGLE BETWEEN -PI AND PI.
                        -- HILBERT TRANSFORM OF XO(T).
0021
      ¢
              XHIL(I)
      C.... REQUIRED SUBROUTINES: STUKO, STATC, SPECT, PHASE, HLBRT, FFT, INTPL
0022
      C.... REMARKS:
0023
              FOR PLOTTING PURPOSE IS USED SUBROUTINE STUKO WHICH
0024
      С
              UTILIZES TEKTRONIXS TERMINAL CONTROL SYSTEM IN HP
0025
      C
              MINI-COMPUTER. THEREFORE SLIGHT MODIFICATION IS NEEDED
0026
      С
              FOR IBM COMPUTER.
      r.
0027
8500
      C
            DIMENSION A(1024), X0(513), T(513), W(513), PSD(513), PHS(513)
0029
            DIMENSION NAME (35), XHIL (513)
0030
0031
            TO ASSIGN LOGICAL UNIT NUMBER OF INPUT/OUTPUT PERIPHERALS.
0032
      C . . . .
0033
      €.
              LOGICAL UNIT NO. = 1 -- TERMINAL
              LOGICAL UNIT NO. = 6 -- LINE PRINTER
0034
              LOGICAL UNIT NO. = 8 -- MAG-TAPE UNIT
0035
      C
0036
            LU=1
0037
            11N=8
            1001=6
0038
0039
      C.... TO SPECIFY TIME SERIES DATA TO BE ANALYZED (UP TO 70 CHAR.).
0040
0041
            WRITE (LU, 600)
        600 FORMAT(" INPUT -- PROBLEM IDENTIFICATION CODE")
0042
            READ(LU,550)(NAME(I), I=1,35)
0043
0044
        550 FORMAT(35A2)
            WRITE (IOUT, 660) (NAME (I), I=1,35)
0045
0046
        660 FORMAT (1H1////5X,35A2)
0047
      C.... TO ASSIGN NECESSARY PARAMETER VALUES.
0048
              NORG -- NUMBER OF ORIGINAL DATA.
0049
     C
              NOATA -- NUMBER OF INTERPOLATED DATA.
0050
                        FOR FFT COMPUTATION, NOATA MUST BE A POWER OF 2.
0051
      C
0052
            WR1TE(LU, 601)
        601 FORMAT(" INPUT --- NORG, NDATA")
0053
            READ(LU, *) NORG, NDATA
0054
0055
      C.... TO READ IN THE ORIGINAL TIME SERIES FROM MAG-TAPE.
0056
            REWIND IIN
0057
            READ(IIN, 300) (A(I), W(I), I=1, NORG)
0058
0059
        300 FORMAT(6F10.3)
```

439 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION -35- OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
REWIND IIN
0060
0061
      C
      C.... TO COMPUTE AND PRINT OUT APPROPRIATE QUANTITIES.
0062
             NFOLD#NDATA/2+1
0063
             NDATA1=NDATA+1
0064
             TT=A(NORG)-A(1)
0065
             DT=TT/FLOAT (NDATA)
0066
0067
             PI1=3.1415926
             PI2=2.0*PI1
0068
0069
             DF=1.0/TT
0070
             DW=PI2*DF
             FOLDF=DF*FLOAT (NFOLD)
0071
0072
             FOLDW=PI2*FOLDF
             WRITE(IOUT, 630) NORG, NDATA, NFOLD, TT, DT, DF, DW, FOLDF, FOLDW
0073
        630 FORMAT( ////
0074
            *5X, "NUMBER OF ORIGINAL DATA -- NORG
0075
            *5X, "NO. OF INTERPOLATED DATA-- NOATA =",14/
0076
                                          -- NFOLD =",14/
0077
            *5x, "NYQUIST FOLDING NUMBER
            *5X, "DURATION (PERIOD)
                                                     =",E12,5,"
                                                                 (SEC) "/
                                           -- TT
0078
                                                                 (SEC)"/
                                                     =",E12.5,"
                                           -- DT
            *5x, "TIME INCREMENT
0079
                                                     =",E12.5,"
                                           -- DF
                                                                 (HZ)*/
0080
            *5X, "FREQUENCY INCREMENT
                                                     =",E12.5," (RAD./SEC)"/
            *5×,"
                                           -- DW
0081
            *5x, "NYQUIST FOLDING FREQ.
                                           -- FOLDF =",E12.5," (HZ)"/
9880
                                           -- FOLDW =",E12.5," (RAD./SEC)"//)
0083
            *5X,"
0084
      C
      C.... TO ADJUST TIME AXIS FOR DATA TO START FROM ZERO (SEC).
0085
0086
             TFST=A(1)
             DO 310 I=1, NORG
0087
             A(I)=A(I)-TFST
0088
        310 CONTINUE
0089
0090
             W(1)=0.0
0091
      C
      C.... TO INTERPOLATE GIVEN DATA TO GET EQUIDISTANT ARRANGEMENT
0092
             FOR FFT COMPUTATION.
0093
      C
             CALL INTPL(A, W, NORG, T, XO, NDATA1, DT)
0094
0095
      C.... TO COMPUTE AND PRINT OUT BASIC STATISTICS OF XO(T).
0096
             CALL STATC (XO, NDATA, EX, VAR, STDV, DMAX, DMIN)
0097
             WRITE (10UT, 610) EX, VAR, STDV, DMAX, DMIN
0098
        610 FORMAT(//5x, "STATISTICS OF ORIGINAL RECORD"/
0099
            *5X, "TEMPORAL MEAN
                                      FX=",E12.5/
0100
            *5X, "VARIANCE
                                     VAR=",E12.5/
0101
            *5X, "STAND. DEVIATION STDV=",E12.5/
0102
            *5X, "MAXIMUM VALUE
                                     MAX=",E12.5/
0103
                                     MIN=",E12.5/)
0104
            *5x, "MINIMUM VALUE
0105
      C.... TO COMPUTE PHASE ANGLE AND FOURIER (AMPLITUDE) SPECTRUM.
0.106
             CALL PHASE (A, XO, NDATA, PHS)
0107
             CALL SPECT(A, XO, NDATA, TT, 1)
0108
             DO 200 I=1, NDATA
0109
0110
            PSD(1)=A(1)
             w(I)=DW*FLOAT(I=1)
0111
        200 CONTINUE
0112
      C
0113
      C.... TO PLOT TIME HISTORY, FOURIER (AMPLITUDE) SPECTRUM AND
0114
             PHASE ANGLE.
0115
      C
           .... FIRST, ASSIGN DEFAULT PARAMETER VALUES FOR PLOTTING.
0116
             XMIN1=1(1)
0117
0118
             XMAX1=T(NDATA1)
0119
             (1) W=SNIMX
             XMAX2=W(NFOLD)
0120
```

```
NX = 1
1510
             NY=1
0122
             YMIN1 =- 200.
0123
             YMIN2=-1.0E4
0124
             YMIN3=-PI1
0125
             YMAX1=200.
0126
0127
             YMAX2=1.0E4
             YMAX3=PI1
0128
0129
             NP=3
0130
             MO=1
             MAXX0=950
0131
             MINX0=150
0132
0133
             MINY0=150
             MAXY0=700
0134
             JDC=22
0135
0136
      C..... THEN, INPUT NECESSARY PARAMETER VALUES TO GET THE BEST
0137
0138
                 FIGURE .
0139
             WRITE(LU, 220)
         220 FORMAT(" INPUT -- NY, YMIN1, YMAX1, YMIN2, YMAX2, YMIN3, YMAX3"/
0140
            *7X; "--NX, XMIN1, XMAX1, XMIN2, XMAX2, NP, MO"/
0141
            *7X,"--JDC,MINXO,MAXXO,MINYO,MAXYO")
0142
          10 READ(LU, *)NY, YMIN1, YMAX1, YMIN2, YMAX2, YMIN3, YMAX3,
0143
            *NX,XMIN1,XMAX1,XMIN2,XMAX2,NP,MO,JDC,MINXO,MAXXO,MINYO,MAXYO
0144
0145
             IF (NY.EQ.100) STOP
              IF(NY.LT.0) GO TO 20
0146
0147
       C..... FINALLY, PLOT THE FIGURE.
0148
             CALL STUKU(T, XO, NDATA, NX, XMIN1, XMAX1,
0149
            1NY, YMIN1, YMAX1, NP, MU, 1, LU, JDC, MINXO, MAXXO, MINYO, MAXYO)
0150
             CALL STUKO(W, PSD, NFOLD, NX, XMIN2, XMAX2,
0151
             INY, YMINZ, YMAXZ, NP, MO, Z, LU, JDC, MINXO, MAXXO, MINYO, MAXYO)
0152
             CALL STUKO (W. PHS, NFOLD, NX, XMIN2, XMAX2,
0153
             1NY, YMIN3, YMAX3, NP, MO, 3, LU, JDC, MINXO, MAXXO, MINYO, MAXYO)
0154
              GO TO 10
0155
0156
       C.... TO COMPUTE AND PLOT HILBERT TRANSFORM OF XO(T).
0157
          20 CALL HLBRT (A, XO, XHIL, NDATA, 0)
0158
              WRITE (LU, 230)
0159
         230 FORMAT(" INPUT -- NY, YMIN1, YMAX1, NX, XMIN1, XMAX1, NP, MO"
0160
                        --JOC, MINXO, MAXXO, MINYO, MAXYO")
            */"
0161
              YMIN1=-200.
0162
              .005=1XAMY
0163
              NX=1
0164
0165
              MY=1
0166
              NP=2
           30 READ(LU, *)NY, YMIN1, YMAX1, NX, XMIN1, XMAX1, NP, MO, JDC,
0167
             *MINXO,MAXXO,MINYO,MAXYO
0168
              IF (NY.EQ.100) STOP
0169
              IF(NY.LT.0) GO TO 40
0170
              CALL STUKO (T, XO, NDATA, NX, XMIN1, XMAX1, NY, YMIN1, YMAX1,
0171
             *NP, MO, 1, LU, JDC, MINXO, MAXXO, MINYO, MAXYO)
0172
              CALL STUKO (T, XHIE, NDATA, NX, XMIN1, XMAX1, NY, YMIN1, YMAX1,
0173
             *NP,MO,2,LU,JDC,MINXO,MAXXO,MINYO,MAXYO)
0174
0175
              GO TO 30
0176
           40 STOP
0177
              END
              FNOS
0178
```

441 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION - 37 - OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

HSIM20 T=00004 IS ON CR00002 USING 00029 BLKS R=0218

```
0001
     FTN4
            -----(MAIN PROGRAM SIM20)-----
2000
      C
0003
            PROGRAM SIM20
      C.... THIS PROGRAM GENERATES AND PLOTS SAMPLE FUNCTIONS OF THE
0004
            NONSTATIONARY RANDOM PROCESS OF THE FIRST KIND AS
0005
0006
              x(T)=x0(T)*COS(RAN)=XHIL(T)*SIN(RAN)
                           = SIMULATED SAMPLE FUNCTION OF THE FIRST KIND.
0007
              WHERE X(T)
                          = ORIGINAL RECORD.
0008
     C
                    X0(T)
                    XHIL (T) = HILBERT TRANSFORM OF XO(T).
0009
                            = RANDOM PHASE ANGLE.
0010
     Ċ
                    RAN
0011
      C
                       IF ICON=3, RAN= GAUSSIAN.
                       IF ICON=2, RAN= UNIFORM BETWEEN -PI/2 AND PI/2.
0012
                       OTHERWISE, RAN= UNIFORM BETWEEN PI AND PI.
0013
0014
      C.... REQURED SUBROUTINES:
0015
              STUKO, RANDU, SPECT, FFT, INTPL, JNORM, AND HLBRT
0016
      C
           REMARKS:
0017
      C . .
              IF ISSW(14) IS ON, STORING PROCESS ON MAG-TAPE IS SKIPPED.
0018
              DATA STORING FORMAT ON MAG-TAPE:
0019
     С
                NDATA, NSMPL, DT, DW, TT -- FORMAT (215, 3E12.5)
0020
                                 T(I) -- CALL EXEC(2,1108,T,NDATA2)
0021
     С
                                XO(I) -- CALL EXEC(2,110B,X0,NDATA2)
0022
     С
                                 X(I) -- CALL EXEC(2,110B, X, NDATAZ)
0023
              IF ISSW(15) IS ON, FOURIER SPECTRUM PLOTTING IS SKIPPED.
     C
0024
              FOR PLOTTING PURPOSE IS USED SUBROUTINE STUKO WHICH
0025
     C
              UTILIZES TEKTRONIX TERMINAL CONTROL SYSTEM IN HP
0026
      ¢
     C
              MINI-COMPUTER. THEREFORE SLIGHT MODIFICATION IS NEEDED
0027
              FOR IBM COMPUTER.
8500
      C
0029
     C
            DIMENSION A(1024), PSD(513), T(513), X0(513), XHIL(513), X(513,5)
0030
            DIMENSION W(257)
0031
0032
     C
     C.... TO ASSIGN LOGICAL UNIT NO. OF INPUT/OUTPUT PERIPHERALS.
0033
              LOGICAL UNIT NO. = 1 -- TERMINAL
0034
     C
              LOGICAL UNIT NO. = 6 -- LINE PRINTER
0035
     C
              LOGICAL UNIT NO. = 8 -- MAG-TAPE UNIT
0036
0037
            LU=1
0038
            IIN=8
0039
            IOUT=6
0040
     С
     C.... TO ASSIGN NECESSARY PARAMETER VÁLUES.
0041
              NORG -- NUMBER OF ORIGINAL DATA.
     С
0042
              NDATA -- NUMBER OF INTERPOLATED DATA. FOR FFT COMPUTATION
     C
0043
0044
                        NDATA MUST BE A POWER OF 2.
            WRITE (LU, 601)
0045
        601 FORMAT(" INPUT --- NORG, NDATA")
0046
            READ(LU, *) NORG, NDATA
0047
0048
      C.... TO READ IN THE ORIGINAL RECORD FROM MAG-TAPE.
0049
            REWIND IIN
0050
            REAU(IIN, 300)(A(I), PSD(I), I=1, NORG)
0051
        300 FORMAT (6F10.3)
0052
0053
            REWIND IIN
0054
      C.... TO COMPUTE APPROPRIATE QUANTITIES.
0055
            NFOLD=NDATA/2+1
0056
            NDATA1=NDATA+1
0057
0058
            NDATA2=NDATA+2
0059
            TI=A(NORG)-A(1)
```

XMIN=T(1)

0120

```
DT=TT/FLUAT(NDATA)
0060
            PI =3.1415926
0061
0062
            PI2=PI*2.0
            DW=P12/TT
0063
            DO 310 I=1,NFOLD
0064
        310 W(I)=DW*FLOAT(I=1)
0065
0066
      C
      C.... TO ADJUST TIME AXIS FOR DATA TO START FROM T=0 (SEC).
0067
0068
            TFST=A(1)
            DO 311 I=1, NORG
0069
            A(I)=A(I)=TFST
0070
        311 CONTINUE
0071
            PSD(1)=0.0
0072
0073
      C.... TO INTERPOLATE GIVEN DATA TO GET EQUIDISTANT ARRANGEMENT
0074
            FOR FFT COMPUTATION.
0075
            CALL INTPL(A, PSD, NORG, T, XO, NDATA1, DT)
0076
0077
      C.... TO COMPUTE HILBERT TRANSFORM OF ORIGINAL RECORD.
0078
            CALL HLBRT (A, XO, XHIL, NDATA, 0)
0079
0080
      C.... TO COMPUTE FOURIER SPECTRUM OF ORIGINAL RECORD.
0081
            CALL SPECT(A, XO, NDATA, TT, 1)
98800
            00 101 I=1,NFOLD
0083
        101 PSD(1)=A(I)
0084
      C
0085
      C.... GENERATION OF SAMPLE FUNCTIONS
0086
      C..... FIRST, SET INITIAL VALUES FOR SUBROUTINE RANDU.
0087
            IX=12347
0088
            IY=0
0089
0090
      C..... THEN, SPECIFY SAMPLE SIZE AND NUMBER OF PLOT ON ONE FRAME.
0091
            WRITE(LU,620)
5600
        620 FORMAT (" HOW MANY FIGS ON ONE FRAME -- NP"/
0093
           *" HOW MANY SAMPLES ? -- NSMPL"/
0094
            *" NSMPL MUST BE A MULTIPLE OF NP.")
0095
0096
            READ (LU. *) NP, NSMPL
0097
      C
      C..... TO PREPARE FOR STORING PROCESS ON MAG-TAPE.
0098
                IF ISSW(14) IS ON, THIS PROCESS IS SKIPPED.
0099
      C
0100
             REWIND IIN
             IF(ISSW(14).LT.0) GO TO 161
0101
             WRITE (IIN, 162) NDATA, NSMPL, DT, DW, TT
0102
        162 FORMAT (215, 3E12.5)
0103
             CALL EXEC (2,1108, T, NDATA2)
0104
             CALL EXEC(2,110B,X0,NDATA2)
0105
      C
0106
      C..... TO SPECIFY TYPE OF RANDOM PHASE RAN.
0107
                FOR GAUSSIAN CASE, SUPPLY MEAN AND STANDARD DEVIATION.
0108
      C
                (DEFAULT VALUES: MEAN=0.0, STDV=50*PI)
0109
         161 AMEAN=0.0
0110
             SFCTR=50.0
0111
             WRITE(LU,625)
0112
         625 FORMAT(" INPUT +-- ICON, AMEAN, SFCTR")
0113
             READ(LU,*) ICON, AMEAN, SFCTR
0114
             STDV1=SFCTR*PI
0115
             ISHEET=NSMPL/NP
0116
0117
      C..... TO ASSIGN DEFAULT PARAMETER VALUES FOR PLOTTING.
0118
0119
             NX=1
```

443 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 39 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0121
             XMAXETT
0122
             NY=1
             YMIN=-200.
0123
0124
             .005=XAMY
0125
             MO#=1
             JDC=22
0126
             NW=1
0127
             WMIN=0.0
0128
0129
             WMAX=W(NFOLD)
0130
             NS=1
             SMAX=1.0E4
0131
0132
             SMIN=0.0
0133
             MINX0=150
             MAXX0#950
0134
             MINY0=150
0135
             MAXY0=700
0136
0137
             DO 120 I=1.ISHEET
0138
             00 130 J=1,NP
0139
      C..... TO GENERATE RANDOM PHASE ANGLE RAN.
0140
             IF(ICON.NE.3) GO TO 410
0141
0142
      C..... FOR GAUSSIAN DISTRIBUTION.

CALL JNORM(IX, IY, IX2, IY2, STDV1, STDV2, AMEAN, CORRL,
0143
0144
            *RAN, RAN2, -1,1)
0145
0146
            GO TO 420
0147
        410 CALL RANDU(IX, IY, RAN)
0148
             IF(ICON.NE.2) GO TO 430
0149
      C..... FOR UNIFORM DISTRIBUTION BETWEEN -PI/2 AND +PI/2.
0150
             RAN=(RAN=0.5)*PI
0151
             GO TO 420
0152
0153
      C..... FOR UNIFORM DISTRIBUTION BETWEEN -PI AND +PI.
0154
0155
        430 RAN=(RAN=0.5)*PI2
0156
      C..... TO GENERATE SAMPLE FUNCTION OF THE FIRST KIND.
0157
        420 CCUS=COS(RAN)
0158
0159
             SSIN=SIN(RAN)
             DO 140 K=1, NDATA
0160
0161
         140 X(K,J)=X9(K)+CCOS-XHIL(K)+SSIN
0162
             IF (ISSW(14).LT.0) GO TO 130
0163
      C..... TO STORE SIMULATED PROCESSES ONTO MAGTAPE.
0164
             CALL EXEC(2,110B,X(1,J),NDATA2)
0165
        130 CONTINUE
0166
0167
      C..... TO SKIP PLOTTING ROUTINE IF ISSW(15) IS ON.
0168
             IF(ISSW(15).LT.0) GO TO 120
0169
0170
      C..... TO PLOT SIMULATED PROCESSES.
0171
0172
             WRITE (LU, 640)
        640 FORMAT(" TIME HISTORY PLOTTING"/
0173
           *" INPUT---NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO, JDC"/
0174
0175
                    ---MINXO, MAXXO, MINYO, MAXYO*)
          10 READ(LU, *)NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO, JDC,
0176
            WINXO, MAXXO, MINYO, MAXYO
0177
             IF(NY.EQ.100) STOP
0178
0179
             [F(NY.LT.0) GO TO 11
0180
             NP1=NP+1
             CALL STUKO (T, XO, NDATA, NX, XMIN, XMAX, NY, YMIN, YMAX, NP1, MO,
0181
```

Vol. 52 No. 5

```
- 40 -
```

```
*1, LU, JDC, MINXO, MAXXO, MINYO, MAXYO)
0182
             DO 12 J=1,NP
0183
             J1=J+1
0184
             CALL STUKO(T,X(1,J),NDATA,NX,XMIN,XMAX,NY,YMIN,YMAX,
0185
            *NP1,MO,J1,LU,JDC,MINXO,MAXXO,MINYO,MAXYO)
0186
         12 CONTINUE
0187
             GO TO 10
0188
0189
      C..... TO COMPUTE CORRESPONDING FOURIER SPECTRUM.
0190
0191
         11 DO 13 J=1,NP
             CALL SPECT(A,X(1,J),NDATA,TT,1)
0192
             DO 13 K=1,NFOLD
0193
0194
             X(K,J)=A(K)
         13 CONTINUE
0195
0196
      С
      C.... TO PLOT FOURIER SPECTRUM.
0197
             WRITE (LU,650)
0198
         650 FORMAT(" FOURIER SPECTRUM PLOTTING"/
0199
            ** INPUT---NS, SMIN, SMAX, NW, WMIN, WMAX, MO, JDC "/
0200
                     ---MINXO,MAXXO,MINYO,MAXYO")
            **
1050
          15 READ(LU, *) NS, SMIN, SMAX, NW, WMIN, WMAX, MO, JDC,
0202
            OYXAM, OYNIM, OXXAM, OXNIM*
0203
0204
             IF(NS.EQ.100) STOP
             IF(NS.LT.0) GO TO 120
0205
             CALL STUKO(W;PSD,NFOLD,NW,WMIN,WMAX,NS,SMIN,SMAX,NP1,MO,
9050
            *1, LU, JDC, MINXO, MAXXO, MINYO, MAXYO)
0207
             DO 17 J=1,NP
8050
             J1=J+1
0209
             CALL STUKO(W,X(1,J),NFOLD,NW,WMIN,WMAX,NS,SMIN,SMAX,NP1,MO,
0210
            *J1, LU, JDC, MINXO, MAXXO, MINYO, MAXYO)
1150
          17 CONTINUE
0212
0213
             GO TO 15
         120 CONTINUE
0214
             REWIND IIN
0215
             STOP
0216
             END
0217
8150
             END$
```

445 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 41 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

HSIM30 T=00004 IS ON CR00002 USING 00038 BLKS R=0280

```
0001
      FTN4
                          -----(MAIN PROGRAM SIM30)-----
0002
      С
            PROGRAM SIM30
0003
      C.... THIS PROGRAM GETS AND PLOTS ENSEMBLE AS WELL AS TEMPORAL
0004
            STATISTICS OF THE DATA-BASED NONSTATIONARY RANDOM PROCESS
0005
      С
            SUCH AS MAX, MIN, MEAN, STANDARD DEVIATION, PROBABILITY
0006
            DENSITY FUNCTION AT T=T1 (FOR ENSEMBLE) OR K=K1 (FOR
0007
0008
      C
            TEMPORAL).
0009
      C.... REQUIRED SUBROUTINES:
0010
0011
      C
              STUKO, STATC, HLBRT, FFT
0012
      C.... REMARKS:
               ISSW(13)=1 --- DENSITY PLOTTING AT T=T1 ONLY.
0013
               ISSW(14)=1 --- TEMPORAL STATISTIC PLOTTING IS SKIPPED.
0014
               ISSW(15)=1 --- THEORETICAL PDF (FIRST KIND) IS PLOTTED.
0015
              DATA FORMAT ON MAG-TAPE SHOULD BE:
0016
      C . . . .
                 NDATA, NSMPL, DT, DW, TT --- FORMAT (215, 3E12.5)
0017
      C
                                  T(I) --- CALL EXEC(2,1108, T, NDATA2)
      C
0018
                                 XO(I) --- CALL EXEC(2,1108,X0,NDATA2)
0019
      C
                                  X(I) --- CALL EXEC(2,110B,X,NDATA2)
      C
0020
1500
            DIMENSION FMAX(512), FMIN(512), FSTDV(512), FMEAN(512)
0022
            DIMENSION EMAX(512), EMIN(512), ESTOV(512), EMEAN(512)
0023
            DIMENSION T(512), X0(512), XSIM(512), T1(5), FFT0(1024)
0024
             DIMENSION HIST (51,5), AMP (51,5), IPOS (5), XHIL (512), AO (5)
0025
            EQUIVALENCE (EMAX(1), HIST), (EMIN(1), AMP), (XHIL, EMEAN)
0026
             EQUIVALENCE (FFTO(1), FMAX), (FFTO(513), FMIN)
0027
8500
0029
            Lu=1
0030
            IIN=8
            PI=3.141593
0031
            PI2=2.0*PI
0032
0033
      C.... TO READ IN NECESSARY INFORMATION FROM MAGTAPE.
0034
            REWIND IIN
0035
            READ(IIN, 600) NDATA, NSMPL, DT, DW, TT
0.036
        600 FORMAT(215,3E12.5)
0037
0038
            NDATA2=NDATA+2
             CALL EXEC(1,110B,T,NDATA2)
0039
             CALL EXEC(1,110B,X0,NDATA2)
0040
0041
             NSMPL2=NSMPL*2
0042
             ANDATA=FLOAT(NDATA)
0043
             ANDATI = ANDATA = 1.0
0044
             ANSMPL=FLOAT (NSMPL)
             ANSMP1=ANSMPL-1.0
0045
0046
             NFOLD=NDATA/2+1
             DF=1.07TT
0047
             FNIQUI=DW*FLOAT(NFOLD)
0048
0049
             FNIQU2=DF*FLOAT(NFOLD)
             WRITE(6,610) TT, DT, DW, DF, FNIQU1, FNIQU2, NDATA, NFOLD
0050
        610 FORMAT(1H1///3x, "SIMULATION OF NONSTATIONARY PROCESS"/
0051
            1" WITH PHASE ANGLE HAVING UNIFORM DISTRIBUTION. "///
0052
            23x," TOTAL TIME PERIOD
                                          T=",E11.4/
0053
                                         DT=",E11.4/
            33x." TIME INCREMENT
0054
            43X." FREQUENCY INCREMENT
                                         DW=", E11.4/
0055
            53X,"
                                         DF=",E11.4/
0056
            63x," NYQUIST FREQUENCY FNIQU1=",E11,4,"
                                                         (RAD./SEC) "/
0057
            73x."
                                     FNIQU2=",E11.4,"
                                                        (1/SEC)*/
0058
            83X," NUMBER OF DATA
                                      NDATA=", IS/
0059
```

```
93x, " NYQUIST FOLD. NO. NFOLDE", 15///)
0060
0061
      C
      C.... TO COMPUTE AND PLOT STATISTICS (TEMPORAL AND OR ENSEMBLE).
2000
             IF ISSW(13) IS ON, SKIP THIS PROCESS AND GO DIRECTLY TO THE COMPUTATION OF PROBABILITY DENSITY FUNCTION.
0063
      C
      C
0064
               FMAX, FMIN, FSTDV, FMEAN --- FOR ENSEMBLE.
      С
0065
                EMAX, EMIN, ESTOV, EMEAN --- FOR TEMPORAL.
      C
0066
             IF(ISSW(13).LT.0) GO TO 42
0067
             DO 200 J=1,NDATA
0068
             FMAX(J)=-1.0E20
0069
0070
             FMIN(J)=1.0E20
             FSTDV(J)=0.
0071
0072
             FMEAN(J) = 0.
0073
         200 CONTINUE
             DO 210 I=1, NSMPL
0074
             CALL EXEC(1,110B,XSIM,NDATAZ)
0075
             CALL STATC(XSIM, NDATA, EMEAN(I), EVR, ESTDV(I), EMAX(I), EMIN(I))
0076
             DO 220 J=1,NDATA
0077
             DDJ=XSIM(J)
0078
             FMEAN(J) = FMEAN(J) + DDJ
0079
             FSTDV(J)=FSTDV(J)+DDJ*DDJ
0080
             IF(DDJ.GT.FMAX(J)) FMAX(J)=DDJ
0081
             IF (DDJ.LT.FMIN(J)) FMIN(J)=DDJ
0082
         220 CONTINUE
0083
         210 CONTINUE
0084
0085
             DO 230 J=1, NDATA
             FMEAN(J)=FMEAN(J)/ANSMPL
0086
             FJD=FSTDV(J)/ANSMP1=FMEAN(J)**2
0087
             IF(FJD.LT.O.) FJD=0.
0088
             FSTDV(J)=SQRT(FJD)
0089
         230 CONTINUE
0090
0091
      C
       C.... TO PLOT THE TEMPORAL INFORMATION.
9092
             IF ISSW(14) IS ON, SKIP THIS PROCESS.
0093
       C
             IF(ISSW(14)) 32,2,2
0094
           2 MO=-1
0095
0096
             NX=1
0097
             XMIN=0.0
0098
             XMAX=ANSMPL
0099
             NY = 1
             YMAX=200.
0100
             .005-=NIMY
0101
0102
             NP=4
             N=NSMPL
0103
0104
             JDC=22
             MINX=150
0105
             MAXX=950
0106
0107
             MINY=150
0108
             MAXY=700
             DO 240 I=1, NSMPL
0109
0110
         240 XSIM(1)=FLOAT(I)
0111
              WRITE (LU, 630)
         630 FORMAT(" INPUT -- NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO, JDC"
0112
                      --MINX, MAXX, MINY, MAXY H)
0113
          30 READ (LU, *)NY, YMIN, YMAX, NX, XMIN, XMAX; NP, MO, JDC,
0114
             YXAM, YNIM, XXAM, XNIM*
0115
              IF(NY.EQ.100) STOP
0116
              IF(NY.LT.0) GO TO 32
0117
              CALL STUKO(XSIM, EMEAN, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0118
             INP, MO, 1, LU, JDC, MINX, MAXX, MINY, MAXY)
0119
              CALL STUKO(XSIM, ESTDV, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0120
```

447 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 43 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
2NP, MO, 2, LU, JDC, MINX, MAXX, MINY, MAXY)
0121
0122
              CALL STUKO(XSIM, EMAX, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
             INP, MO, 3, LU, JDC, MINX, MAXX, MINY, MAXY)
0123
0124
              CALL STUKO(XSIM, EMIN, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0125
             1NP, MO, 4, LU, JDC, MINX, MAXX, MINY, MAXY)
              GO TO 30
0126
       C
0127
       C.... TO PLOT ENSEMBLE STATISTICS AT T=T1.
0128
0129
              T1 CAN BE SPECIFIED ARBITRARILY (UP TO 5 CASES).
0130
          32 MO=~1
0131
              NX=1
0132
              XMIN=0.
0133
              XMAX=40.
              N Y ± 1
0134
0135
              YMIN=-200.
              YMAX=200.
0136
0137
              NP#5
0138
             N=NDATA
0139
              J0C=22
             MAXX=950
0140
0141
             MAXY=700
0142
             M1NX=150
0143
             MINY=150
0144
             WRITE (LU, 630)
0145
          40 READ(LU, *)NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO, JDC
0146
             *, MINX, MAXX, MINY, MAXY
9147
             IF(NY.EQ.100) STOP
0148
              IF(NY.LT.0) GO TO 42
0149
             CALL STUKO(T, XO, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0150
             1NP, MO, 1, LU, JDC, MINX, MAXX, MINY, MAXY)
             CALL STUKO (T, FMEAN, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0151
             1NP, MO, 2, LU, JDC, MINX, MAXX, MINY, MAXY)
0152
             CALL STUKO (T, FSTDV, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0153
            1NP, MO, 3, LU, JDC, MINX, MAXX, MINY, MAXY)
0154
0155
             CALL STUKO(T, FMAX, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0156
            2NP, MO, 4, LU, JOC, MINX, MAXX, MINY, MAXY)
0157
              CALL STUKO (T, FMIN, N, NX, XMIN, XMAX, NY, YMIN, YMAX,
            INP, MO.5.LU, JDC, MINX, MAXX, MINY, MAXY)
0158
             GO TO 40
0159
0160
      C
      C.... TO PLOT PROBABILITY DENSITY AT T=T1.
0161
             USER MUST SPECIFY TI VALUE THROUGH THE TERMINAL.
0162
          42" REWIND IIN
0163
             JDC=22
0164
             MINX=150
0165
             MAXX=950
0166
0167
             MINY=150
0168
             MAXY=700
0169
             WRITE (LU, 640)
0170
         640 FORMAT(" INPUT THE VALUES RELATED TO HISTOGRAMS."/
            1 "
                 NSTEP -- NUMBER OF STEPS (UP TO 51)"/
0171
0172
            ۶,
                           MUST BE ODD INTEGER VALUE."/
            3"
                 NT1
                        -- NUMBER OF SPECIFIC TIMES REQUIRED (UP TO 10)")
0173
             READ(LU.*) NSTEP.NT1
0174
0175
             WRITE (LU.650)
         650 FORMAT(" INPUT -- T1 = SPECIFIC TIME TO BE CONSIDERED"/
0176
            1 *
                              MUST BE NT1 NUMBERS. "/)
0177
0178
             READ(LU,*)(T1(I),I=1,NT1)
0179
             DO 250 I=1,NY1
0180
             IPOSI=IFIX(T1(I)/DT)
0181
             IP0S2=1P0SI+1
```

```
0182
            IPOS(1)=IPOSI
0183
            WRITE(6,660) T1(I), IPOSI, T(IPOSI)
0184
                         T1=",F7.3,2X," I=",I4,2X," TRUE T=",F7.3)
        660 FORMAT (3X."
0185
       250 CONTINUE
0186
0187
      C.... DUMMY READING OF MAGTAPE TO GET THE CORRECT DATA POSITION.
0188
            REWIND IIN
0189
            READ (IIN, 600) NDMY1, NDMY2, DMY1, DMY2, DMY3
0190
            DO 270 I=1,2
0191
        270 CALL EXEC(1,110B, XSIM, NDATA2)
0192
      C
0193
      C.... TO COMPUTE HILBERT TRANSFORM XHIL(T) OF XO(T).
0194
            CALL HUBRT (FFTO, XO, XHIL, NDATA, 0)
0195
0196
      C.... TO SPECIFY AMPLITUDE OF EACH STEP
0197
            NSTEP2=NSTEP/2
0198
            DO 280 J=1,NT1
0199
             IPOSJ=IPOS(J)
0200
            AO(J)=SQRT(XO(IPOSJ)**2+XHIL(IPOSJ)**2)
0201
            DLTJ=A0(J) *2.0/FLOAT(NSTEP=1)
0202
            DO 280 I=1, NSTEP
0203
             AMP(I,J)=DLTJ*FLOAT(I+NSTEP2=1)
0204
        280 CONTINUE
0205
            DO 282 J=1,NT1
0206
            DO 282 I=1.NSTEP
0207
         282 HIST(I,J)=0.0
0208
      С
0209
      C.... TO COUNT THE FREQUENCY FOR EACH STEP.
0210
             DO 290 I=1, NSMPL
0211
             CALL EXEC(1,110B,XSIM,NDATA2)
0212
             00 300 J=1.NT1
0213
             IPOSJ=IPOS(J)
0214
0215
             DDJ=XSIM(IPOSJ)
             DLTJ2=(AMP(NSTEP,J)-AMP(1,J))/(2.0*FLBAT(NSTEP-1))
0216
             DFREQ=1.0/(ANSMPL*2.0*DLTJ2)
0217
             IF(DDJ.GT.AMP(1,J)) GO TO 301
ó218
             HIST(1,J)=HIST(1,J)+DFREQ
 0219
             GO TO 300
 0220
         301 IF(DDJ.LT.AMP(NSTEP,J)) GO TO 302
1550
             HIST(NSTEP, J)=HIST(NSTEP, J)+DFRED
 0222
             GO. TO 300
 0223
         302 DO 310 K=1,NSTEP
 0224
             IF(ABS(DDJ=AMP(K,J)).G1.DLTJ2) GO TO 310
 0225
             HIST(K,J)=HIST(K,J)+DFREO
 0226
             GO TO 300
 0227
         310 CONTINUE
 0228
 0229
         300 CONTINUE
         290 CONTINUE
 0230
             MO = 0
 0231
 0232
             N X = 1
             XMIN=-200.0
 0233
 0234 `
             0.005=XAMX
             NY=1
 0235
             YMIN=0.
 0236
             YMAX=0.5
 0237
             N=NSTEP
 0238
             NP=NT1
 0239
             IF(ISSw(15))320,321,321
 0240
         321 WRITE (LU, 630)
 0241
          60 READ(LU.*)NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO
 0242
```

449 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 45 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
*, JDC, MINX, MAXX, MINY, MAXY
0243
0244
             IF(NY.EQ.100) STOP
0245
             IF(NY.LT.0) GO TO 320
0246
             DO 350 I=1,NP
             CALL STUKO(AMP(1,1), HIST(1,1), N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0247
            INP, MO, I, LU, JDC, MINX, MAXX, MINY, MAXY)
0248
0249
        350 CONTINUE
0250
             GO TO 60
        320 DO 750 I=1,NP
0251
0252
             WRITE (LU, 630)
             MO=0
0253
             MPO=NP
0254
0255
         61 READ(LU, *)NY, YMIN, YMAX, NX, XMIN, XMAX, NPO, MO, JDC,
            *MINX, MAXX, MINY, MAXY
0256
             IF (NY.EQ.100) STOP
0257
0258
             IF(NY.LT.0) GO TO 750
             ATAGMA(I)/ANDATA
0259
             N1=NDATA=1
0260
0261
             DO 330 J=1,N1
             FMAX(J) == AO(I) +DOJ *FLOAT(J)
0262
             ESTDV(J)=1.0/(PI*SQRT(A0(I)**2-FMAX(J)**2))
0263
0264
         330 CONTINUE
             CALL STUKO (FMAX, ESTDV, N1, NX, XMIN, XMAX, NY, YMIN, YMAX,
0265
            *2,MO,1,LU,JDC,MINX,MAXX,MINY,MAXY)
0266
             CALL STUKO(AMP(1,1), HIST(1,1), N, NX, XMIN, XMAX, NY, YMIN, YMAX,
0267
            *2,MO,2,LU,JDC,MINX,MAXX,MINY,MAXY)
8650
             GO TO 61
0269
         750 CONTINUE
0270
          62 REWIND IIN
0271
0272
             WRITE (LU, 680)
         680 FORMAT(" NEED ANOTHER TRIAL FOR T1 ?"/
0273
            1"
0274
                IF YES ---- TYPE 1"/
            2"
               IF NO
                                    -1"/)
0275
             READ(LU,*) IJDG
0276
             IF(IJDG) 64,42,42
0277
          64 STOP
0278
0279
             END
0280
             END$
```

450

<u> — 46 — </u>

HSIM40 T=00004 IS ON CR00002 USING 00022 BLKS R=0170

```
0001
      FTN4
                                   -----(MAIN PROGRAM SIM40)-----
9002
      ¢
             PROGRAM SIM40
0003
      C.... THIS PROGRAM SIMULATES AND PLOTS DATA-BASED BIVARIATE
0004
             NONSTATIONARY RANDOM PROCESS OF THE FIRST KIND AS WELL AS
0005
             THEIR FOURIER AMPLITUDE SPECTRA WITH RANDOM PHASE ANGLE
0006
             BEING JOINT NORMAL DISTRIBUTION.
0007
      C
8000
      C .... REQURED SUBROUTINES:
0009
               STUKO, SPECT, RANDU, INTPL, JNORM, FFT, HLBRT
0010
      С
0011
      C.... REMARKS:
               BIVARIATE ORIGINAL RECORD MUST BE USED.
0012
      C
0013
      C
             DIMENSION A(1024), X01(513), X02(513), XHIL1(513), XHIL2(513)
0014
            *,T(513),XSIM2(514),XNS(513,2),XEW(513,2),W(257),SPD(257,2)
0015
            EQUIVALENCE (XSIM2, SPD), (W, A(1)), (T, A(511))
0016
             L.U=1
0017
             WRITE (LU, 601)
0018
        601 FORMAT(/" INPUT THE FOLLOWING VALUES."/
0019
            *" NORG1 -- NUMBER OF NS DATA"
0020
            *" NORG2 -- NUMBER OF EW DATA"/
0021
            *" NDATA -- NUMBER OF INTERPOLATED DATA"/)
0022
             READ(1,*) NORG1,NORG2,NDATA
0023
0024
             TO READ THE ORIGINAL TIME SERIES
0025
      C
             REWIND 8
0026
             READ(8,300)(A(I), XHIL1(I), I=1, NORG1)
0027
         300 FORMAT(6F10.3)
0028
             READ(8,300)(XSIM2(1),XHIL2(1),I=1,NORG2)
0029
0030
             REWIND 8
0031
      C
             NFOLD=NDATA/2+1
0032
             NDATA1=NDATA+1
0033
             TT=A(NORG1)-A(1)
0034
             DT=TT/FLOAT (NDATA)
0035
             PI =3,1415926
0036
             P12=P1*2.0
0037
0038
             DW#PI2/TT
0039
      C.... INTERPOLATION OF THE ORIGINAL TIME SERIES
0040
             CALL INTPL(A, XHIL1, NORG1, T, X01, NDATA1, DT)
0041
             CALL INTPL(XS1M2, XHIL2, NORG2, T, XO2, NDATA1, DT)
0042
0043
      C.... TO COMPUTE HILBERT TRANSFORM OF ORIGINAL TIME HISTORY.
0044
             CALL HLBRT (A, X01, XHIL1, NDATA, 0)
0045
             CALL HLBRT (A, XOZ, XHILZ, NDATA, 0)
0046
0047
       C.... TO COMPUTE FOURIER AMPLITUDE SPECTRUM OF XO(T).
0048
             CALL SPECT(A, X01, NDATA, TT, 1)
0049
             DO 700 I=1,NFOLD
0050
         700 SPD(I,1)=A(I)
0051
             CALL SPECT (A, XOZ, NDATA, TT, 1)
0052
             DO 710 I=1, NFOLD
0053
         710 SPD(I,2)=A(I)
0054
0055
      Ç
       C.... TO GENERATE JOINT GAUSSIAN RANDOM PHASE ANGLE.
0056
             SFCTR1=50.0
0057
             CORRL=0.999
0058
             AM1 = 0 .
0059
```

451 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 47 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
NSMPL=500
0060
             WRITE (LU,880)
0061
0062
         880 FORMAT(" INPUT --- NSMPL, CORRL, SFCTR1, AM1")
0063
             READ(LU, *) NSMPL, CORRL, SFCTR1, AM1
             STDV1=SFCTR1*PI
0064
0065
             STDV2=STDV1
0066
             NSMPL2=NSMPL/2
             MD==1
0067
0068
             NX = 1
0069
             XMAX=TT
             XMIN=T(1)
0070
             NY≈1
0071
             YMIN=-200.
0072
             YMAX=200.
0073
             NP=20303
0074
             MINX0=50
0075
0076
             MAXX0=1020
0077
             MINY0=150
             MAXY0=680
0078
             JDCXY=0
0079
0080
             NS=1
             SMIN=0.0
0081
             SMAX=500.
0082
             NW=1
0083
             WMIN=0.
0084
             WMAX=DW*FLOAT (NFOLD=1)
0085
             IX1=12347
0086
0087
             1 Y 1 = 0
0088
             IX2=30011
0089
             IY2=0
0090
             DO 250 IJK=1,NSMPL2
             DO 255 KK=1,2
0091
             CALL JNORM (IX1, IY1, IX2, IY2, STDV1, STDV2, AM1, CORRL ,
0092
0093
            *RAN1, RAN2, -1)
             CCOS1=COS(RAN1)
0094
             SSIN1=SIN(RAN1)
0095
0096
             CCOS2=COS(RAN2)
             SSIN2=SIN(RAN2)
0097
0098
             DO 220 J=1,NDATA
             XNS(J,KK)=X01(J)*CCOS1-XHIL1(J)*SSIN1
0099
0100
             XEW(J,KK)=X02(J)*CCOS2-XHIL2(J)*SSIN2
0101
         220 CONTINUE
0102
         255 CONTINUE
0103
             JREP==1
0104
             WRITE(LU,555)
         555 FORMAT(" INPUT--- NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO"/
0105
            *" INPUT--- JDCXY, MINXO, MAXXO, MINYO, MAXYO")
0106
          10 READ(LU, *)NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO,
0107
            *JDCXY,MINXO,MAXXO,MINYO,MAXYO
0108
             IF(NY.EQ.100) STOP
0109
              IF(NY.LT.0) GO TO 249
0110
             IF(JREP.GT.0) GO TO 887
0111
0112
             DO 888 I=1, NDATA
         888 T(I)=DI*FLOAT(I*1)
0113
         887 CALL STUKO(T, X01, NDATA, NX, XMIN, XMAX, NY, YMIN, YMAX, .
0114
            *NP, MO, 1, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0115
0116
             DU 333 J=1,2
0117
             J1=J+1
             CALL STUKO(T, XNS(1, J), NDATA, NX, XMIN, XMAX, NY, YMIN, YMAX,
0118
             *NP, MO, J1, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0119
         333 CONTINUE
0120
```

```
CALL STUKO (T, XO2, NDATA, NX, XMIN, XMAX, NY, YMIN, YMAX,
0121
            ANP, MO, 4, LU, JOCKY, MINXO, MAXXO, MINYO, MAXYO)
0122
0123
             DO 334 J=1,2
             J1 = J + 4
0124
             CALL STUKO(T, XEW(1, J), NDATA, NX, XMIN, XMAX, NY, YMIN, YMAX,
0125
            *NP, MO, J1, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0126
         334 CONTINUE
0127
             JREP=1
0128
0129
             GO TO 10
         249 WRITE (LU, 555)
0130
0131
              JREP=-1
          20 READ(LU, *) NS, SMIN, SMAX, NW, WMIN, WMAX, NP, MO, JDCXY,
0.132
            *MINXO, MAXXO, MINYO, MAXYO
0133
              IF (NS.EQ.100) STOP
0134
              IF(NS.LT.0) GO TO 250
0135
              IF(JREP.GT.0) GO TO 891
0136
              DO 890 I=1,NFOLD
0137
         890 W(I)=DW*FLOAT(I=1)
0138
         891 CALL STUKO(W, SPD(1,1), NFOLD, NW, WMIN, WMAX, NS, SMIN, SMAX,
0139
             *NP, MO, 1, LU, JOCXY, MINXO, MAXXO, MINYO, MAXYO)
0140
              DO 400 J=1.2
0141
              IF(JREP.GT.0) GO TO 892
0142
              CALL SPECT (A, XNS(1, J), NDATA, TT, 1)
0143
0144
              00 401 KK=1, NFOLO
         401 X8S(KK,J)=A(KK)
0145
              DO 900 I=1.NFOLD
0146
         900 w(I)=DW*FLOAT(I=1)
0147
0148
         892 J1=J+1
              CALL STUKU(W, XNS(1, J), NFOLD, NW, WMIN, WMAX, NS, SMIN, SMAX,
0149
             *NP, MO, J1, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0150
         400 CONTINUE
0151
              CALL STUKO(W,SPD(1,2),NFOLD,NW,WMIN,WMAX,NS,SMIN,SMAX,
0152
             *NP, MD, 4, LU, JOCXY, MINXO, MAXXO, MINYO, MAXYO)
0153
              00 410 J=1.2
0154
0155
              IF(JREP.GT.0) GO TO 893
              CALL SPECT(A, XEW(1,J), NDATA, TT, 1)
0156
              DO 402 KK=1,NFOLD
0157
         402 XEW(KK, J) = A(KK)
0158
              DO 910 I=1,NFOLD
0159
         910 W(I)=DW*FLOAT(I=1)
0160
         893 J1=J+4
0.161
              CALL STUKO(w, XEW(1, J), NFOLD, NW, WMIN, WMAX, NS, SMIN, SMAX,
5610
             *NP, MO, J1, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0163
          410 CONTINUE
0164
              JREP=1
0165
              GO TO 20
0166
         250 CONTINUE
0167
              STOP
0168
0169
              END
              F ND $
0170
```

453 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 49 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

HSIM50 T=00004 IS ON CROCOC2 USING 00020 BLKS R=0159

```
FTNA
0001
                   -----(MAIN PROGRAM SIM50)-----
2000
      C
            PROGRAM SIM50
0003
            THIS PROGRAM COMPUTES AND PLOTS CROSS CORRELATION FUNCTION
0004
            BETWEEN X1(T) AND X2(T) SIMULATED BY DATA-BASED BIVARIATE
0005
            NONSTATIONARY PROCESS SIMULATION METHOD OF THE FIRST KIND
0006
      C
            WITH RANDOM PHASE ANGLE BEING JOINT GAUSSIAN.
0007
      C
0008
      C.... REQUIRED SUBROUTINES:
0009
              STUKO, RANDU, HLBRT, FFT, INTPL, JNORM
0010
      С
0011
      C
            DIMENSION A(1024), X01(512), X02(512), XHIL1(512), XHIL2(512),
0012
           *T(512), XSIM2(512), XYREAL(512,2), XYIMAG(512,2), IPOS(2), TPOS(2)
0013
            EQUIVALENCE (A(513),T),(A(1),XSIM2)
0014
0015
      C
0016
            1.0=1
            WRITE (LU, 601)
0017
        601 FORMAT(/" INPUT THE FOLLOWING VALUES."/
0018
            *" NORG1 -- NUMBER OF NS DATA"/
0019
           ** NORG2 -- NUMBER OF EW DATA*/
0020
           *" NDATA -- NUMBER OF INTERPOLATED DATA"/)
0021
            READ(LU, *) NORG1, NORG2, NDATA
2500
0023
      C.... TO READ THE ORIGINAL TIME SERIES
ó024
            REWIND 8
0025
            READ(8,300)(A(I),XHIL1(I),I=1,NORG1)
0026
        300 FORMAT(6F10.3)
0027
            READ(8,300)(XSIM2(I), XHIL2(I), I=1, NORG2)
0028
            REWIND 8
0029
0030
      С
            NFOLD=NDATA/2+1
0031
            NDATA1=NDATA+1
0032
            TT=A(NORG1)-A(1)
0033
0034
            DT=TT/FLOAT (NDATA)
0035
            ·PI =3.1415926
            P12=P1*2.0
0036
            DW=PI2/TT
0037
0038
      C.... INTERPOLATION OF THE ORIGINAL TIME SERIES
0039
            CALL INTPL(A, XHIL1, NORG1, XYREAL(1,1), X01, NDATA, OT)
0040
            CALL INTPL(XSIM2, XHIL2, NORG2, XYREAL(1,1), X02, NDATA, DT)
0041
0042
      C.... 10 COMPUTE HILBERT TRANSFORM XHIL(T) OF XO(T).
0043
            CALL HUBRT (A, XO1, XHIL1, NDATA, 0)
0044
            CALL HLBRT (A, XO2, XHIL2, NDATA, 0)
0045
0046
      C.... TO CALCULATE EXPECTED VALUE SUCH AS
0047
      C.... EXP(I*(PHAI1=PHAI2)),ETC.
0048
0049
         30 NSMPL=500
0050
             IX1=12347
0051
             IY1=0
0052
             IX2=30011
0053
             1Y2=0
             CORRL=0.
0054
             AM1=0.
0055
             SECTR1=50.0
0056
0057
            WRITE (LU,650)
        650 FORMAT(" INPUT -- NSMPL, CORRE, SFCTR1, AM1")
0058
0059
             READ(LU, *) NSMPL, CORRL, SFCTR1, AM1
```

```
STDV1=PI *SFCTR1
0060
0061
             STDV2=STDV1
0062
             ¢casp=0.
             CCOSM=0.
0063
0064
             SSINP=0.
0065
             SSINM=0.
             DO 200 I=1, NSMPL
0066
             CALL JNORM(IX1, IY1, IX2, IY2, STDV1, STDV2, AM1, CORRL,
0067
0068
            *RAN1, RAN2, 1)
             RANP#RAN1+RAN2
0069
             RANM=RAN1-RAN2
0070
             CCOSP=CCOSP+COS(RANP)
0071
0072
             CCOSM=CCOSM+COS(RANM)
             SSINP=SSINP+SIN(RANP)
0073
             SSINM=SSINM+SIN(RANM)
0074
0075
        200 CONTINUE
0076
             ANSMPL=FLOAT (NSMPL)
             CCOSP#CCOSP/ANSMPL
0077
             CCOSM#CCOSM/ANSMPL
0078
             SSINP=SSINP/ANSMPL
0079
0080
             SSINM=SSINM/ANSMPL
             WRITE (6,670) CCOSP, CCOSM, SSINP, SSINM
0081
         670 FORMAT(1H1////
0082
0083
                 EXPECTED VALUE CCOSP=",E12.5/
            * "
                 EXPECTED VALUE CCOSM=",E12.5/
0084
            * H
                 EXPECTED VALUE SSINP=",E12.5/
0085
                 EXPECTED VALUE SSINM=",E12.5/)
0086
            * "
0087
      C.... CALCULATION OF CROSS CORRELATION.
0088
             WRITE (LU, 680)
0089
         680 FORMAT(" INPUT --- NT1 (UP TO 2)")
0090
0091
             READ(LU,*) NT1
             WRITE (LU, 681)
0092
         681 FORMAT(" INPUT --- TIME REQURED (UP TO NT1)")
0093
0094
             READ(LU, *)(TPOS(I), I=1, NT1)
             17M.1=I SSS OU
0095
0096
             IIPOS=IFIX(TPOS(I)/DT)
             IF(T(TIPOS+1)-TPOS(I).LT.TPOS(I)-T(TIPOS)) IIPOS=IIPOS+1
0097
             IPOS(I)=IIPOS
0098
             WRITE(6,690)IIPOS,T(IIPOS)
0099
                                       TIME=",E12.5)
         690 FORMAT("
                        IPOS=", 14,"
0100
         222 CUNTINUE
0101
             EXPCON=0.5*EXP(-2.0*STDV1**2)
0102
             11M, 1=1 055 00
0103
             INT=IPOS(I)
0104
0105
             FCTR1=X02(INT)
0106
             FCTR2=XHIL2(INT)
0107
             DO 230 J=1,NDATA
0108
             FC1=X01(J)
             FC2=XHTL1(J)
0109
             XYREAL (J, 1) = FNCTR(CCOSM, SSINM, FC1, FC2, FCTR1, -FCTR2)
0110
            *+FNCTR(CCOSP,-SSINP,FC1,-FC2,FCTR1,-FCTR2)
0111
            *+FNCTR(CCOSM, =SSINM, FC1, =FC2, FCTR1, FCTR2)
0112
            *+FNCTR(CCOSP, SSINP, FC1, FC2, FCTR1, FCTR2)
0113
             XYIMAG(J,1)=0.5*(FC1*FCTR1+FC2*FCTR2)+
0114
            *EXPCON*(FC1*FCTR1-FC2*FCTR2)
0115
             XYREAL(J,I)=XYREAL(J,I)/4.0
0116
         230 CONTINUE
0117
0118
         220 CONTINUE
0119
             N X = 1
0120
             VMIN=0.0
```

OLIVE 香川大学学術情報リポジトリ

455 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 51 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
XMAX=DT*FLOAT(NDATA)
0121
0122
             NY=1
             YMAX=1.E6
0123
0124
             YMIN=-1.E6
0125
             MO==1
             NP=2*NT1
0126
0127
             JDC=22
8510
             MINX=50
             MAXX=1020
0129
0130
             MINY=150
0131
             MAXY=700
             WRITE (LU,555)
0132
0133
         555 FORMAT(" INPUT --- NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO"/
            *" INPUT --- JDC, MINX, MAXX, MINY, MAXY")
0134
          10 READ(LU, *)NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO
0135
0136
            *,JDC,MINX,MAXX,MINY,MAXY
0137
             IF (NY.EQ.100) STOP
0138
             IF(NY.LT.0) GD TO 20
0139
             DO 350 K=1,NDATA
0140
         350 T(1)=DT*FLOAT(1-1)
0141
             DO 333 K=1,NT1
0142
         333 CALL STUKO(T, XYIMAG(1,K), NDATA, NX, XMIN, XMAX,
0143
            *NY, YMIN, YMAX, NP, MO, K, LU, JDC, MINX, MAXX, MINY, MAXY)
0144
             DO 334 K=1,NT1
0145
             K1=K+NT1
0146
         334 CALL STUKO(T, XYREAL(1,K), NDATA, NX, XMIN, XMAX,
0147
            *NY,YMIN,YMAX,NP,MO,K1,LU,JDC,MINX,MAXX,MINY,MAXY)
0148
             GO TO 10
0149
          20 WRITE (LU, 888)
0150
         888 FORMAT (" ANOTHER TRIAL?")
0151
             READ(LU,*)IJD
0152
             IF(IJD.GT.0) GO TO 30
0153
             STUP
0154
             END
             FUNCTION FNCTR(A,B,C,D,E,F)
0155
             FNCTR=E+(A+C-B+D)+F+(A+D+B+C)
0156
0157
             RETURN
             END
0158
0159
             END$
```

HSIM60 T=00004 IS ON CROCOCO USING 00077 BLKS R=0610

```
FTN4
0001
                             2000
      C
            PROGRAM SIM60
0003
            THIS PROGRAM GENERATES AND PLOTS SAMPLE FUNCTIONS OF
0.004
            DATA-BASED NONSTATIONARY RANDOM PROCESS OF THE SECOND KIND
0005
            WITH UNIFORM RANDOM PHASE ANGLE BETWEEN -PI/2 AND PI/2.
0006
            CORRESPONDING FOURIER SPECTRA AND STATISTICAL QUANTITIES
0007
      C
            ARE ALSO COMPUTED AND PLOTTED.
0008
      C
0009
              DATA-BASED NONSTATIONARY RANDOM PROCESS OF THE SECOND KIND
0010
      Ċ
0011
0012
      C.... REQUIRED SUBROUTINES:
0013
              STUKO, RANDU, SPECT, ARNGE, HLBRT, INTPL, FFT
0014
      C.... REMARKS:
0015
              THIS PROGRAM IS CODED FOR HP MINI COMPUTER WITH TEXTRONIX
0016
      C.
              TERMINAL CONTROL SYSTEM FOR PLOTTING. THEREFORE, FOR IBM
0017
              COMPUTER SLIGHT MODIFICATION IS NEEDED.
0018
      C
              BECAUSE OF THE LIMITED MEMORY SIZE IN MINI-COMPUTER,
0.019
              "NDATA" IS ASSIGNED TO BE AT MOST 512.
      C
0020
      C.... REQUIREMENT OF ARRAY SIZE:
0021
              A(N+1),F0(2*N+2),T(N+1),X0(N+1),XHIL(N+1),SW(N+1)
2500
      C
              W(N/2+1), RV(NSTEP), WA(N/2+1), WM(N/2+1)
      C
0023
              WHERE N=NDATA=A POWER OF TWO FOR FFT COMPUTATION,
0024
                    NSTEP=# OF AMPLITUDE LEVEL FOR PDF COMPUTATION.
      C
0025
0026
      C
            DIMENSION A(515), FO(1030), T(515), XO(515), XHIL(515)
0027
            DIMENSION SW(515), W(257), RV(81), WA(257), WM(257)
8500
0029
      C.... TO ASSIGN NUMBER OF INTERPOLATED DATA FOR FFT COMPUTATION.
0030
            DATA NDATA/512/
0031
0032
      C.... TO ASSIGN SELECT CODE OF INPUT/OUTPUT PERIPHERAL.
0033
            LU#1
0034
            IIN=8
0035
            In=6
0036
0037
      C.... TO READ IN OBSERVED RECORD FROM MAG-TAPE.
0038
              NORG
                    -- NUMBER OF DATA
0039
      С
              FO(I) -- TIME
0040
      C
                    -- OBSERVED VALUE
0041
               A(I)
0042
            REWIND IIN
0043
            WRITE (LU, 600)
        600 FORMAT(" INPUT -- NORG= NO. OF ORIGINAL DATA")
0044
            READ(LU,*) NORG
0045
            READ(IIN, 100) (F0(I), A(I), I=1, NORG)
0046
        100 FORMAT(6F10.3)
0047
            REWIND IIN
0048
0049
      C.... TO PREPARE APPROPRIATE QUANTITIES FOR LATER COMPUTATION.
0050
0051
            NDATA1=NDATA+1
            ND2=NDATA/2
0052
0053
            ND4=ND2/2
0054
            NFOLO=ND2+1
            TFST=F0(1)
0055
            TIOTAL=FO(NORG)-TFST
0056
            DT=TTOTAL/FLOAT(ND2)
0057
            PI=3.141593
0058
            DW=2.0*PI/TTOTAL
0059
```

457 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 53 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0060
            DO 350 JJ#1,NFOLD
        350 W(JJ)=DW*(JJ-1)
0061
0062
      C
      C.... TO ADJUST TIME AXIS FOR DATA TO START FROM T=0.0 (SEC).
0063
            DO 352 I=1, NORG
0064
        352 F0(I)=F0(I)=TFST
0065
0066
      C
      C.... TO INTERPOLATE ORIGINAL RECORD TO BE ARRANGED EQUIDISTANTLY.
0067
            CALL INTPL(FO,A,NORG,T,XO,ND2,DT)
8800
            XO(NFOLD)=0.0
0069
0070
      C.... TO GET SYMMETRIC-PERIODIC EXTENSION OF THE ORIGINAL RECORD
0071
0072
            AND ALSO COMPUTE TIME ARRAY.
0073
            CALL ARNGE (XO, NDATA, 10, 1)
0074
            DO 330 I=1,NDATA1
        330 T(I)=DT*FLOAT(I=NFOLD)
0075
0076
      C
      C.... TO COMPUTE HILBERT TRANSFORM OF SYMMETRIC-PERIODIC
0077
            EXTENSION OF THE ORIGINAL RECORD.
0078
      C
            CALL HLBRT (FO, XO, XHIL, NDATA, 0)
0079
0080
      C
      C.... TO PLOT ORIGINAL RECORD AS WELL AS HILBERT TRANSFORM OF
0081
            ITS SYMMETRIC-PERIODIC EXTENSION.
5800
            WRITE(LU,610)
0083
        610 FORMAT(" NEED TO PLOT HILBERT TRANSFORM ?"/
0084
            *" IF YES, TYPE IN +1")
0085
0086
            READ(LU,*) IHIL
0087
            NX=1
            XMIN=-TTOTAL
0088
            XMAX=TTOTAL
0089
0090
            NY = 1
0091
            YMIN=-200.0
0092
            YMAX=200.0
0093
            MINX0=150
0094
            MAXX0#950
0095
            MINY0=150
0096
            MAXY0=700
0097
            JDCXY=22
0098
            NP=2
0099
            MO=-1
0100
            IF(IHIL .NE. 1) GO TO 1300
0101
            WRITE (LU,620)
        620 FORMAT(" INPUT -- NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO, JDCXY"/
0102
                    -- MINXO, MAXXO, MINYO, MAXYO")
0103
       1301 READ(LU,*) NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO, JDCXY,
0104
0105
            *MINXO, MAXXO, MINYO, MAXYO
             IF(NY .EQ. 100) STOP
0106
             IF(NY .LT. 0) GO TO 1300
0107
            CALL STUKO (T, XO, NDATA, NX, XMIN, XMAX, NY, YMIN, YMAX, NP, MO, 1,
0108
            *LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0109
            CALL STUKO (T, XHIL, NDATA, NX, XMIN, XMAX, NY, YMIN, YMAX,
0110
            *NP, MO, 2, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0111
            GO TO 1301
0112
0113
      C
      C.... TO COMPUTE AND PLOT FOURIER AMPLITUDE OF THE ORIGINAL
0114
            RECORD, SORT(AMPL(PO(W))**2+AMPL(QO(W))**2), AMPL(PO(W)),
0115
      С
            AND AMPL(QO(W)), WHERE SYMBOL AMPL(.) REPRESENTS AMPLITUDE
0116
            OF A COMPLEX VALUE.
0117
       1300 NW=1
0118
0119
            WMIN=W(1)
            WMAX=W(NFOLD)
0120
```

0181

```
NS=1
0121
            SMAX#1000.
0122
            SMIN=0.0
0123
            JDCWS=11
0124
            MP=4
0125
            MO==1
0126
            MINW0=350
0127
            MAXW0=800
0128
0129
            MINS0=40
0130
            MAXS0#770
             JPS=1
0131
0132
            NOF=NO2+1
            IF(IHIL .NE. 1) GO TO 1600
0133
            WRITE(LU,630)
0134
        630 FORMAT(" INPUT -- NS, SMIN, SMAX, NW, WMIN, WMAX, NP, MO, JDCHS"/
0135
                    -- MINWO, MAXWO, MINSO, MAXSO")
0136
       1650 READ(LU, *) NS, SMIN, SMAX, NW, WMIN, WMAX, NP, MO,
0137
            *JDCWS,MINWO,MAXWO,MINSO,MAXSO
0138
            IF(NS.EQ.100) STOP
0139
             IF(NS.LT.0) GO TO 1600
0140
0141
      C..... TO COMPUTE FOURIER SPECTRUM OF THE ORIGINAL RECORD.
0142
                DO 280 I=1,NO2
0143
                F0(2*I=1)=X0(I+ND2)
0144
        280
                F0(2*I)=0.0
0145
                CALL FFTO(FO,A,ND2,-1,1)
0146
                00 290 I=1,ND2
0147
                SW(I) = SQRT(F0(I*2=1)**2+F0(I*2)**2)*TTOTAL
         290
0148
      C
0149
      C..... TO CHECK THE AREA.
0150
                CALL AREA (AW, SW, ND4, DW)
0151
                RV(1) = AW/PI
0152
                CALL STUKO(W,SW,NDF,NW,WMIN,WMAX,NS,SMIN,SMAX,NP,MO,
0153
        1400
                JPS, LU, JDCWS, MINWO, MAXWO, MINSO, MAXSO)
0154
             IF(JPS.EQ.2) GO TO 1630
0155
             IF(JPS.EQ.3) GO TO 1631
0156
             IF(JPS.EQ.4) WRITE(IO,66) (RV(LK),LK=1,4)
0157
          66 FORMAT(///1H ,4E12.5)
0158
             IF(JPS.EQ.4) GO TO 1650
0159
0160
      C.... PRELIMINARY ANALYSYS TO GET PO(W) AND QO(W).
0161
       C.... FIRST COMPUTE PO(W).
0162
                DO 250 I=1,ND2
0163
                F0(2*I+1)=X0(I+ND2)*0.5
0164
                F0(2*I)==XHIL(I+ND2)*0.5
         250
0165
                CALL FFTO(FO,A,ND2,-1,1)
0166
       C..... TO COMPUTE AMP(PO(W))**2.
0167
                DO 230 I=1,ND2
0168
                WA(1)=(F0(2*I=1)**2+F0(2*I)**2)*T70TAL*TT0TAL
0169
         230
0170
       C.... SECOND, COMPUTE GO(W).
0171
                DO 260 I=1,ND2
0172
                F0(2*I=1)=X0(I+ND2)*0.5
0173
                 F0(2*I)=XHIL(I+ND2)*0.5
         260
0174
                 CALL FFTO(FO,A,ND2,-1,1)
0175
                TO COMPUTE AMPL(GO(W))**2.
0176
                 DO 270 I=1,ND2
0177
                WM(I)=(F0(2*I=1)**2+F0(2*I)**2)*TTOTAL*TTOTAL
         270
0178
 0179
       С
       C.... TO COMPUTE SGRT(AMPL(PO(W))**2+AMPL(QO(W))**2)
0180
             AND ALSO CHECK THE AREA.
```

459 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 55 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0182
                DO 271 I=1,ND2
                SW(I)=SQRT(WA(I)+WM(I))
0183
         271
                CALL AREA (AW, SW, ND4, DW)
0184
                RV(2) #AW/PI
0185
0186
             JPS#JPS+1
0187
             GO TO 1400
0188
      C.... TO COMPUTE AMPL(PO(W)) AND CHECK THE AREA.
0189
0190
       1630
                DO 272 I=1,ND2
                SW(I)=SQRT(WA(I))
0191
         272
                CALL AREA (AW, SW, ND4, DW)
0192
                RV(3)=AW/PI
0193
0194
             JPS#JPS+1
0195
             GO TO 1400
0196
      C.... TO COMPUTE AMPL(GO(W)) AND CHECK THE AREA.
0197
0198
       1631
                DO 273 I=1,ND2
0199
        273
                SW(I)=SQRT(WM(I))
0200
                CALL AREA (AW, SW, ND4, DW)
1050
                RV(4) #AW/PI
0202
             JPS#JPS+1
0203
             GO TO 1400
      c
0204
      C.... TO PRINT OUT COMPUTED AREA FOR CHECK PURPOSE.
0205
0206
       1600 WRITE(IO,66) (RV(L3), L3=1,4)
0207
      C
8050
      C
      C.... TO COMPUTE AND PLOT SIMULATED DATA-BASED NONSTATIONARY
0209
0210
      C
             RANDOM PROCESS OF THE SECOND KIND AND CORRESPONDING FOURIER
1150
             SPECTRUM.
             NP=1
0212
0213
             WRITE (LU,650)
        650 FORMAT(" INPUT -- NP
                                       # # OF PLOTS ON ONE PAGE"/
0214
                      -- NSMPL = # OF SAMPLES TO BE GENERATED"/
0215
            * "
            * *
                                 NSMPL MUST BE A MULTIPLE OF NP.")
0216
             READ(LU,*) NP, NSMPL
0217
             ISHEET=NSMPL/NP
8150
0219
      C.... TO SET INITIAL VALUE OF INTERNAL PARAMETER IN SUBROUTINE
0220
             RANDU (UNIFORM RANDOM NUMBER GENERATING SUBROUTINE).
0221
0222
             IX=12347
0223
             IY=0
             I \times 1 = I \times
0224
             IY1=IY
0225
0226
             IX2=IX
0227
             IY2#IY
0558 C
0229
            WRITE(LU,652)
        652 FORMAT(" DO YOU WANT TO PLOT X(T) AND FOURIER SPECTRA ?"/
0230
            *" IF YES, TYPE IN +1")
0231
            READ(LU, *) INS
0232
0233
             IF(INS .NE. 1) GO TO 38
             DO 333 I=1, ISHEET
0234
0235
             IXO=IX1
0236
             IY0=IY1
            WRITE(LU,654) I
0237
0238
       .654 FORMAT(" THIS IS (", 13, ") "TH PAGE")
            WRITE (LU,620)
0239
0240
       1010 READ(LU, *)NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO, JDCXY,
0241
            *MINXO, MAXXO, MINYO, MAXYO
             IF(NY.EQ.100) STOP
0242
```

```
IF(NY.EQ.10) GO TO 38
0243
             IF(NY.LT.0) GO TO 334
0244
0245
            NNP1=NP+1
            CALL STUKO(T,XO,NDATA,NX,XMIN,XMAX,NY,YMIN,YMAX,NNP1,MO,
0246
            *1, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0247
0248
            IX1=IX0
0249
             IY1=IY0
             DO 320 JM=1.NP
0250
             JM1=JM+1
0251
             CALL SAMPL(A,XO,XHIL,NDATA,IX1,IY1,RAN1)
0252
             CALL STUKO (T, A, NDATA, NX, XMIN, XMAX, NY, YMIN, YMAX, NNP1, MO,
0253
            *JM1, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0254
        320 CONTINUE
0255
             GO TO 1010
0256
         334 IX0*IX2
0257
             IYO#IY2
0258
0259
             WRITE (LU, 630)
        1011 READ(LU.*) NS.SMIN.SMAX.NW.WMIN.WMAX.NP.MO.JDCWS.
0260
            *MINWQ, MAXWO, MINSO, MAXSO
0261
             IF(NS.ED.100) STOP
0262
             IF(NS.EQ.10) GO TO 38
0263
             IF(NS.LT.0) GO TO 333
0264
             DO 381 1S=1,ND2
0265
         381 FO(IS)=X0(IS+ND2)
0266
             CALL SPECT(SW, FO, ND2, TTOTAL, 1)
0267
             CALL STUKO(W,SW,ND4,NW,WMIN,WMAX,NS,SMIN,SMAX,NNP1,MO,
0268
            *1, LU, JDCWS, MINWO, MAXWO, MINSO, MAXSO)
0269
0270
             IX2=IX0
             0YI#5Y1
0271
             DO 310 J=1,NP
0272
0273
             J1 = J + 1
             CALL SAMPL (A, XO, XHIL, NDATA, IXZ, IYZ, RANZ)
0274
             DO 382 JI=1,ND2
0275
         382.F0(JI)=A(JI+ND2)
0276
             CALL SPECT(SW, FO, ND2, TTOTAL, 1)
0277
             CALL STUKD(W,SW,ND4,NW,WMIN,WMAX,NS,SMIN,SMAX,NNP1,MO,
0278
            *J1, LU, JDCWS, MINWO, MAXWO, MINSO, MAXSO)
0279
         310 CONTINUE
0880
             GO TO 1011
0281
         333 CONTINUE
0282
      C
0283
0284
       C.... TO COMPUTE ENSEMBLE STATISTICS OF THE SIMULATED PROCESS.
0285
       C .... ASSIGNMENT OF ARRAYS:
0286
                      --- MEAN VALUE
               W(I)
0287
               WA(I) --- MAXIMUM VALUE
8850
       C
               WM(I) --- MINIMUM VALUE
0289
       C
                SW(I) --- STANDARD DEVIATION
0290
       C
                FO(I) --- FOR COMPUTATION OF EMPIRICAL DENSITY FUNCTION
       C
0291
                      --- POSITION NUMBER CORRESPONDING TO T=T1 FOR
                IPOS
0292
       C
                           EMPIRICAL DENSITY COMPUTATION.
 0293
       C
0294
          38 CONTINUE
       C.... FIRST, SET INITIAL PARAMETER VALUES IN SUBROUTINE RANDU.
0295
              IX1=IX
 0296
 0297
              IY1=IY
              NN=NDATA*2
 0298
 0299
       C.... TU ASSIGN INITIAL VALUES IN ARRAY.
 0300
             DO 32 I=1,NN
 0301
          32 FO(I)=0.0
 0302
              IF(ISSW(15).LT.0) GO TO 1501
 0303
```

461 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 57 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0304
             DO 71 I=1,NFOLD
             SW(1)=0.0
0305
0306
             0.0#(I)W
0307
             WA(I)==1.0E10
0308
             WM(I)=1.0E10
0309
         71 CONTINUE
0310
      C.... TO ASSIGN SPECIFIC TIME FOR EMPIRICAL DENSITY TO BE CONSIDERED.
0311
       1501 WRITE (LU, 88)
0312
         88 FORMAT(" INPUT TIME T1 (SEC) FOR PDF TO BE CONSIDERED."/
0313
            ±" ALSO INPUT NSMPL, IF NECESSARY.")
0314
             READ(LU, *) T1, NSMPL
0315
0316
             IPOS=IFIX(T1/DT)
0317
             TLOW=DT*FLOAT(IPOS)
0318
             TUP=TLOW+DT
             IF(ABS(T1-TUP).LT.ABS(T1-TLOW)) IPOS=IPOS+1
0319
0320
      C
      C.... TO COMPUTE ENSEMBLE STATISTICS.
0321
             NSMPL --- SAMPLE SIZE OF MONTE CARLO SIMULATION.
0322
             DO 30 J=1, NSMPL
0323
             CALL SAMPL(A, XO, XHIL, NDATA, IX1, IY1, RAN1)
0324
             FO(J)=A(ND2+IPOS)
0325
             IF(ISSW(15).LT.0) GO TO 30
0326
0327
             DO 31 I=1,ND2
0328
             INDS=I+NDS
             AIND2=A(IND2)
0329
0330
             IF(AIND2.GT.WA(I)) WA(I)=AIND2
             IF(AIND2.LT.WM(I)) WM(I)=AIND2
0331
             SCHIA+(I)w=(I)w
0332
0333
             SW(I)=SW(I)+AIND2*AIND2
0334
         31 CONTINUE
0335
         30 CONTINUE
0336
             IF(ISSW(15),LT.0) GO TO 85
0337
             DO 72 I=1,ND2
             W(I)=W(I)/FLOAT(NSMPL)
0338
0339
             SW(I)=SW(I)/FLOAT(NSMPL)
0340
         72 CONTINUE
0341
             DO 73 I=1,ND2
0342
             SW(I) = SQRT(SW(I) + W(I) + W(I))
0343
         73 CONTINUE
0344
      C
      C.... TO PLOT COMPUTED ENSEMBLE STATISTICS EXCEPT EMPIRICAL PDF.
0345
0346
             NP=5
0347
             MO==1
0348.
             WRITE (LU, 620)
0349
        222 READ(LU,*) NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO,
            *JDCXY,MINXO,MAXXO,MINYO,MAXYO
0350
             IF(NY.EQ.100) STOP
0351
0352
             IF(NY.LT.0) GO TO 85
             CALL STUKO(T(NFOLD), XO(NFOLD), ND2, NX, XMIN, XMAX, NY, YMIN, YMAX,
0353
0354
            *NP.MO.1, LU.JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0355
             CALL STUKO(T(NFOLD), W, ND2, NX, XMIN, XMAX, NY, YMIN, YMAX, NP, MO,
            *2,LU,JDCXY,MINXO,MAXXO,MINYO,MAXYO)
0356
            CALL STUKO(T(NFOLD), SW, ND2, NX, XMIN, XMAX, NY, YMIN, YMAX, NP, MO,
0357
            *3, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0358
            CALL STUKO(T(NFOLD), WA, ND2, NX, XMIN, XMAX, NY, YMIN, YMAX, NP, MO,
0359
0360
            *4, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
            CALL STUKO(T(NFOLD), WM, ND2, NX, XMIN, XMAX, NY, YMIN, YMAX, NP, MO,
0361
            *5, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0362
0363
             GO TO 222
0364
      C
```

```
0365 C
      C.... TO COMPUTE AND PLOT EMPIRICAL AS WELL AS THEORETICAL PROBABILITY C DENSITY AT T#T1.
0366
     C
0367
      C.... ASSIGNMENT OF ARRAY:
0368
                    --- AMPLITUDE LEVEL
              W(I)
0369
               RV(I) --- EMPIRICAL PROBABILITY DENSITY
0370
              SW(I) --- THEORETICAL ASYMMETRIC PROBABILITY DENSITY.
0371
         85 CONTINUE
0372
            NSTEP#81
0373
            WRITE(LU, 223)
0374
        223 FORMAT(" INPUT -- NSTEP= # OF AMPLITUDE STEPS (UP TO 81)"/
0375
                            -- PREFERABLY NSTEP IS ODD INTEGER.")
0376
            READ(LU.*) NSTEP
0377
      C
0378
      C.... TO FIND OUT MAXIMUM AND MINIMUM VALUE ON FO(I).
0379
             XMAX#-1.0E10
0380
0381
             XMIN=1.0E10
             00 521 I=1, NSMPL
0382
             IF(FO(I).GT.XMAX) XMAX#FO(I)
0383
             IF(FO(I) LT.XMIN) XMIN=FO(I)
0384
        521 CONTINUE
0385
0386
      C
      C.... TO FIND OUT MAX. AND MIN. ON SW(I). ALSO COMPUTE W(I).
0387
             XZ=X0(ND2+IPOS)
0388
             XZT=XHIL(ND2+IPQS)
0389
             CALL ASYME (XZ, XZT, W, SW, NSTEP, XMAX, XMIN, DX)
0390
0391
      C.... TO COMPUTE EMPIRICAL DENSITY.
0392
             DX2=DX/2.0
0393
             DFREG=1.0/(FLOAT(NSMPL)*DX)
0394
             DO 530 I=1.NSTEP
0395
        530 RV(1)=0.0
0396
             00 516 J=1, NSMPL
0397
             F0J=F0(J)
0398
             DO 517 I#1, NSTEP
0399
             IF(W(I).LT.FOJ) GO TO 517
0400
             I t = I
0401
             IF(ABS(F0J-W(I-1)).LT.DX2) I1=I1-1
0402
             RV(I1)=RV(I1)+DFREQ
0403
             GO TO 516
0404
0405
         517 CONTINUE
         516 CONTINUE
0406
0407
      C
       C.... TO PRINT OUT DENSITY FUNCTIONS.
0408
             wRITE(6,540) (W(I),SW(I),RV(I),I=1,NSTEP)
0409
         540 FORMAT(5X, "AMP=", F10.3," THEO. PDF=", F7.4," EMP. PDF=", F7.4)
0410
0411
      C
      C.... TO PLOT EMPIRICAL AND THEORETICAL PROBABILITY DENSITY.
0412
             NX=1
0413
             NY#1
0414
             YMIN#0.0
0415
             YMAX=1.0
0416
             NP=2
0417
             M0=0
0418
             JDCXY=23
0419
             MINX0=150
0420
0421
             MAXX0=950
             MINY0=150
0422
             MAXY0=700
0423
             WRITE (LU,620)
0424
         455 READ(LU,*) NY, YMIN, YMAX, NX, XMIN, XMAX, NP, MO, JDCXY,
0425
```

463 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 59 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0426
            *MINXO, MAXXO, MINYO, MAXYO
0427
             IF(NY.EQ.100) STOP
0428
             IF(NY.LT.0) GO TO 450
0429
             CALL STUKO(W,SW,NSTEP,NX,XMIN,XMAX,NY,YMIN,YMAX,NP,MO,
0430
            *1, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0431
             CALL STUKO(W.RV.NSTEP, NX.XMIN, XMAX, NY.YMIN, YMAX, NP. MO.
0432
            #2,LU,JDCXY,MINXO,MAXXO,MINYO,MAXYO)
0433
             GO TO 455
         450 WRITE(LU,690)
0434
0435
        690 FORMAT(" NEED POF PLOTTING AT DIFERRENT T#T1 2"/
0436
            *" IF YES, TYPE IN +1"/
0437
            *" IF NO NEED OF STATISTICS PLOTTING, SET ISSW(15) ON.")
0438
             READ(LU,*) IJD
0439
             IF(IJD.EQ.1) GO TO 38
0440
             STOP
0441
             END
0442
                            -----(SUBROUTINE AREA)-----
0443
0444
             SUBROUTINE AREA(SUM, X2, N, DA)
0445
            DIMENSION X2(1)
            SUM=0.0
0446
0447
            DO 10 I=2,N
0448
          10 SUM=SUM+X2(I=1)+X2(I)
0449
            SUM=SUM+DA/2.0
0450
            RETURN
0451
            END
0452
0453
      C
                                      -----(SUBROUTINE SAMPL)----
0454
            SUBROUTINE SAMPL(A, XO, XHIL, NDATA, IX, IY, RAN)
0455
            DIMENSION A(1), XO(1), XHIL(1)
0456
      C
      C.... TO GENERATE NONSTATIONARY RANDOM PROCESS WITH UNIFORM
0457
0458
      C
            RANDOM PHASE ANGLE BETWEEN -PI/2 AND +PI/2.
0459
      C
0460
      C.... DESCRIPTION OF PARAMETERS:
      C
0461
              XO(I) --- SAMPLE OBSERVATION TO BE USED FOR SIMULATION.
0462
      C
              XHIL(I) --- HILBERT TRANSFORM OF XO(I)
0463
      ε
              A(I)
                     --- GENERATED NONSTATIONARY RANDOM PROCESS
                     --- NUMBER OF DATA POINTS
0464
      C
              NDATA
              IX, IY --- INTERNAL PARAMETERS IN UNIFORM RANDOM VARIATE
0465
      C
0466
                          GENERATING SUBROUTINE RANDU(IX, IY, RAN)
0467
      C
0468
            PI=3.1415926
0469
            CALL RANDU(IX, IY, RAN)
0470
            RAN=(RAN=0.5)*PI
0471
            CCOS=COS (RAN)
0472
            SSIN=SIN(RAN)
0473
            DO 100 I=1, NDATA
0474
            A(I)=CCOS*X0(I)=SSIN*XHIL(I)
0475
        100 CONTINUE
0476
            RETURN
0477
            END
0478
      C
0479
      С
                                    -----(SUBROUTINE FFT0)-----
            SUBROUTINE FFTO(Y, DATA, N, ISIGN, MW)
0480
0481
            DIMENSION Y(1), DATA(1)
0482
      C.... TO TAKE ONE DIMENSIONAL FOURIER (INVERSE) TRANSFORM
            BY FFT ALGORISM
0483
      C
      C.... DESCRIPTION OF PARAMETERS:
0484
                  DATA= ORIGINAL TIME SERIES
0485
0486
                  N= NUMBER OF TIME SERIES
```

```
Vol. 52 No. 5
```

```
"N" MUST BE A POWER OF TWO
0487
                   ISIGN ---- IF FOURIER TRANSFORM, ISIGN= -1
0488
      C
                          ---- IF INVERSE FOURIER,
                                                        ISIGN# 1
0489
      C
                   YE FOURIER COMPLEX COEFFICIENT,
0490
      C
                       OR COMPLEX TIME SERIES.
0491
                       ARRAY MUST BE IN ORDER OF (REAL), (IMAGINARY)
0492
0493
             AN#FLOAT(N)
0494
             AISIGN=FLOAT (ISIGN)
0495
             PI=3,141593
0496
             IF (MW.EQ.1) GO TO 10
0497
             IF(ISIGN.EG.1) GO TO 10
0498
             DO 100 I#1,N
0499
             II=I+I
0500
             IR=II-1
0501
             Y(IR)#DATA(I)
0502
             Y(II)#0.0
0503
         100 CONTINUE
0504
         10 L=1
0505
             DO 200 I=1,N
0506
             IF(I.GE.L) GO TO 210
0507
0508
             LI=L+L
             LR#LI-1
0509
0510
             II=I+I
0511
             IR=II-1
             AR=Y(LR)
0512
0513
             Al=Y(LI)
             Y(LR)=Y(IR)
0514
             Y(LI)=Y(II)
0515
0516
             Y(IR) #AR
             Y(II)=AI
0517
0518
         210 N2=N/2
         220 IF(L.LE,N2) GO TO 230
0519
             L=L-N2
0520
0521
             N5=N5\5
             IF(N2.GE.2) GO TO 220
0522
         230 L±L+N2
0523
0524
         200 CONTINUE
0525
             MAX=1
         240 IF (MAX.GE.N) GO TO 400
0526
             ISTEP=MAX*2
0527
             AMAX=FLOAT (MAX)
0528
             AK==1.0
DO 300 K=1,MAX
0529
0530
             AK=AK+1.0
0531
             WT=PI*AISIGN*AK/AMAX
0532
             DO 310 I=K,N,ISTEP
0533
             L=I+MAX
0534
0535
             LI=L+L
             LR=LI-1
0536
0537
             II=I+I
0538
             IR=II-1
             ccos=cos(wT)
0539
             SSIN=SIN(WT)
0540
             AR=Y(LR)*CCOS-Y(LI)*SSIN
0541
             AI=Y(LR) *SSIN+Y(LI) *CCOS
0542
             Y(LR)=Y(IR)+AR
0543
             Y(LI)=Y(II)-AI
0544
0545
              Y(IR)=Y(IR)+AR
             Y(11)=Y(11)+AI
0546
```

310 CONTINUE

0547

465 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 61 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
300 CONTINUE
0548
0549
             MAX#ISTEP
0550
             GO TO 240
        400 IF(ISIGN.EQ.1) RETURN
0551
0552
             NW5=N*5
0553
             DO 450 I=1,NM2
0554
             Y(I)=Y(I)/AN
0555
        450 CONTINUE
             RETURN
0556
0557
             END
0558
                                         ---- (SUBROUTINE ASYME)----
      C
0559
             SUBROUTINE ASYME (XZ, XZT, W, SW, NSTEP, XMAX, XMIN, DX)
0560
0561
             DIMENSION W(1), SW(1)
             PI=3.141593
0562
0563
             PI2=PI/2.0
             XZ2=XZ**2
0564
0565
             XZT2=XZT**2
0566
             AZ=SQRT(XZ2+XZT2)
0567
             CALL PHS11(XZ,XZT,TA)
             ARF#AZ*COS(PI/2.0+ABS(TA))
0568
             BET=AZ*COS(PI/2.0+ABS(TA))
0569
             IF(ABS(TA).GT.PI2) GO TO 400
0570
             AMIN#BET
0571
             AMP=ARF
0572
0573
             AMAX#AZ
             GO TO 401
0574
        400 AMIN=-AZ
0575
0576
             AMP=-ARF
0577
             AMAX==BET
        401 IF(AMAX.GT.XMAX) XMAX#AMAX
0578
0579
             IF (AMIN.LT.XMIN) XMIN#AMIN
0580
             DDX=0.0001
             XMAX=XMAX+DDX
0581
             XMIN=XMIN-DDX
0582
             DX=(XMAX=XMIN)/FLOAT(NSTEP=1)
0583
             DU 30 I=1,NSTEP
0584
0585
          30 W(I)=DX*FLOAT(I=1)+XMIN
             DO 55 I=1,NSTEP
0586
0587
             WI=W(I)
             RI=PI +SQRT (ABS (AZ ++ 2= WI + +2))
0588
             IF(R1 .LT. 0.01) R1=0.01
0589
             SW(I)=1./R1
0590
             IF(WI.GT.AMP) SW(I)=2.0*SW(I)
0591
0592
          55 CONTINUE
0593
             RETURN
             END
0594
0595
      C
                        -----(SUBROUTINE PHS11)------
0596
             SUBROUTINE PHS11(XZ, XZT, B)
0597
             PI1=3.141593
0598
0599
             PI2=PI1*2.0
             PI12=PI1/2.0
0600
             AR=XZ
0601
0602
             AI=XZT
             IF(ABS(AR).LT.E-20) GO TO 30
0603
0604
             FAIO=AI/AR
0605
             FAI=ATAN(FAIO)
             IF(FAI.LT.O.) GO TO 40
0606
             IF(AR.LT.O.) FAI=FAI-PI1
0607
             GO TO 50
0608
```

-- 62 --

Vol. 52 No. 5

467 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 63 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

IINTPL T#00004 IS ON CR00002 USING 00005 BLKS R#0033

```
FTN4
0001
                              -----(SUBROUTINE INTPL)-----
0002
      C
            SUBROUTINE INTPL(X0,Y0,NORG,X,Y,NDATA,DX)
0003
            DIMENSION X0(1), Y0(1), X(1), Y(1)
0004
     C.... THIS SUBROUTINE INTERPOLATES DATA SET (XO, YO) TO PRODUCE
0005
            EQUIDISTANT DATA SET (X,Y) WITH ABSCISSA INCREMENT DX.
      C
0006
      C..
           DESCRIPTION OF PARAMETERS:
0007
                   --- ORIGINAL ABSCISSA ARRAY
0008
              X 0
              Y O
                   --- ORIGINAL ORDINATE ARRAY
0009
      C
              NORG --- NUMBER OF ORIGINAL DATA
0010
      C
                   --- INTERPOLATED ABSCISSA ARRAY
0011
      C
              X
                   --- INTERPOLATED ORDINATE ARRAY
      С
0012
              NDATA -- NUMBER OF INTERPOLATED DATA
0013
                   --- EQUIDISTANT INCREMENT OF ABSCISSA
      С
              DX
0014
0015
      C
0016
            Y(1)=Y0(1)
            X(1)=X0(1)
0017
0018
            JJ≖2
            SLOPE=(Y0(2)-Y0(1))/(X0(2)-X0(1))
0019
            DO 10 I=2.NDATA
0020
            X(I)=X(I=I)+DX
0021
         30 IF(X(I).GT.X0(JJ)) GO TO 20
0055
            Y(I)=YO(JJ=1)+SLOPE*(X(I)=XO(JJ=1))
0023
            GO TO 10
0024
         20 JJ=JJ+1
0025
            IF(JJ.LE.NORG) GO TO 25
0026
0027
            Y(I)=0.0
            GO TO 10
0028
         25 SLOPE=(Y0(JJ)=Y0(JJ=1))/(X0(JJ)=X0(JJ=1))
0029
            GO TO 30
0030
         10 CONTINUE
0031
            RETURN
0032
            END
0033
            END$
0034
```

AK=AK+1.0

```
IIFFT T=00004 IS ON CR00002 USING 00010 BLKS R=0084
      FTN4
0001
                                   ----(SUBROUTINE FFT)-----
      C
0002
0003
            SUBROUTINE FFT(Y, DATA, N, ISIGN)
            DIMENSION Y(1), DATA(1)
0004
      C.... THIS SUBROUTINE COMPUTES ONE-DIMENSIONAL FOURIER OR INVERSE
0005
            FOURIER TRANSFORM BY FFT (FAST FOURIER TRANSFORM) ALGORITHM.
0006
      C
            DESCRIPTION OF PARAMETERS:
      С.
0007
              DATA(I) --- ORIGINAL REAL TIME DOMAIN DATA.
8000
                       --- NUMBER OF DATA POINTS (= A POWER OF 2).
0009
      Ç
              ISIGN
                       --- CONTROL PARAMETER.
0010
      C
                            ISIGN=-1 FOR FOURIER TRANSFORM.
0011
      C
                            ISIGN=+1 FOR INVERSE FOURIER TRANSFORM.
      C
0012
                       --- FOURIER COMPLEX COEFFICIENT (FREQUENCY DOMAIN)
               Y(I)
      C
0013
                            OR COMPLEX TIME SERIES (TIME DOMAIN).
0014
      C
                            THIS ARRAY MUST BE IN THE ORDER OF
      C
0015
                            (REAL-1), (IMAG+1), (REAL-2), (IMAG-2),.....
0016
      c
         ... REMARKS:
0017
      C.
               WHEN ISIGN#+1, DATA(I) BECOMES DUMMY.
0018
      C
               WHEN ISIGN==1, PROGRAM AUTOMATICALLY TRANSFERS REAL TIME
0019
      C
               DOMAIN DATA (DATA(I)) INTO COMPLEX ARRAY Y(I);
      C
0020
               ARRAY SIZE REQUIREMENT --- Y(2*N); DATA(N)
1500
      С
0022
      С
             AN=FLOAT(N)
0023
             AISIGN=FLOAT(ISIGN)
0024
            PI=3.141593
0025
            IF(ISIGN.EQ.1) GO TO 10
0026
0027
            00 100 I=1,N
             11=1+1
8500
0029
             IR=II-1
             Y(IR)=DATA(I)
0030
             Y(II)=0.0
0031
        100 CONTINUE
0032
0033
         10 L=1
            DO 200 I=1.N
0034
             IF(I.GE.L) GO TO 210
0035
0036
             Ll=L+L
             LR=LI-1
0037
             Il=I+I
0038
             TR=TI-1
0039
0040
             AR=Y(LR)
0041
             AI=Y(LI)
             Y(LR)=Y(IR)
0042
0043
             Y(LI)=Y(II)
0044
             Y(IR)=AR
             Y(II)=AI
0045
         210 N2=N/2
0046
         220 IF(L.LE.N2) GO TO 230
0047
             L=L=N2
0048
             N2=N2/2
0049
             IF(N2.GE.2) GO TO 220
0050
0051
        230 L=L+N2
0052
        200 CONTINUE
             M\Delta X = 1
0053
0054
         240 IF (MAX.GE.N) GO TO 400
             ISTEP=MAX *2
0055
0056
             AMAX=FLOAT (MAX)
0057
             AK=-1.0
             DO 300 K=1,MAX
0058
```

OLIVE 香川大学学術情報リポジトリ

469 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION - 65 - OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0060
            WT=PI*AISIGN*AK/AMAX
0061
            DO 310 I=K,N,ISTEP
            L=I+MAX
0062
            LI=L+L
0063
0064
            LR=LI-1
             II=I+I
0065
             IR=II-1
0066
            CCOS=COS(WT)
0067
            SSIN=SIN(WT)
0068
0069
             AR=Y(LR) *CCOS+Y(LI) *SSIN
             AI #Y(LR) *SSIN+Y(LI) *CCOS
0070
0071
             Y(UR)=Y(IR)-AR
             Y(LI)=Y(II)-AI
0072
             Y(IR)=Y(IR)+AR
0073
0074
             Y(II) #Y(II) +AI
0075
        310 CONTINUE
        300 CUNTINUE
0076
0077
             MAX=ISTEP
             GO TO 240
0078
        400 IF(ISIGN.EO.1) RETURN
0079
0080
             2*N=2MN
             DO 450 I=1,NM2
0081
0082
             Y(I)=Y(I)/AN
0083
        450 CONTINUE
0084
             RETURN
0085
             END
             END$
0086
```

IPHASE TE00004 1S ON CR00002 USING 00005 BLKS R#0041

```
FYN4
0001
                                     ----- (SUBROUTINE PHASE)-----
0002
      C
            SUBROUTINE PHASE(A,C,NDATA,B)
0003
      C.... THIS SUBROUTINE COMPUTES PHASE ANGLE B(I) OF FOURIER TRANSFORM
0004
            OF TIME HISTORY C(1). PHASE ANGLES RANGE BETWEEN -PI AND PI.
0005
            DESCRIPTION OF PARAMETERS:
0006
                      --- COMPLEX FOURIER COEFFICIENT.
0007
      C
              A(I)
                      --- TIME SERIES FOR PHASE ANGLE CALC. (INPUT).
0008
              C(I)
              NDATA
                      --- NUMBER OF TIME SERIES DATA.
      C
0009
                          NOATA MUST BE A POWER OF TWO FOR FFT COMPUTATION.
0010
      C
                      --- CALCULATED PHASE ANGLE (DUTPUT).
      ¢
              B(I)
0011
      C
0012
            DIMENSION A(1),B(1),C(1)
0013
            CALL FFT(A,C,NDATA,-1)
0014
0015
            PI1=3.141593
0016
            PI2=PI1*2.0
            PI12#PI1/2.0
0017
            00 100 I=1,NDATA
0018
0019
            II=I+I
            IR=11-1
0020
            AR=A(IR)
0021
            AI=A(II)
0055
            IF(ABS(AR).LT.E-20) GO TO 30
0023
            FAIO=AI/AR
0024
            FAI=ATAN(FAIO)
0025
            IF(FAI.LT.O.) GO TO 40
9500
            IF(AR.LT.O.) FAI=FAI=PI1
0027
            GO TO 50
0028
0029
         40 IF(AR.LT.O.) FAI=FAI+PI1
            GO 10 50
0030
         30 IF(AI.GT.O.) FAI=PI12
0031
            IF(AI.LT.O.) FAI=-PI12
0032
         50 B(I)=FAI
0033
        100 CONTINUE
0034
            RETURN
0035
            END
0036
0037
            END$
```

471 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 67 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

ISPECT T=00004 IS ON CR00002 USING 00009 BLKS R=0069

```
0001
      FTN4
9002
      C
                                  ------(SUBROUTINE SPECT)------
0003
             SUBROUTINE SPECT(A, Y, NDATA, TT, MO)
0004
             DIMENSION A(1), Y(1)
      C.... THIS SUBROUTINE COMPUTES POWER SPECTRUM, FOURIER (AMPLITUDE)
0005
0006
      C
             SPECTRUM OR ABSOLUTE VALUE OF FOURIER COMPLEX COEFFICIENT.
0007
      C.... DESCRIPTION OF PARAMETERS:
0008
      €
               Y(I)
                     --- ORIGINAL TIME HISTORY.
               NDATA --- NUMBER OF DATA IN Y(I).
0009
      ¢
                      --- DURATION (PERIOD) OF TIME HISTORY (SEC).
0010
               TT
               NFOLD --- NYQUIST FOLDING NUMBER
0011
      C
0012
      C
               A(1)
                     --- COMPUTED RESULT.
                          POWER OR FOURIER SPECTRUM, OR ABSOLUTE
0013
      C
      C
                          VALUE OF FOURIER COMPLEX COEFFICIENT.
0014
      C
                        MO= 10, A(I)= POWER SPECTRUM FOR F (HZ).
0015
                    TF
                          = 11, A(I) = POWER SPECTRUM FOR W (RAD. SEC).
      Ç
0016
                            1, A(I) = FOURIER SPECTRUM
0017
      C
                   1F
                            2, A(I) = ABS. VALUE OF COMPLEX FOURIER COEF.
FROM 1 TO NDATA
0018
      Ç.
0019
0020
0021
             NFOLD=NDATA/2+1
0022
             PI2=3.141593*2.0
             CALL FFT (A, Y, NDATA, -1)
0023
0024
             NO1=NDATA+1
0025
             S+ATAGN=SGN
             IF(MO.EQ.1) GO TO 50
0026
             IF(MO.EQ.2) GO TO 55
0027
8500
      C.... TO COMPUTE POWER SPECTRUM.
0029
             AR=A(1)**2+A(2)**2
0030
0031
             AR=AR*TT
0032
             A(1)=AR
             IF(MO.GT.10) A(1)=AR/PI2
0033
0034
             00 10 I=2,NFOLD-1
0035
             II=I+I
             IR=II-1
0036
             AR=A(IR)**2+A(II)**2
0037
             AR=AR*2.0*TT
0038
0039
             A(I)=AR
0040
             IF(MO.GT.10) A(I)=AR/PI2
          10 CONTINUE
0041
0042
             AR=A(ND1)**2+A(ND2)**2
0043
             AR=AR*TT
0044
             A(NFOLD)=AR
0045
             IF(MO.GT.10) A(NFOLD)=AR/PI2
             GO TO 60
0046
0047
      C.... TO COMPUTE FOURIER (AMPLITUDE) SPECTRUM.
0048
         50 DO 40 I=1,NFOLD
0049
0050
             II=I+I
0051
             IR=II-1
             AR=A(IR)**2+A(II)**2
0052
0053
             A(I)=TT*SGRT(AR)
0054
         40 CONTINUE
             GO TO 60
0055
0056
      C.... TO COMPUTE ABS. VALUE OF COMPLEX FOURIER COEFFICIENT.
55 DO 45 I=1,NFOLD
0057
0058
0059
             II=I+I
```

-- 68 --

Vol. 52 No. 5

IR=II-1 0060 AR#A(IR)**2+A(II)**2 0061 A(I)=SORT(AR) 0062 45 CONTINUE 0063 ¢ 0064 60 DO 20 I=NFOLD+1,NDATA 0065 II=I=NFQLD 0066 IN=NFOLD-II 0067 0068 A(I)=A(IN)0069 20 CONTINUE RETURN 0070 0071 END END\$ 0072

OLIVE 香川大学学術情報リポジトリ

473 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 69 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

ISTATC T#00004 IS ON CR00002 USING 00005 BLKS R#0032

```
0001
      FTN4
            ------(SUBROUTINE STATE)
      C
2000
            SUBROUTINE STATC(Y, N, EY, VAR, STDV, YMAX, YMIN)
0003
            DIMENSION Y(1)
0004
            THIS SUBROUTINE COMPUTES BASIC STATISTICS ON DATA Y(I)
0005
      C...
            SUCH AS OVERALL (TEMPORAL) MEAN, VARIANCE, STANDARD
0006
      C
            DEVIATION, MAXIMUM AND MINIMUM VALUES.
0007
      C.... DESCRIPTION OF PARAMETERS:
8000
0009
      C
               Y(I) --- ORIGINAL DATA ARRAY.
                    --- NUMBER OF DATA.
      C
0010
              N
                    --- OVERALL (TEMPORAL) MEAN OF Y(I).
0011
      C
              EY
                    --- VARIANCE OF Y(I).
0012
              VAR
              STOV --- STANDARD DEVIATION OF Y(I).
0013
     С
              YMAX --- MAXIMUM VALUE IN Y(I).
YMIN --- MINIMUM VALUE IN Y(I).
0014
      С
0015
0016
      C
            EY=0.0
0017
            VAR=0.0
0018
0019
            YMAX=-E30
0020
            YMIN=E30
            DO 10 I=1,N
0021
            YI=Y(I)
0022
0023
            EY=EY+YI
            IF(YI.GT.YMAX) YMAX#YI
0024
0025
            IF(YI,LT,YMIN) YMIN#YI
0026
         10 CONTINUE
            EY=EY/FLOAT(N)
0027
            DO 20 I=1.N
8500
            YI=Y(I)-EY
0029
0030
            VAR=VAR+YI*YI
0031
         20 CONTINUE
            VAR=VAR/FLOAT(N+1)
0032
0033
            STDV=SQRT(VAR)
            RETURN
0034
0035
            END
0036
            ENDS
```

- 70 -

Vol. 52 No. 5

474

IHLBRT T=00004 IS ON GROODOS USING 00005 BLKS R=0035

```
FTN4
0001
            -----(SUBROUTINE HLBRT)-------
0002
      C
            SUBROUTINE HLBRT(A, XO, XHIL, N, MO)
0003
            DIMENSION A(1), XO(1), XHIL(1)
0004
      C.... THIS SUBROUTINE COMPUTES HILBERT TRANSFORM OF TIME HISTORY
0005
            XO(T) FOR SIMULATION OF DATA-BASED NONSTATIONARY RANDOM
0006
            PROCESSES.
      ¢
0007
           DESCRIPTION OF PARAMETERS:
0008
              XO --- ORIGINAL TIME HISTORY DATA (REAL ARRAY).
      C
0009
                  --- NUMBER OF DATA ON XO(I).
              N
0010
                  --- ARRAY FOR FFT COMPUTATION.
0011
      С
                       ARRAY SIZE MUST BE 2*N.
      C
0012
              XHIL -- HILBERT TRANSFORM OF XO(T).
0013
              MO --- CONTROL PARAMETER.
0014
                       IF MO=0 --- FFT COMPUTATION ON XO(T) IS NEEDED.
0015
      C
                       IF MO=1 --- NO NEED ON FFT COMPUTATION ON XO(T).
0016
0017
            IF(MO.EQ.1) GO TO 10
0018
            CALL FFT (A, XO, N, -1)
0019
         10 NFOLD=N/2+1
0020
            DO 100 I=NFOLD+1,N
0021
            II=I+I
9055
            IR=II-1
00.23
            A(IR)=-A(IR)
0024
            A(II)=+A(II)
0025
        100 CONTINUE
0026
            CALL FFT(A, XO, N, 1)
0027
            DO 200 I=1,N
0028
0029
            I I = I + I
            XHIL(I)=A(II)
0030
        200 CONTINUE
0031
            RETURN
0032
            END
0033
0034
            END$
```

475 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION -71 - OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

IJNORM T#00004 IS ON CR00002 USING 00011 BLKS R#0075

```
FTN4
0002
      С
            0003
            SUBROUTINE JNORM(IX1, IY1, IX2, IY2, STDV1, STDV2, AM1, CORRL,
0004
           *RAN1, RAN2, MO, MDIM)
0005
          . THIS SUBROUTINE GENERATES EITHER UNIVARIATE OR JOINTLY
0006
            CORRELATED BIVARIATE GAUSSIAN RANDOM NUMBER.
            DESCRIPTION OF PARAMETERS:
0007
      C....
8000
      C
              RAN1
                   -- GENERATED GAUSSIAN RANDOM NUMBER WITH
0009
                        MEAN AM1 AND STANDARD DEVIATION STDV1.
0010
      C
              RANZ
                    -- GENERATED THE OTHER GAUSSIAN RANDOM NUMBER
0011
                        WITH STANDARD DEVIATION STDV2. RANZ IS
0012
      C
                        CORRELATED TO RAN1 THROUGH CORRELATION
0013
      C
                        COEFFICIENT CORRL.
0014
              CORRL -- CORRELATION COEFFICIENT BETWEEN RAN1 AND RAN2.
                       IF ABS(CORRL)=1 -- RAN2=CORRL*RAN1
IF CORRL=0 ------ RAN1 AND RAN2 ARE INDEPENDENT.
0015
      ¢
0016
      C
      C
                       CONTROL PARAMETER ON THE OUTPUT RANDOM NUMBERS.
0017
              ΜO
                        IF MO > 0 -- -PI< RAN1, RAN2 < PI
0018
      C
0019
                        IF MO < 0 -- - INFINITY < RAN1, RAN2 < + INFINITY
      Č
0020
              MDIM --- DIMENSION CONTROL PARAMETER.
                       IF MDIM=1 -- UNIVARIATE RANDOM NUMBER. IN THIS
0021
      C
0022
                                     CASE, ONLY RAN1 IS TO BE GENERATED.
                        IF MDIM#2 -- CORRELATED BIVARIATE RANDOM NUMBER.
0023
      C
              IX1, IY1, IX2, IY2 -- ENTRY FOR SUBROUTINE RANDU(IX, IY, RAN)
0024
0025
            IF (NDIM.EQ.O) NDIM#1
0026
0027
      C.... GENERATION OF FIRST GAUSSIAN RANDOM NUMBER RAN1.
0028
0029
            CALL GAUSS(IX1, IY1, STDV1, AM1, RAN1)
0030
            IF (MDIM.EQ.1) RETURN
            IF(ABS(CORRL).NE.1.0) GO TO 5
0031
0032
            RAN2=RAN1 *CORRL *STDV2/STDV1
0033
            GO TO 6
      C
0034
      C.... GENERATION OF SECOND GAUSSIAN RANDOM NUMBER RANZ.
0035
0036
          5 AM2=CORRL*STDV2*RAN1/STDV1
0037
      C.... FOR THE CASE OF CORRL BEING VERY CLOSE TO UNITY.
0038
0039
            DELTA=1.0-ABS(CORRL)
0040
            IF(DELTA.GE.0.001) GO TO 7
0041
            STDV=STDV2*SQRT(2.0*DELTA)
0042
            60 TO 8
          7 STDV=STDV2*SQRT(1.0+CORRL*CORRL)
0043
0044
          8 CALL GAUSS(IX2, IY2, STDV, AM2, RAN2)
0045
          6 IF (MO.LT.O) RETURN
0046
      С
0047
      C.... REARRANGEMENT OF GENERATED GAUSSIAN RANDOM NUMBERS SO AS
            TO RANGE BETWEEN -PT AND PI.
0048
      C
0049
            CALL REARR (RAN1)
0050
            CALL REARR(RAN2)
0051
            RETURN
0052
            END
0053
     C
0054
      C
            -----(SUBROUTINE GAUSS)------
0055
            SUBROUTINE GAUSS(IX, IY, STDV, AMEAN, RAN)
0056 C.
        ... THIS SUBROUTINE GENERATES A GAUSSIAN RANDOM NUMBER WITH
            MEAN AMEAN AND STANDARD DEVIATION STDV.
0057
      C
0058
     С
0059
            A=0.0
```

```
DO 10 I=1,12
0060
             CALL RANDU(IX, IY, Y)
0061
          10 A=A+Y
0062.
             RAN#(A=6.0) #STDV+AMEAN
0063
             RETURN
0064
0065
             END
0066
                                   -----(SUSROUTINE REARR)-----
0067
      ¢
             SUBROUTINE REARR(RAN)
0068
             THIS SUBROUTINE REPLACE RAN SO AS TO RANGE BETWEEN -PI AND PI WITH THE CONSIDERATION OF RAN BEING A PERIODIC
0069
      C
0070
             FUNCTION OF PERIOD 2*PI.
      C
0071
      C
0072
             PI=3.141593
0073
              PIM=-PI
0074
0075
              PI2#2.0*PI
              IF(RAN.LT.0.0) GO TO 10
0076
          20 IF(RAN.LE.PI) GO TO 30
0077
              RAN=RAN-PIZ
0078
              GD TO 20
0079
          10 IF(RAN.GE.PIM) GO TO 30
0080
              RANERAN+PI2
0081
              GO TO 10
5800
          30 RETURN
0083
              END
0084
              END$
0085
```

0059 C

477 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 73 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

IARNGE T#00004 IS ON CR00002 USING 00011 BLKS R#0075

```
FTN4
0001
            -----(SUBROUTINE ARNGE)-------
0002
            SUBROUTINE ARNGE (Y, N, MO, MJD)
0003
            DIMENSION Y(1)
0004
            THIS SUBROUTINE ARRANGES ARRAY DATA Y(I) SYMMETRICALLY
0005
            TO PRODUCE MIRROR IMAGE AROUND ORIGIN OR AROUND NFOLD(#N/2+1).
0006
      C
0007
      C... DESCRIPTION OF PARAMETERS:
8000
                 -- INPUT ARRAY TO BE ARRANGED SYMMETRICALLY
0009
      C
                    AT LEAST NFOLD DATA MUST BE DEFINED
0010
      C
                    BEFORE CALLING.
                    Y COULD BE EATHER REAL OR COMPLEX.
      C
0011
0012
                    COMPLEX DATA SHOULD BE IN ORDER OF
      €
0013
                     (REAL1), (IMAG1), (REAL2), (IMAG2),...
                 -- ARRAY SIZE OF Y
      Ç
0014
      C
             MJD .- CLASSIFICATION PARAMETER OF DATA Y
0015
              IF MJD>0, FOR REAL DATA ONLY
0016
      C
      С
                 MJD<0, FOR COMPLEX DATA
0017
                        FOR COMPLEX DATA, ONLY MIRROR SYMMETRY
0018
0019
      C
                         AROUND NFOLD IS CONSIDERED.
0020
      C
                        FOR N > NFOLD, SIGN OF IMAGINARY
0021
      C
                        PART IS REVERSED.
                         "MO" SHALL BE DISREGARDED IN THIS CASE.
0022
      ¢
                 -- CONTROL PARAMETER FOR ARRANGEMENT
0023
      C
              IF MO= 10, SYMMETRY AROUND ORIGIN WITH SAME SIGN
0024
      C
                   ==10, SYMMETRY AROUND ORIGIN WITH REVERSE SIGN
0025
      C
              IF MO= 11, SYMMETRY AROUND NFOLD WITH SAME SIGN
0026
                   ==11, SYMMETRY AROUND NFOLD WITH REVERSED SIGN
      C
0027
8500
0029
            N1 = N + 1
0,030
            N2=N+2
0031
            ND2=N/2
0032
            NFOLD=ND2+1
0033
            NFOLD1=NFOLD+1
0034
            IF(MJD.LT.0) GO TO 50
0035
      C.... FOR REAL DATA ARRAY DNLY
0036
      C.... SYMMETRY AROUND NFOLD WITH SAME SIGN
0037
            IF(IABS(MO).EQ.10) GO TO 10
0038
0039
            DO 100 I=NFOLD1.N1
            IN=I-NFOLD
0040
            INR=NFOLD+IN
0041
0042
            Y(T)=Y(INR)
0043
      C.... SYMMETRY AROUND NFOLD WITH REVERSED SIGN
0044
0045
            IF(MO.EQ.=11) Y(I)==Y(INR)
0046
        100 CONTINUE
0047
            RETURN
0048
      C.... SYMMETRY AROUND ORIGIN WITH SAME SIGN
0049
        .10 YNFOLD=Y(NFOLD)
0050
0051
            DO 200 I=1,ND2
0052
            TP=1+ND2
            Y(IP)=Y(I)
0053
        200 CONTINUE
0.054
0055
            Y(N1)=YNFOLD
0056
            DO 205 I=1,ND2
            IN=N2-1
0057
0058
            Y(I)=Y(IN)
```

```
C.... SYMMETRY AROUND ORIGIN WITH REVERSED SIGN
0060
             IF(MO.EQ.-10) Y(I) =-Y(IN)
0061
        205 CONTINUE
9062
0063
             RETURN
0064
      C.... FOR COMPLEX DATA ARRAY
50 NFOLD4#4*NFOLD
0065
0066
             DO 300 I=NFOLD1,N
0067
0068
             II=I+I
0069
             IR=II-1
             INI=NFOLD4-II
0070
0071
             INR=INI-1
             Y(IR) = Y(INR)
0072
0073
             Y(II)==Y(INI)
         300 CONTINUE
0074
             RETURN
0075
             END
0076
             END$
0077
```

479 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION - 75 - OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

ISTUKO T#00004 IS ON CR00002 USING 00019 BLKS R#0106

```
0001
       FTN4
2000
             SUBROUTINE STUKO(X,Y,NPT,NX,XMIN,XMAX,NY,YMIN,YMAX,
0003
               NP, MQ, IP, LU, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0004
             DIMENSION X(1), Y(1), NAME(3), NA(20), AA(5)
             EQUIVALENCE (AA, NA(11))
0005
0006
0007
      C....
            THIS SUBROUTINE IS USED TO PLOT Y(I)-X(I) RELATIONSHIP
8000
       C
             IN ANY LOCATION AND SIZE AS DESIRED ON A SHEET.
0009
       C
             THIS IS A MULTI-FUNCTIONAL SUBROUTINE.
0010
       C.... DATE 06/27/1978
0011
0012
       C.... BY DR. H. ISHIKAWA AND D. LI, COLUMBIA UNIVERSITY.
0013
0014
       C.... DESCRIPTION OF PARAMETERS:
0015
             ¥
                   -- COORDINATE ARRAY.
0016
      C
             ٧
                    -- ABSCISSA ARRAY.
             NPT
0017
      €
                   -- NUMBER OF POINTS TO BE PLOTTED.
0018
      C
             YMAX
                   -- MAXIMUM VALUE ON Y-AXIS.
      Ç
             MINY
0019
                   -- MINIMUM VALUE ON Y-AXIS.
0020
                       YMIN AND YMAX ARE EITHER SUPPLIED BY USER
                      OR SEARCHED BY THE PROGRAM (SEE ALSO NY).
0021
      C
9022
      C
                    -- CONTROL CODE ON YMAX AND YMIN.
             NY
0023
      C
                       IF NY> 0 --- USER SUPPLY FOR YMAX, YMIN.
                          NY# 0 --- DEFAULT OPTION.
0024
      C
0025
      ¢
                          NY 0 --- RETURN TO THE MAIN PROGRAM.
0026
      C
                                    PROGRAM SEARCHES YMAX AND YMIN.
      C
                   -- MAXIMUM ORDINATE VALUE ON X-AXIS.
0027
             XMAX
8500
      ¢
             XMIN
                   -- MINIMUM ORDINATE VALUE ON X-AXIS.
0029
      C
                      X-AXIS IS BOUNDED FROM XMIN TO XMAX.
0030
             NX
                   -- CONTROL CODE ON XMIN AND XMAX.
0031
      C
                      IF NX= 0 --- PROGRAM SETS AUTOMATICALLY
0032
      C
                                    XMIN=X(1) AND XMAX=X(N).
0033
      C
                          NX> 0 --- USER SUPPLY FOR XMIN AND XMAX.
0034
      €
                          NX< 0 --- ACCORDING TO THE USER SUPPLIED
0035
      C
                                    XMIN AND XMAX, PROGRAM AUTOMATICALLY
0036
      C
                                    COMPUTES ORDINATE ARRAY X(I) WITH
0037
      Ç
                                    DX=(XMAX-XMIN)/N.
                   -- CONTROL CODE ON NO. OF FRAMES OR FIGURES.
0038
             NP
0039
      ¢
                      THIS CONSISTS OF 5 DIGITS (IJKLM) AS FOLLOWS.
0040
      C
                      I (=NDIM) -- NO. OF COLUMNS (UP TO 2).
0041
      C
                      JK (=NP1) -- NO. OF FRAMES OR GRAPHS IN LEFT COLUMN.
                      LM (#NP2) -- NO. OF FRAMES OR GRAPHS IN RIGHT COLUMN.
NPTTL=NP1+NP2 -- TOTAL NO. OF GRAPHS TO BE DRAWN.
0042
      C
0043
      ε
                      DEFAULT OPTION -- IF ONE COLUMN, NP CAN BE ONLY
0044
      C
0045
      C
                                          TWO DIGITS (LM). IN THIS CASE,
0046
                                         NPTTL=(LM).
      C
0047
      ¢
            MO
                   -- CONTROL CODE ON THE WAY OF PLOTTING NP GRAPHS.
0048
      ¢
                      IF MO= 0 --- NPTTL PLOTS ON ONE FRAME.
                         MOE 1 --- NPTTL PLOTS ON NPTTL FRAMES,
0049
      С
0050
      C
                                    WITH NETTL LABELS.
0051
      C
                         MO=-1 --- NPTTL PLOTS ON NPTTL FRAMES,
                                    WITH ONLY ONE LABEL.
0052
0053
      ¢
            JDCXY -- LABEL DIGITS CONTROL CODE ON X- AND Y-AXIS.
0054
      C
                      THIS CONSISTS OF 3 DIGITS (IJK) AS FOLLOWS.
0055
      ¢
                      I -- LABEL CONTROL CODE.
0056
      C
                            IF I= 0
                                         -- LABEL IS PRINTED OUT.
                            IF OTHERWISE -- NO LABEL IS PRINTED OUT.
0057
      ε
                      J -- NO. OF DECIMAL POINTS ON X-AXIS.
0058
      C
                           FORMAT NOTATION -- F7.1 (1=0,1,...,5)
0059
      C
```

```
K -- NO. OF DECIMAL POINTS ON Y-AXIS.
0060
            MINXO, MAXXO, MINYO, MAXYO
0061
                   -- PARAMETER TO DEFINE THE LOCATION OF THE FIGURE.
9062
      C
                      POSSIBLE LOCATION OF X-AXIX --- 1 TO 1024.
0063
                      POSSIBLE LOCATION OF Y-AXIS --- 1 TO 780.
0064
      ¢
                      DEFAULT VALUES: MINXO= 40 -- MAXXO=1000
0065
      C
                                       MINYO= 50
                                                  -- MAXY0# 750
0066
      С
                   -- TEXTRONIX TERMINAL LOGICAL UNIT NUMBER.
      C
            LU
0067
                   -- FRAME NUMBER ON THE PICTURE OR
      C
             ΙP
0068
                      GRAPH LINE NUMBER ON THE PICTURE FRAME.
      C
0069
                      FIRST TIME CALL IP=1, LAST TIME CALL IP=NPTTL.
      C
0070
0071
            DATA NAME/2HCH, 2HIE, 2H
0072
             NDIM=NP/10000
0073
             NP1=NP/100-100*NDIM
0074
             NP2=NP-100*NP1-10000*NDIM
0075
             NPTTL=NP1+NP2
0076
             IF(NDIM.GT.1) GO TO 5
0077
             IF(NP1.EQ.O) NP1=NP2
0078
             IF(NP1.EQ.0) NP1=1
0079
             NPTTL=NP1
0080
           5 IF(NPTTL.LE.O) NPTTL#1
0081
             IF(IP.EQ.1) CALL EXEC(4, NPTTL, ISTRK, IDISC, ISECT)
0082
             NSTRK=ISTRK+IP-1
0083
             NA(1)=NPT
0084
             NA(2)=NX
0085
             NA(3)=NY
0086
             NA(4)=MO
0087
             NA(5)=JDCXY
0088
             NA(6)=MINXO
0089
             NA(7)=MAXX0
0090
             NA(8)=MINYO
0091
             NA(9)=MAXYO
0092
             AA(1)=XMIN
0093
             XAMX=(S)AA
0094
             AA(3)=YMIN
0095
             AA(4)=YMAX
0096
             NPT2#2*NPT
0097
             CALL EXEC (2,1028,NA,20,NSTRK,0)
0098
             CALL EXEC (2,1028, Y, NPT2, NSTRK, 1)
0099
             IF (NX .LT. 0) GO TO 100
0100
             CALL EXEC (2,1028,X,NPT2,NSTRK,24)
0101
         100 IF (IP .LT. NPTTL) GO TO 200
0102
             CALL EXEC (9, NAME, ISTRK, IDISC, ISECT, LU, NP)
0103
             CALL EXEC (5,-1)
0104
         200 RETURN
 0105
             END
0106
             END$
 0107
```

481 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION - 77 - OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
IYOKO T=00004 IS ON CR00002 USING 00045 BLKS R=0315
0001
          SUBROUTINE YOKO(X,Y,N,NX,XMIN,XMAX,NY,YMIN,YMAX,
0002
              NP, MO, JDCXY, MINXO, MAXXO, MINYO, MAXYO)
0003
0004
            DIMENSION X(1),Y(1)
0005
      C.... THIS SUBROUTINE IS USED TO PLOT Y(I) +X(I) RELATIONSHIP
0006
            IN ANY LOCATION AND SIZE AS DESIRED ON A SHEET.
0007
            THIS IS A MULTI-FUNCTIONAL SUBROUTINE.
0008
0009
      C.... DATE 06/27/1978
0010
      C.... BY DR. H. ISHIKAWA AND D. LI, COLUMBIA UNIVERSITY.
0011
0012
      C.... DESCRIPTION OF PARAMETERS:
0013
                  -- COORDINATE ARRAY.
0014
      C
            X
                  -- ABSCISSA ARRAY.
0015
      C
            Y
                  -- NUMBER OF POINTS TO BE PLOTTED.
      C
0016
            N
                   -- MAXIMUM VALUE ON Y-AXIS.
0017
      C
            YMAX
                  -- MINIMUM VALUE ON Y-AXIS.
0018
      C
            YMIN
      ¢
                      YMIN AND YMAX ARE EITHER SUPPLIED BY USER
0019
                      OR SEARCHED BY THE PROGRAM (SEE ALSO NY).
      C
0020
                   -- CONTROL CODE ON YMAX AND YMIN.
      С
            NY
0021
                      IF NY= 1 --- USER SUPPLY FOR YMAX, YMIN.
      ¢
0022
                         NY= 0 --- DEFAULT OPTION.
      ¢
0023
                                   PROGRAM SEARCHES YMAX AND YMIN.
      C
0024
0025
      C
            YMAX
                  -- MAXIMUM ORDINATE VALUE ON X-AXIS.
                  -- MINIMUM ORDINATE VALUE ON X-AXIS.
0026
      C
            XMIN
                      X-AXIS IS BOUNDED FROM XMIN TO XMAX.
      C
0027
                   -- CONTROL CODE ON XMIN AND XMAX.
            NX
0028
      C
                      IF NX= 0 --- PROGRAM SETS AUTOMATICALLY
      ¢
0029
                                   XMIN=X(1) AND XMAX=X(N).
0030
      C
                         NX= 1 --- USER SUPPLY FOR XMIN AND XMAX.
0031
      ¢
                         NX=+1 --- ACCORDING TO THE USER SUPPLIED
      C
0032
                                   XMIN AND XMAX, PROGRAM AUTOMATICALLY
0033
      C
                                   COMPUTES ORDINATE ARRAY X(I) WITH
0034
      C
0035
      C
                                   DX=(XMAX-XMIN)/N.
                   -+ CONTROL CODE ON NO. OF FRAMES OR FIGURES.
0036
      C
            NP
                      THIS CONSISTS OF 5 DIGITS (IJKLM) AS FOLLOWS.
0037
      ¢
                      I (=NDIM) -- NO. OF COLUMNS (UP TO 2).
0038
      ¢
                      JK (=NP1) -- NO. OF FRAMES OR GRAPHS IN LEFT COLUMN.
0039
      C
                      LM (=NP2) -- NO. OF FRAMES OR GRAPHS IN RIGHT COLUMN.
0040
      ¢
                      NPTTL=NP1+NP2 -- TOTAL NO. OF GRAPHS TO BE DRAWN.
      ¢
0041
                      DEFAULT OPTION -- IF ONE COLUMN, NP CAN BE ONLY
      C
0042
                                         TWO DIGITS (LM). IN THIS CASE,
      C
0043
                                         NPTTL=(LM).
0044
      C
                   -- CONTROL CODE ON THE WAY OF PLOTTING NP GRAPHS.
            MO
0045
      C
                      IF MO= 0 --- NPTTL PLOTS ON ONE FRAME.
      ¢
0046
                         MOE 1 --- NPTTL PLUTS ON NPTTL FRAMES,
0047
      C
      C
                                   WITH NPTIL LABELS.
0048
0049
      ¢
                         MO==1 --- NPTTL PLOTS ON NPTTL FRAMES,
                                   WITH ONLY ONE LABEL.
0050
            JDCXY -- LABEL DIGITS CONTROL CODE ON X- AND Y-AXIS.
0051
      ¢
                      THIS CONSISTS OF 3 DIGITS (IJK) AS FOLLOWS.
0052
      C
                      I -- LABEL CONTROL CODE.
0053
      ¢
      Ċ
                           IF I= 0
                                         -- LABEL IS PRINTED OUT.
0054
                           IF OTHERWISE -- NO LABEL IS PRINTED OUT.
      C
0055
                       -- NO. OF DECIMAL POINTS ON X-AXIS.
0056
      C
                           FORMAT NOTATION -- F7.J (J=0,1,...,5)
0057
      C
                      K -- NO. OF DECIMAL POINTS ON Y-AXIS.
0058
      C
            MINXO, MAXXO, MINYO, MAXYO
0059
```

```
-- PARAMETER TO DEFINE THE LOCATION OF THE FIGURE.
0060
                      POSSIBLE LOCATION OF X-AXIX --- 1 TO 1024.
0061
                      POSSIBLE LOCATION OF Y-AXIS --- 1 TO
0062
                      DEFAULT VALUES: MINXO= 10 -- MAXXO=1020
      C
0063
                                       MINY0= 40 +- MAXY0= 750
0064
                   -- TEXTRONIX TERMINAL LOGICAL UNIT NUMBER.
0065
            LU
            IPLOT -- FRAME NUMBER ON THE PICTURE OR
0066
      Ç
                      GRAPH LINE NUMBER ON THE PICTURE FRAME.
0067
0068
            DATA IPLOT/1/
0069
            DATA IPLT1/1/
0070
      C.... TO SET UP APPROPRIATE VALUE FOR CONTROL.
0071
            IF (LU .NE. 7) LU#1
0072
            NDIM=NP/10000
0073
            NP1=NP/100-NDIM*100
0074
            NP2#NP-100*NP1-10000*NDIM
0075
            NPTTL=NP1+NP2
0076
            IF(NDIM.GT.1) GO TO 5
0077
0078
            NDIM=1
            IF(NP1.EQ.O) NP1=NP2
0079
            IF(NP1.EQ.0) NP1=1
0080
            NPTTL=NP1
0081
5800
          5 IF(NPTTL.LE.O) NPTTL=1
            JDC=JDCXY/100
0083
            JDCX=JDCXY/10-10*JDC
0084
            JDCY#JDCXY+10*JDCX-100*JDC
0085
0086
            TEST IF IT IS THE 1ST GRAPH ON THE SAME PICTURE, IF NOT
0087
            GO TO PLOT DATA IMMEDIATELY
0088
            IF(IPLOT.NE.1) GO TO 190
0089
0090
            CALL INITT(960)
        190 IF(MO .NE. 0) GO TO 14
0091
             IF(IPLT1.NE.1) GO TO 85
992
          14 IF(NY.GT.0) GO TO 20
0093
            YMAX==1.0E20
0094
            YMIN#1.0E+20
0095
0096
            DO 15 I=1,N
             IF(Y(I),GT,YMAX) YMAX=Y(I)
0097
            IF(Y(I).LT.YMIN) YMIN=Y(I)
0098
0099
          15 CONTINUE
             IF (YMIN .GE. O. .OR. YMAX .LE. O.) GO TO 20
0100
             IF (YMAX.GT.ABS (YMIN)) YMIN==YMAX
0101
             YMAX=ABS(YMIN)
0102
          20 IF (NX .NE. 0) GO TO 25
0103
0104
             XMIN=X(1)
            XMAX=X(N)
0105
          25 DX=(XMAX-XMIN)/10.
0106
             DEX=(XMAX-XMIN)/FLOAT(N-1)
0107
             DY=(YMAX-YMIN)/10.
0108
             IF (MAXXO.NE.O .AND. MAXYO.NE.O) GO TO 27
0109
0110
             MINX0=40
            MAXX0=1000
0111
             MINY0=50
0112
             MAXY0=750
0113
          27 MLNGX#(MAXXO-MINXO)/NDIM
0114
0115
             MLNGY=MAXYO-MINYO
             NI R=1
0116
             NDIV=NP1
0117
             IF(IPLOT.LE.NP1) GO TO 28
0118
             NLR#2
0119
             SANIAN
0120
```

483 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION -- 79 -- OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
28 IF (MO.EQ.0) NDIV#1
1510
            MCHRX=13
0122
            MCHRY=20
0123
            MSEG=5
0124
            MFRMT=7
0125
            MSPCXF=(MFRMT+1) *MCHRX
0126
0127
            MSPCXL=(MFRMT-4) *MCHRX
0128
            MLINE1=1
0129
            MLINE2=5
0130
            MLINEY=MLINE2
             IF(MO .GT. 0) GO TO 10
0131
             IF(NDIV .GT. 3) GO TO 11
0132
0133
            MLINE1=2
0134
         11 MLINEY=MLINE1
            MLNGY=MAXYO+MINYO-(MLINE2-MLINE1)
0135
      C
         10 MSPCYF=MLINEY+MCHRY
0136
            MSPCYL±0
0137
0138
            MDELTY=MLNGY/NDIV
01-39
            MINX=MINXO+(NLR=1) *MLNGX
0140
            MAXX=MINX+MLNGX
0141
            MAXY=MAXYO-(IPLT1-1)*MDELTY
            MINY=MAXY-MDELTY
0142
            CALL TWIND (MINX, MAXX, MINY, MAXY)
0143
            XINCR=(XMAX-XMIN)/FLOAT(MLNGX-MSPCXF-MSPCXL)
0144
0145
            XFST=XMIN=XINCR*MSPCXF
            XLST=XMAX+XINCR*MSPCXL
0146
            YINCR=(YMAX-YMIN)/FLOAT(MDELTY-MSPCYF-MSPCYL)
0147
            YFST=YMIN-YINCR*MSPCYF
0148
            IF(MO.LT.O .AND. NDIV.GT.3) YEST=YMIN-1.5*YINCR*MSPCYF
0149
             YLST=YMAX+YINCR*MSPCYL
0150
            YSEG=YINCR *MSEG
0151
0152
            XSEG=XINCR * MSEG
0153
            CALL DWIND (XFST, XLST, YFST, YLST)
            CALL MOVEA (XMIN, YMAX)
0154
0155
            CALL DRAWA (XMIN, YMIN)
            CALL DRAWA (XMAX, YMIN)
0156
            CALL DRAWA (XMAX, YMAX)
0157
             CALL DRAWA (XMIN, YMAX)
0158
            IF (YMIN .GE. 0. .OR. YMAX .LE. 0.) GO TO 59
0159
            CALL MOVEA (XMIN, 0.)
0160
             CALL DRAWA (XMAX, 0.)
0161
         59 IF(188W(10).GE.0) GO TO 60
0162
             CALL MOVEA (0., YMIN)
0163
            CALL DRAWA (0., YMAX)
0164
0165
      С
            DRAW TIC MARKS ON X-AXIS
0166
         60 DO 30 I=1,9
         30 CALL SEGMT (0,1,XMIN+I*DX,YMIN+YSEG)
0167
             DRAW TIC MARKS ON Y#AXIS
0168
      C
0169
            DO 40 I=1,9
         40 CALL SEGMT (1,1,XMIN+XSEG,YMIN+I*DY)
0170
      C
            LABEL X AXES
0171
             IF(JDC.NE.0) GO TO 85
0172
            SDY=1.5*YINCR*MCHRY
0173
               (MO .GT. 0 .GR. NDIV .EQ. 1) GO TO 150 (IPLT1 .NE. NDIV) GO TO 82
0174
            ΙF
0175
0176
        150 DO 70 I=1,6
             XX=XMIN+FLOAT(I=1)*2.0*DX
0177
             XXD=XX-XINCR*FLOAT(MCHRX)*(FLOAT(MFRMT)/2.0-FLOAT(JDCX-3))
0178
0179
             IF(ISSW(11).GE.0) GO TO 400
0180
            CALL MOVEA(XX,YMIN)
            CALL DRAWA(XX, YMAX)
0181
```

```
400 CALL MOVEA (XXD, YMIN-SDY)
0182
0183
             CALL ANMOD
             CALL JWRTE (JDCX,XX,LU)
0184
          70 CONTINUE
0185
          82 IF(MO.EQ.O .OR. NDIV.EQ.1) GO TO 131
0186
             IF (ABS(YMIN) .EQ. ABS(YMAX)) GO TO 132 WRITE 5 LABELS IF YMAX AND YMIN ARE NOT EQUAL.
0187
0188
             IF NOIV > 4 --- WRITE 3 LABELS FOR EASY DISPLAY.
IF (NOIV .GT. 4) GO TO 132
0189
0190
             00 140 I=1,6
0191
             YY=YMIN+FLOAT(I-1)*2.*DY
0192
             YYD=YY-YINCR*FLOAT(MCHRY)/2.0
0193
0194
             IF(ISSW(12).GE.0) GO TO 410
             CALL MOVEA(XMIN, YY)
0195
             CALL DRAWA (XMAX, YY)
0196
         410 CALL MOVEA(XFST, YYD)
CALL ANMOD
0197
0198
             CALL JWRTE (JDCY, YY, LU)
0199
         140 CONTINUE
0200
             Gn TO 85
1020
             WRITE 3 LABELS IF YMAX =-YMIN
      C
0202
             HOWEVER, WHEN ONLY ONE FRAME, WRITE 11 LABELS.
0203
      C 130 IF(MO.EQ.O .OR. NDIV.EQ.1) GO TO 131
0204
0205
         132 DO 80 I=1.3
             YY = YMIN + (I-1) *5*DY
0206
             YYD=YY+YINCR*FLOAT(MCHRY)/2.0
0207
8050
             CALL MOVEA (XFST, YYD)
             CALL ANMOD
9050
             CALL JWRTE (JDCY, YY, LU)
0210
          80 CONTINUE
1150
             GO TO 85
0212
         WRITE 11 LABELS.
131 DO 81 I=1,11
0213
0214
             YY=YMIN+(I-1)*DY
0215
             YYD=YY-YINCR*FLOAT(MCHRY)/2.0
0216
              IF(ISSW(12).GE.0) GO TO 420
0217
             CALL MOVFA(XMIN, YY)
0218
0219
             CALL DRAWA(XMAX,YY)
         420 CALL MOVEA(XFST, YYD)
0220
              CALL ANMOD
0221
              CALL JWRTE (JOCY, YY, LU)
0222
          81 CONTINUE
0223
              DRAW VECTORS BETWEEN TIME POINTS
0224
      C
          85 IF (NX .GE. 0) GO TO 100
0225
              CALL MOVEA(XMIN,Y(1))
0226
              XM=XMIN-DEX
0227
              DO 50 I=1.N
0228
              XMIDX=XM+I*DEX
0229
              CALL DRAWA (XMIDX,Y(I))
0230
          50 CONTINUE
0231
              GO TO 110
0232
         100 CALL MOVEA(X(1),Y(1))
0233
              DU 120 I=2,N
0234
              IF(X(I).LT.XMIN .OR. Y(I).LT.YMIN) GO TO 121
0235
              IF(X(I).GT.XMAX .OR. Y(I).GT.YMAX) GO TO 121
0236
              CALL DRAWA(X(I),Y(I))
0237
              GU TO 120
0238
         121 DIVX=(X(I)-X(I-1))/10.0
0239
              DIVY = (Y(I) - Y(I - 1)) / 10.0
0240
0241
              00 122 J=1,10
              DXJ=X(1-1)+DIVX*FLOAT(J)
0242
```

485 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION - 81 - OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
DYJ=Y(I=1)+DIVY*FLOAT(J)
0243
             IF(DXJ.T.XMIN .OR. DYJ.LT.YMIN) GO TO 123
IF(DXJ.GT.XMAX .OR. DYJ.GT.YMAX) GO TO 123
0244
0245
0246
             CALL DRAWA (DXJ, DYJ)
             GO TO 122
0247
         123 CALL MOVEA (DXJ, DYJ)
0248
0249
         122 CONTINUE
         120 CONTINUE
0250
         110 CONTINUE
0251
             CALL FINIT (0,767)
0252
             IF (IPLOT .EQ. NPTTL) IPLT1=0
0253
             IF (IPLOT .EQ. NPTTL) IPLOT=0
0254
             IPLOT=IPLOT+1
0255
             IF(NDIM.EQ.2 .AND. IPLT1.EG.NP1) IPLT1=0
0256
             IPLT1=IPLT1+1
0257
0258
             RETURN
0259
             END
             SUBROUTINE JWRTE (JDCXY, XY, LU)
0260
1920
      C
         ... TO SELECT NUMBER OF DIGITS BELOW DECIMAL POINT.
0262
      €.
0263
             IL=2H+
0264
             IF(JDCXY.NE.O) GO TO 10
0265
             IXY=IFIX(XY)
0266
             WRITE(LU, 100) IXY, IL
0267
             RETURN
0268
          10 IF(JDCXY.EQ.1) WRITE(LU,101) XY, IL
0269
0270
             IF(JDCXY.EG.2) WRITE(LU,102) XY, IL
             IF(JDCXY.EQ.3) WRITE(LU,103) XY, IL
1750
             IF(JOCXY.EQ.4) WRITE(LU,104) XY, IL
0272
             IF(JDCXY.EQ.5) WRITE(LU,105) XY, IL
0273
         100 FORMAT (17, A1)
0274
         101 FORMAT (F7.1,A1)
0275
         102 FORMAT (F7.2,A1)
0276
         103 FORMAT(F7.3,A1)
0277
         104 FORMAT(F7.4,A1)
0278
         105 FORMAT(F7.5,A1)
0279
             RETURN
0280
0281
             SUBROUTINE SEGMT (NDIR, NSIZE, X, Y)
2820
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0283
            1 TIMAGX, TIMAGY, TROOSE, TRSINE, TRSCAL, TREACX, TREACY, TRPAR1,
0284
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0285
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0286
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0287
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0288
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0289
             THIS ROUTINE WILL DRAW TIC MARK AT LOCATION (X,Y).
0290
             (X,Y) BEING VIRTUAL CO-ORDINATES ON SCREEN
       С
0291
                     --- O DRAW VERTICAL TIC MARK
0292
       C
             NUIR
                     --- 1 DRAW HORIZONTAL TIC MARK
0293
                     --- 1 SIZE OF 10 RASTER UNITS
             NSIZE
0294
       ¢
                     --- 2 SIZE OF 20 RASTER UNITS
0295
       C
0296
       C
0297
       ¢
             CONVERT TO SCREEN CO-ORDINATES
0298
             CALL LVECH
             CALL V2ST (1,X,Y,IX,IY)
0299
             SKIP IF POINT COMPLETELY OUTSIDE WINDOW
0300
             IF(KGNFLG.EQ.1) GO TO 60
0301
             CALL VECMD
0302
             IF(NDIR.EQ.1) GO TO 30
0303
```

- 82 -

Vol. 52 No. 5

CALL XYENT (IX, IY-NSIZE*5) 0304 GD TO 40 0305 30 CALL XYCHT (IX-NSIZE*5, IY) 0306 40 IF(KMODE,NE.1) CALL VECMD
IF(KMODEF,EG.1) CALL XYCNT(KBEAMX,KBEAMY)
IF(NDIR,EQ.1) GO TO 50
CALL XYCNT (IX,IY+NSIZE*5) 0307 0308 0309 0310 GO TO 60 0311 50 CALL XYCNT (IX+NSIZE*5,IY) 0312 0313 60 RETURN 0314 END ENDS 0315

487 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 83 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

ICHIE T=00004 IS ON CROOOO2 USING 00009 BLKS R=0063

```
0001
      FTN4
0002
             PROGRAM CHIE, 3, 10
0003
             DIMENSION X(1400), Y(1400), NA(20), AA(5), IPARM(5)
             COMMON LARY(100)
0004
0005
      C
             EQUIVALENCE (AA, NA(11)), (X, Y(1401))
0006
             EQUIVALENCE (AA, NA(11))
             THIS PROGRAM SCHEDULED BY SUBROUTINE STUKO,
0007
             THE MAXIMUM DATA POINT TO BE PLOTED IS 1400 POINTS.
8000
      C
0009
             WHEN NX = -1 MAXIMUM NPT=2800 POINTS FOR Y ARRAY ONLY.
             PARAMETER TEANSFER FROM SUBROUTINE CHIE AS FOLLOW
0010
      C
      C
             ISTRK - STARTING DISC TRACK FOR DATA STORAGE.
0011
0012
             IDISC
                   - DISC LU NUMBER.
             ISECT - NUMBER OF SECTOR FOR ONE TRACK.
0013
      C
0014
                    . LOGIC NUMBER FOR TEKTRONIX TERMINAL.
      C
             LU
                    - CONSISTS OF 5 DIGITS (IJKLM) AS FOLLOWS.
0015
      C
             NP
                      I (=NDIM) -- NO. OF COLUMNS (UP TO 2).
      C
0016
                      JK (=NP1) -- NO. OF FRAMES OR GRAPHS IN LEFT COLUMN.
LM (=NP2) -- NO. OF FRAMES OR GRAPHS IN RIGHT COLUMN.
0017
      C
0018
      C
0019
                      NPTTL=NP1+NP2 -- TOTAL NO. OF GRAPHS TO BE DRAWN.
      C
0020
      C.... DATE 06/26/1978
1500
      C... BY DR. H. ISHIKAWA AND D. LI, COLUMBIA UNIVERSITY.
0022
0023
             CALL RMPAR(IPARM)
0024
0025
             ISTRK=IPARM(1)
0026
             IDISC=IPARM(2)
             ISECT=IPARM(3)
0027
                  #IPARM(4)
0028
             LU .
             NP
                  =IPARM(5)
0029
0.030
             NDIM=NP/10000
0031
             NP1=NP/100-100*NDIM
             NP2=NP-100*NP1-10000*NDIM
0032
0033
             NPTTL=NP1+NP2
0034
             IF(NDIM.GT.1) GO TO 5
0035
             IF(NP1.EQ.O) NP1=NP2
             IF(NP1.EQ.0) NP1=1
0036
             NPTTL=NP1
0037
0038
           S IF(NPTTL.LE.O) NPTTL=1
0039
             DO 200 IPLOT=1,NPTTL
             NSTRK=ISTRK+IPLOT-1
0040
0041
             CALL EXEC (1,1028,NA,20,NSTRK,0)
0042
             NPT=NA(1)
0043
             NX=NA(2)
0044
             NY=NA(3)
0045
             MO=NA(4)
             JDCXY=NA(5)
0046
0047
             MINXO=NA(6)
             MAXXO=NA(7)
0048
0049
             MINYO=NA(8)
0050
             MAXYO=NA(9)
             XMIN=AA(1)
0051
0052
             XMAX=AA(2)
0053
             YMIN=AA(3)
             YMAX=AA(4)
0054
0055
             NPT2=2*NPT
             CALL EXEC (1,1028,Y,NPT2,NSTRK,1)
0056
0057
             1F (NX .LT. 0) GO TO 100
0058
             CALL EXEC (1,1028,X,NPT2,NSTRK,24)
        100 CALL YOKO(X,Y,NPT,NX,XMIN,XMAX,NY,YMIN,YMAX,
0059
```

- 84 --

Vol. 52 No. 5

* NP,MO,JDCXY,MINXO,MAXXO,MINYO,MAXYO)
200 CONTINUE
CALL EXEC (6)
END
FND* 0060 0061 2000 0063 0064 END\$

489 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 85 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

TTYLB T#00004 IS ON CR00002 USING 00111 BLKS R#0800

```
FTN4
0001
9002
             SUBROUTINE LVLCH
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0003
            1 TIMAGY, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0004
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0005
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0006
0007
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0008
0009
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0010
             IF(KGRAFL.NE.O) GO TO 10
             CALL REVCO (KBEAMX, KBEAMY, TREALX, TREALY)
0011
0012
             TIMAGX#TREALX
0013
             TIMAGY=TREALY
             KGRAFL=1
0014
0015
          10 RETURN
0016
             END
             SUBROUTINE MOVEA (X,Y)
0017
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0018
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0019
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG (8), KPAD2,
0020
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0021
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0022
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0023
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0024
0025
             CALL LVLCH
             CONVERT TO SCREEN CO-ORDINATES
9500
             CALL V287 (1,X,Y,IX,IY)
0027
      C
             SKIP IF LINE IS COMPLETELY OUTSIDE WINDOW
8500
             IF(KGNFLG.EQ.1) GO TO 10
0029
             CALL VECMD
0030
             CALL XYCNT (IX, IY)
0031
0032
          10 RETURN
             END
0033
0034
             SUBROUTINE PARCL (RL1, RL2, RM1, RM2, RN1, RN2)
             IF(RL1.LT.RM1) GO TO 10
0035
             IF(RL1.GT.RM2) GO TO 20
0036
0037
             RN1=RL1
             IF(RL2-RM1) 30,40,40
0038
          10 RN1=RM1
0039
          40 IF(RL2.LE.RM2) GO TO 50
0040
0041
             RN2=RM2
0042
             GO TO 60
          50 RN2=RL2
0043
             GO TO 60
0044
0045
          20 RN1=RM2
0046
             IF(RL2.GE.RM1) GO TO 50
0047
          30 RN2=RM1
0048
          60 RETURN
0049
             END
             SUBROUTINE DRAWA (X,Y)
0050
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0051
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0052
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0053
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0054
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0055
0056
            5 KBEAMY.KMOVEF.KPCHAR(5),KDASHT.KMINSX.KMINSY.KMAXSX,
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0057
             SET TERMINAL TO DRAW SOLID LINES IF NEEDED
0058
      C
0059
             CALL LVLCH
```

-- 86 --

```
490
```

```
CONVERT TO SCREEN CO-ORDINATES
0060
      C
             CALL V2ST (1,X,Y,IX,IY)
0061
             SKIP IF LINE COMPLETELY OUTSIDE WINDOW
2000
             IF (KGNFLG.EQ.1) GO TO 10
0063
             IF(KKMODE.NE.1) CALL VECMD
0064
             IF(KMOVEF.EQ.1) CALL XYONT (KBEAMX, KBEAMY)
0065
             CALL XYENT (IX, IY)
0066
          10 RETURN
0067
             END
0068
             SUBROUTINE DWIND (XMIN, XMAX, YMIN, YMAX)
0069
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0070
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0071
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0072
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0073
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0074
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSY, KMINSY, KMAXSX,
0075
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0076
             DEFINE DATA WINDOW IN TERMINAL COMMON AREA
0077
             TMINVX=XMIN
0078
             XAMX=XVXAMT
0079
             TMINVY#YMIN
0080
             XAMY=YMAX
0081
             CALL RESCL
0082
             RETURN
0083
             END
0084
             SUBROUTINE WINCO (X,Y,IX,IY)
0085
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0086
            1 TIMAGX, TIMAGY, TRCOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0087
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0088
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0089
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0090
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0091
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0092
             DATA DE2RAD/0.01745/
0093
             CHECK FOR PERMITTED VALUE OF CONVERSION KEY
0094
             DEFAULT IS LINEAR, ERROR IS NONE
0095
             DX=X-TMINVX
0096
             DY=Y-TMINVY
0097
             IF (KEYCON .EG. 1) GO TO 500
0098
             KEY=KEYCON
0099
             IF(KEYCON.LT.1) KEY=5
0100
       ¢
              IF (KEYCON.GT.4) KEY#4
       C
0101
             BRANCH TO PROPER SECTION
       C
0102
             LINEAR LOG POLAR USER ERROR
       C
0103
              GO TO (500,300,600,700,100),KEY
0104
       ¢
             ERROR
0105
       С
         100 IX=X
0106
              IY = Y
0107
              GO TO 800
0108
             LOG TRANSFORM
0109
         300 KEYL=TRPAR1+0.001
 0110
              IF(KEYL.EG.2) GO TO 400
 0111
       C
              SETUP X LOG TRANSFORM
 0112
       C
              DX=ALOG(X)=TRPAR2
 0.113
         400 IF(KEYL.EQ.1) GO TO 500
       C
 0114
              SETUP Y LOG TRANSFORM
 0115
       C
              DY=ALOG(Y)=TRPAR3
 0116
              CONVERT LINEAR
 0117
       C
         500 IX=IFIX(DX*TRFACX)+KMINSX
 0118
              IY=IFIX(DY*TRFACY)+KMINSY
 0119
 0120 C
              GO TO EXIT
```

491 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION - 87 - OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0121
             GD TO 800
             POLAR TRANSFORM
0122
      ¢
        600 A=(Y-TRPAR6)*TRFACY
0123
      C
0124
             R=(X-TRPAR5) *TRFACX
             IX#R*COS(A*DE2RAD)+TRPAR3
0125
      ¢
             IY#R*SIN(A*DE2RAD)+TRPAR4
0126
      C
0127
             GO TO EXIT
0128
      С
             GO TO 800
0129
      C
             USER TRANSFORM IN USE
0130
      C
        700 CONTINUE
             CALL USECO (X,Y,IX,IY)
EXIT POINT
0131
      C
0132
        800 RETURN
0133
0134
             END
             SUBROUTINE V2ST (I, X, Y, IX, IY)
0135
             DIMENSION BUFIN(4), BFOUT(4)
0136
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0137
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0138
0139
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0140
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0141
0142
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0143
0144
             EQUIVALENCE (BUFIN(1), XS), (BUFIN(2), YS), (BUFIN(3), XE),
            1 (8UFIN(4), YE)
0145
             EQUIVALENCE (BFOUT(1),CXS),(BFOUT(2),CYS),(BFOUT(3),CXE),
0146
0147
            1 (BFOUT(4),CYE)
0148
             XE=X
0149
             YE=Y
0150
             POINT OR MOVE
             IF(1.EQ.0) GO TO 10
0151
      C
             BRIGHT VECTOR
0152
0153
             XS=TIMAGX
0154
             YS=TIMAGY
             CLIP VECTOR
0155
      C
0156
             CALL CLIPT (BUFIN, BFOUT)
             ON SCREEN
0157
      C
0158
             IF(KGNFLG.EQ.1) GO TO 110
             ARE WE AT START POINT
0159
      C
             IF(CXS.EQ.TREALX.AND.CYS.EQ.TREALY) GO TO 120
0160
             MOVE BEAM TO START POINT
0161
             MODE=KKMODE
0162
             CALL VECMD
0163
             CALL WINCO (CXS,CYS,IX,IY)
0164
             CALL XYENT (IX, IY)
0165
             KKMODE=MODE
0166
0167
             GO TO 120
             POINT OR MOVE
0168 C
0169
          10 CALL PCLIP (XE,YE)
0170
             OFF SCREEN
             IF(KGNFLG.EQ.1) GO TO 110
0171
0172
             CXE=XE
0173
             CYE=YE
             CONVERT TO SCREEN CO-ORDINATES
0174
      C
        120 CALL WINCO (CXE, CYE, IX, IY)
0175
      C
             SAVE POSITION ABS AND IMAGINARY
0176
0177
             TREALX=CXE
0178
             TREALY=CYE
         110 TIMAGX=X
0179
0180
             TIMAGY=Y
0181
             RETURN
```

```
END
0182
             SUBROUTINE REVCO (IX, IY, X, Y)
0183
0184
             LOGICAL DEC
             COMMON LARY (20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0185
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPARI,
0186
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0187
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0188
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0189
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0190
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0191
0192
             E=2.718281828
             DX=FLOAT(IX-KMINSX)/TRFACX
0193
             DY=FLOAT (IY=KMINSY)/TRFACY
0194
0195
             IF (KEYCON .EQ.1) GO TO 300
0196
             KEY#KEYCON
             IF(KEYCON.LT.1) KEY#5
0197
      C.
             IF(KEYCON.GT.4) KEY#4
0198
             LINEAR LOG POLAR USER ERROR
0199
             GO TO (300,400,500,600,100),KEY
0200
             ERROR
0201
      C
         100 X=IX
0202
             Y=IY
0203
             GO TO 700
0204
0205
             LINEAR
9050
         300 X=DX+TMINVX
             Y=DY+TMINVY
0207
             GO TO 700
8050
0209
             LOG SCALES
        400 KEYL=TRPAR1
0210
      C
             X=DX+TMINVX
1150
             Y=DY+TMINVY
0212
             IF(KEYL.NE.2) X=E**(DX+TRPAR2)
0213
      C
             IF(KEYL.NE.1) Y=E**(DY+TRPAR3)
0214
      C
             GO TO 700
0215
      C
      C
             POLAR
0216
         500 DX=FLOAT(IX)=TRPAR3
      C
0217
             DY=FLOAT(IY)=TRPAR4
0218
             Y=ATAN2(DX,DY) *57.295780
0219
       C
             X=SQRT(DY*DY+DX*DX)/TRFACX+TRPAR5
0220
             ADJUST ANGLE MOD 2 PI TO VALUE WITHIN WINDOW
1550
9222
       C
             DEC=.FALSE.
         510 IF(Y.GT.TRPAR1) GO TO 530
0223
             INCREMENT ANGLE
0224
       С
             Y=Y+360.
0225
       C
             GO TO 510
0226
         530 IF(Y.LE.TRPAR2) GO TO 550
       C
0227
             DECREMENT ANGLE
0228
             Y=Y-360.
       C
0229
             DEC=.TRUE.
0230
       C
             GO TO 530
0231
         550 IF(DEC.AND.Y.LT.TRPAR1) Y#Y+360.0
       C
0232
             IF(TMINVX.GE.O) GO TO 560
0233
             TR1A=AMOD (TRPAR1+180.,360.)
0234
       ¢
             TR2AMANDD (TRPAR2+180.,360.)
0235
       C
             IF(Y.GT.AMAX1(TR1A,TR2A).OR.Y.LT.AMIN1(TR1A,TR2A)) GO TO 560
0236
       C
             Y=AMOD(Y+180.,360.)
0237
       C
       C
             X=-X
0238
        560 YEY/TRFACY+TRPAR6
0239
       C
       C
             GD TO 700
0240
0241
             USER CONVERSION
       C 600 CONTINUE
0242
```

493 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 89 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
CALL UREVC (IX, IT, X, Y)
0243
             EXIT POINT
0244
         700 CALL PCLIP (X,Y)
0245
0246
             RETURN
0247
             END
0248
             SUBROUTINE CLIPT (BUFIN, OUTBF)
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0249
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0250
0251
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0252
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0253
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0254
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0255
0256
             DIMENSION BUFIN(1), OUTBF(1)
0257
             GSTAX=BUFIN(1)
             GSTAY=BUFIN(2)
0258
0259
             GENDX=BUFIN(3)
0260
             GENDY=BUFIN(4)
             IF(GSTAX.GE.TMINVX) GO TO 10
0261
            'IF(GENDX.GE.TMINVX) GO TO 20
0262
0263
             GO TO 110
          10 IF(GSTAX, LE, TMAXVX) GO TO 20
0264
0265
             IF (GENDX.LE.TMAXVX) GO TO 20
0266
             GO TO 110
0267
          20 IF (GSTAY.GE.TMINVY) GO TO 21
0268
             IF(GENDY.GE.TMINVY) GO TO 30
0269
             GO TO 110
          21 IF(GSTAY.LE.TMAXVY) GO TO 30
0270
             IF (GENDY.LE.TMAXVY) GO TO 30
0271
0272
             GO TO 110
0273
          30 IF(GSTAX.NE.GENDX) GO TO 31
             DSTAX=GSTAX
0274
0275
             DENDX#GSTAX
0276
             CALL PARCL (GSTAY, GENDY, TMINVY, TMAXVY, DSTAY, DENDY)
0277
             GD TO 120
0278
          31 IF(GSTAY.NE.GENDY) GO TO 40
0279
             DSTAY=GSTAY
             DENDY=GSTAY
0280
             CALL PARCE (GSTAX, GENDX, TMINVX, TMAXVX, DSTAX, DENDX)
0281
             GO TO 120
2850
0283
          40 A=GENDX=GSTAX
0284
             B=GENDY-GSTAY
             IF(GSTAX.LT.TMINVX) GO TO 41
0285
0286
             IF(GSTAX.LE.TMAXVX) GO TO 43
0287
             Q=TMAXVX
             GD TO 42
8850
          43 IF (GSTAY.GT.TMAXVY) GO TO 140
0289
             IF(GSTAY.LT.TMINVY) GO TO 44
0290
0291
             DSTAX=GSTAX
0292
             DSTAY#GSTAY
             GO TO 150
0293
          41 Q=TMINVX
0294
          42 DSTAY=GSTAY+((Q-GSTAX)+B/A)
0295
0296
             IF(DSTAY.GT.TMAXVY) GO TO 140
             IF (DSTAY LT .TMINVY) GO TO 44
0297
             DSTAX=Q
0298
0299
             GO TO 150
0300
         44 R=TMINVY
0301
             GO TO 45
0302
        140 R=TMAXVY
0303
         45 DSTAX=GSTAX+((R=GSTAY)*A/B)
```

```
494
- 90 -
                                Vol. 52 No. 5
```

```
IF(DSTAX.GT.TMAXVX) GO TO 110
0304
             IF(DSTAX.LT.TMINVX) GO TO 110
0305
0306
             DSTAY=R
        150 IF(GENDX.LT.TMINVX) GO TO 50
0307
             IF(GENDX.GT.TMAXVX) GO TO 51
0308
             IF(GENDY.GT.TMAXVY) GO TO 160
0309
             IF(GENDY.LT.TMINVY) GO TO 52
0310
0311
             DENDX#GENDX
             DENDY # GENDY
0312
             GO TO 120
0313
0314
          51 Q=TMAXVX
             GO TO 53
0315
         50 Q=TMINVX
0316
          53 DENDY=GSTAY+((G=GSTAX)+B/A)
0317
             IF (DENDY.GT.TMAXVY) GO TO 160
0318
             IF(DENDY.LT.TMINVY) GO TO 52
0319
             DENDX#Q
0320
             GO TO 120
0321
          52 RETMINVY
0322
             GO TO 60
0323
         160 RETMAXVY
0324
          60 DENDX=GSTAX+((R-GSTAY)+A/B)
0325
             DENDY#R
0326
         120 OUTBF(1)=DSTAX
0327
             OUTBF(2)=DSTAY
0328
0329
             OUTBF (3) = DENDX
0330
             OUTBF (4)=DENDY
             KGNFLG=0
0331
             GO TO 70
0332
             SET FLAG IF LINE OUTSIDE WINDOW
0333
         110 KGNFLG=1
0334
          70 RETURN
0335
0336
             END
             SUBROUTINE RESET
0337
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0338
            1 TIMAGX, TIMAGY, TRCOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0339
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0340
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0341
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0342
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0343
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0344
             KEYCON=1
0345
0346
             TRFACX=1.
             TRFACY=1.
0347
             KBEAMX=0
0348
             KHOMEY=3068/KFACTR
0349
             KBEAMY=KHOMEY
0350
             KMINSX=0
0351
             KMAXSX=4096/KFACTR
0352
             KMINSY=0
0353
             KMAXSY=3120/KFACTR
0354
0355
             KHORSZ=56
0356
             KLINE=0
             KZAXIS=0
0357
             KLMRGN=0
0358
             KRMRGN=4040/KFACTR
0359
0360
             KSIZEF=1
             KTBLSZ±10
0361
             KVERSZ=88
0362
0363
              TMINVX=0.
```

TMAXVX=4095./FLOAT(KFACTR)

495 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 91 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0365
             TMINVY#0.
             TMAXVY=3120./FLOAT(KFACTR)
0366
             TRCOSF=1.
0367
0368
             TRSINF=0.
0369
             TRSCAL=1.
             MOVE TO THE HOME POSITION
0370
      C
0371
             CALL MOVAB (KLMRGN, KHOMEY)
0372
             PLACE TERMINAL IN A/N MODE
0373
             CALL ALFMD
             RETURN
0374
0375
             END
0376
             SUBROUTINE NWPAG
0377
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0378
            1 TIMAGX,TIMAGY,TRCOSF,TRSINF,TRSCAL,TRFACX,TRFACY,TRPAR1,
0379
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0380
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0381
0382
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSY, KMINSY, KMAXSX,
0383
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0384
             DIMENSION ICODE(2)
0385
             DATA ICODE(1), ICODE(2)/27,12/
0386
             IF(KKMODE.NE.O) CALL ALFMD
             OUTPUT (ESC) (FF) FOR NEW PAGE
0387
      C
             CALL TOUTS (2,ICODE)
0388
0389
             CALL IOWAI (10)
0390
             IF (KLMRGN.EQ.O) GO TO 10
0391
             CALL MOVAB (KLMRGN, KHOMEY)
0392
             CALL ALFMD
0393
             GO TO 20
0394
        10
             KBEAMX=0
0395
             KBEAMY=KHOMEY
0396
        20
             RETURN
0397
             END
0398
             SUBROUTINE IOWAI (ITIME)
0399
             THIS ROUTINE IS USED TO GENERATE DELAYS FOR REMOTE TERMINALS
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0400
0401
            1 TIMAGX, TIMAGY, TRCOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPARI,
0402
            2 TRPARZ, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPADZ,
0403
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0404
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
           5 KBEAMY, KMOVEF, KPCHAR(5), KDASHT, KMINSY, KMINSY, KMAXSX,
0405
0406
           6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0407
            IF(KBAUDR.LE.O) GO TO 20
            KOUNT=ITIME * KBAUDR/10
0408
0409
             DO 10 J=1,KOUNT
0410
             OUTPUT (SYN) TO INSURE AGAINST LOSS OF DUTPUT WHILE
             TERMINAL IS BUSY. (SYN) DOES NOT AFFECT THE TERMINAL
0411
0412
        10
            CALL TOUTP (22)
            RETURN
0413
        20
0414
            END
0415
            SUBROUTINE XYCHT (IX.IY)
0416
            COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0417
           2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0418
0419
           3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0420
           4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0421
             KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
           6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0422
            DIMENSION IPLT(5), IOPT(5)
0423
0424
            DATA IDREW, ISYN/0,22/
            RECEIVE THE PLOT CHARACTERS
0425
      C
```

```
CALL PLCHR (IX, IY, IPLT)
0426
            OPTIMIZE THE OUTPUT
      ¢
0427
            LEN#0
0428
            CHECK IF HIGH Y IS NEEDED
0429
      C
            IF(KPCHAR(1).EQ.IPLT(1)) GO TO 10
0430
            INCLUDE HIGH Y IF NEEDED
0431
            LEN=1
0432
            KPCHAR(1)=IPLT(1)
0433
            IOPT(1)=IPLT(1)
0434
            CHECK IF LSBXY IS NEEDED
0435
      C
            IF (KTERM.LE.2) GO TO 20
0436
            IF(KPCHAR(2),EQ.IPLT(2)) GO TO 20
0437
            INCLUDE LSBXY IF NEEDED
      C
0438
            LEN=LEN+1
0439
            KPCHAR(2)=IPLT(2)
0440
             IOPT(LEN)=IPLT(2)
0441
             GO TO 30
0442
             CHECK IF LOW Y IS NEEDED
0443
            IF(KPCHAR(3).NE.IPLT(3)) GO TO 30
        20
0444
             IF(KPCHAR(4).EQ.IPLT(4)) GO TO 40
0445
             INCLUDE LOW Y IF NEEDED
0446
0447
             LEN#LEN+1
             KPCHAR(3)=IPLT(3)
0448
             IOPT(LEN)=IPLT(3)
0449
             CHECK IF HIGH X IS NEEDED
0450
             IF(KPCHAR(4).EQ.IPLT(4)) GO TO 50
0451
             INCLUDE HIGH X IF NEEDED
0452
      Ċ
             LEN=LEN+1
0453
             KPCHAR(4)=IPLT(4)
0454
             IOPT(LEN)=IPLT(4)
0455
             CHECK IF LOW X IF NEEDED
0456
             IF(KPCHAR(5).NE.IPLT(5)) GO TO 50
         40
0457
             CHECK IF ALL THE CHARACTERS ARE THE SAME
0458
      С
             IF(LEN.NE.0) GO TO 50
0459
             CHECK IF (GS) FOR DARK VECTOR ALREADY SENT
      C
0460
             1F(KMOVEF.EQ.1) GO TO 50
0461
             CHECK IF VECTOR IS ALREADY DRAWN TO SPOT
0462
      С
             IF(IDREW.EQ.1) GO TO 80
0463
             INCLUDE THE LOW X
0464
            LEN=LEN+1
         50
0465
             KPCHAR(5)=IPLT(5)
0466
             IOPT(LEN)=IPLT(5)
0467
             CHECK FOR POSSIBLE SPEED PROBLEM
0468
             IF(LEN.GE.KPAD2) GO TO 70
         60
0469
             LEN=LEN+1
0470
             IOPT (LEN)=ISYN
0471
             GO TO 60
0472
             SEND THE ARRAY TO THE OUTPUT BUFFER
0473
             CALL TOUTS (LEN, IOPT)
0474
             SET COMMON AND HISTORY VARIABLES
0475
       C
             SET THE DREW HERE FLAG
0476
       C
0477
             IDREW=1
             REMOVE THE DREW HERE FLAG IF DIDN'T DRAW
0478
       C
             IF (KMOVEF.EQ.1) IDREW#0
0479
             REMOVE THE MOVE FLAG
0480
       C
             KMOVEF=0
 0481
             KBEAMX=IX
 0482
             KBEAMY≈IY
 0483
             RETURN
 0484
 0485
             END
             SUBROUTINE ALFMD
 0486
```

497 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 93 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
0487
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX; TRFACY, TRPARI,
0488
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG (8); KPADZ,
0489
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KYERSZ, KTBLSZ,
0490
0491
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0492
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0493
0494
             SET ALPHA MODE OUTPUT (US)
0495
             CALL TOUTP (31)
0496
             KKMODE#0
0497
             IF(KBEAMY.GT.KHOMEY) KBEAMY#KHOMEY
0498
             RETURN
0499
             END
             SUBROUTINE TOUTP (KKOUT)
0500
0501
             DIMENSION KOUT(1)
             KOUT(1) *KKOUT
0502
             CALL TOUTS (1,KOUT)
0503
             RETURN
0504
0505
             END
0506
             SUBROUTINE TSEND
             DIMENSION ITEMP(1)
0507
0508
             CALL BUFFK (0, ITEMP)
0509
             RETURN
0510
             END
             SUBROUTINE RESCL
0511
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0512
            1 TIMAGX, TIMAGY, TRCOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0513
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0514
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0515
0516
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0517
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0518
0519
             IF (KEYCON .NE. 1) GO TO 500
0520
             KEY=KEYCON
             IF(KEYCON.LT.1) KEY#5
1520
      C
0522
             IF(KEYCON.GT.4) KEY#4
             BRANCH TO PROPER SECTION AND RETURN
0523
      ¢
      Ċ
             LINEAR LOG POLAR USER ERROR
0524
0525
      C
             GO TO (100,200,300,400,500),KEY
0526
      C
             BOTH AXES LINEAR
0527
      C100
             TRPAR1=0.
             SEMI LOG OR LOG-LOG
0528
      С
      C200
             KEYL=TRPAR1+1.0001
0529
0530
             X-AXIS LINEAR OR LOG
0531
      C
             GO TO (210,220,210,220), KEYL
0532
             LINEAR
      C
0533
       210
             TRFACX=FLOAT(KMAXSX-KMINSX)/(TMAXVX-TMINVX)
      С
0534
             GO TO 250
0535
             SEMI-LOG X-AXIS
0536
      C220
             TRPAR2=ALOG(TMINVX)
0537
             TRFACX=FLOAT(KMAXSX-KMINSX)/(ALOG(TMAXVX)-TRPAR2)
      C
0538
      C
             Y-AXIS LINEAR OR LOG
      C250
0539
             GO TO (260,260,280,280), KEYL
0540
             LINEAR
       260
             TRFACY=FLOAT(KMAXSY+KMINSY)/(TMAXVY+TMINVY)
0541
             GO TO 600
0542
0543
             SEMI-LOG Y-AXIS
0544
      C280
             TRPAR3=ALOG(TMINVY)
0545
             TRFACY=FLOAT(KMAXSY-KMINSY)/(ALOG(TMAXVY)+TRPAR3)
      С
0546
      C
             GO TO 600
0547
      С
             POLAR SCALING
```

```
CONTINUE
0548
      C300
             CALL PSCAL
0549
      C
             GO TO 600
0550
      C
             USER DEFINE FUNCTION
      C
0551
      C400
             CONTINUE
0552
             CALL URSCL
0553
      ¢
             GO TO 600
NO SCALE
0554
      C
0555
       500
             TRFACX=1.
0556
0557
             TREACY=1.
0558
         600 RETURN
             FND
0559
             SUBROUTINE MOVAB (IX, IY)
0560
             COMMON LARY (20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0561
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0562
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0563
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0564
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0565
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0566
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0567
             CALL VECMD
0568
             CALL XYENT (IX, IY)
0569
             KGRAFL=0
0570
             RETURN
0571
             END
0572
0573
             SUBROUTINE VECMD
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0574
             1 IlMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0575
             2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0576
             3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0577
             4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0578
             5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0579
             6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0580
              IF(KKMODE.EQ.1) GO TO 10
0581
             OUTPUT (US) TO ENTER A/N MODE AND RESET FOR VECTOR MODE
0582
       C
             CALL TOUTP (31)
0583
             00 112 II=1,5
0584
         112 KPCHAR(II) == 1
0585
              KKMODE=1
0586
              OUTPUT (GS) TO ENTER VECTOR MODE
0587
       C
          10 CALL TOUTP (29)
0588
              KMOVEF=1
0589
0590
              RETURN
              END
0591
              SUBROUTINE PLCHR (IX, IY, ICHAR)
0592
              COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0593
             1 TIMAGX, TIMAGY, TROOSE, TRSINE, TRSCAL, TREACX, TREACY, TRPAR1,
0594
             2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0595
             3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0596
             4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0597
             5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0598
             6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0599
              DIMENSION ICHAR(1)
0600
              CALCULATE THE PLOT CHARACTERS TO ARRIVE AT IX.IY
0601
              ORDER IS HIY, LSBYX, LOY, HIX, LOX
 0602
              KX=IX*KFACTR
 0603
              KY=IY*KFACTR
 0604
              ICHAR(1)=MOD(KY/128,32)+32
 0605
              ICHAR(2)=MOD(KY,4)+4+MOD(KX,4)+96
 0606
              ICHAR (3)=MOD (KY/4,32)+96
 0607
              ICHAR(4)=MOD(KX/128,32)+32
 0608
```

499 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 95 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
ICHAR (5)=MOD (KX/4,32)+64
0609
             RETURN
0610
0611
             END
             SUBROUTINE INITT (IBAUD)
0612
             COMMON LARY (20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0613
            1 TIMAGX, TIMAGY, TRCOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0614
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0615
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0616
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0617
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0618
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0619
0620
             KBAUDR=IBAUD
0621
             KPAD2#KBAUDR/220+1
             KTERM#1
0622
             KFACTR=4
0623
             SET THE OUTPUT BUFFER FORMAT
0624
             KUNIT=3
0625
             KINLFT=0
0626
             KOTLFT#1
0627
             CALL RESET
0628
             CALL NWPAG
0629
             RETURN
0630
             END
0631
             SUBROUTINE FINIT (IX, IY)
0632
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0633
            1 TIMAGX, TIMAGY, TROOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0634
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0635
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0636
              KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0637
            5 KBEAMY, KMOVEF, KPCHAR (S), KDASHT, KMINSX, KMINSY, KMAXSX,
0638
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0639
0640
             CALL MOVAB (IX, IY)
             CALL ALFMO
0641
0642
             CALL TSEND
0643
             RETURN
0644
             END
0645
             SUBROUTINE TOUTS (LEN, IADE)
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0646
            1 TIMAGX, TIMAGY, TRCOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0647
              TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0648
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0649
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0650
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0651
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0652
             DIMENSION IADE(1), IUSE(144)
0653
             DATA ISYNC, MAXLEN/22, 144/
0654
             IF(LEN.LE.0) GO TO 40
0655
             LENGUT=0
0656
             ITEST=KPAD2-1
0657
0658
             DO 30 I=1, LEN
0659
             ITEMP=IADE(I)
             INSERT CODE EXPANSION CHARACTER HERE WHEN NEEDED
0660
      C
             IF (LENOUT.GE.MAXLEN) GO TO 40
0661
             LENOUT=LENOUT+1
0662
          30 IUSE (LENOUT) = ITEMP
0663
          40 CALL BUFFK (LENOUT, IUSE)
0664
              RETURN
0665
             END
0666
              SUBROUTINE BUFFK (NCHAR, IOUT)
0667
              CUMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0668
             1 TIMAGX, TIMAGY, TRCUSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0669
```

- 96 -

```
500
```

```
2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0670
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0671
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0672
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0673
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0674
            DIMENSION IDATA(144), IQUT(1)
0675
            DATA MAXLEN, LENGUT, NODATA, ITRAIL/144, 0, 1, 1/
0676
            DUMP THE BUFFER WHEN REQUESTED BY LENEO
0677
             IF(NCHAR.LE.O) GO TO 10
0678
            DON'T DUMP THE BUFFER IF THE NEW STRING WILL FIT
      ¢
0679
             IF (NCHAR.LE.KOTLFT) GO TO 70
0680
             DETERMINE IF THERE IS DATA IN BUFFER
0681
            IF (NODATA, EQ. 1) GO TO 50
0682
             DETERMINE THE FORMAT THE USER WANTS BUFFER DUMPED IN
      ¢
0683
             GO TO (20,30,40), KUNIT
0684
             OUTPUT BUFFER FORMAT IS (GS), PLTCHRS, DATA, (US)
0685
0686
             LENGUT=LENGUT+1
             APPEND (US) TO END OF BUFFER
0687
      C
             IDATA (LENOUT)=31
0688
             CALL ADOUT (LENGUT, IDATA)
0689
             CALL PLCHR (KBEAMX, KBEAMY, IDATA)
0690
             RESORE THE BEAM POSITION AT FIRST OF THE NEXT BUFFER
0691
      C
             IDATA(2)=IDATA(1)
0692
0693
             IDATA(1)=29
             AND NOW THE MODE BEFORE THE CUTPUT IS ASKED FOR
0694
0695
             LENGUT=6
0696
             KEY=KKMODE+1
             IF(KEY.LT.1) KEY=1
0697
             IF (KEY.GT.5) KEY=1
0698
             MODE IS A/N, VECTOR, PNJ, INC, DSH
0699
      С
             GO TO (21,22,23,24,22),KEY
0700
             ENTER A/N MODE
0701
      C
             IDATA (LENOUT)=31
0702
             GO TO 50
0703
0704
             ENTER VECTOR MODE
             IDATA (LENOUT)=29
0705
             IF (KMOVEF.NE.1) LENOUT=LENOUT-1
0706
             GO TO 50
0707
             ENTER POINT MODE
0708
             IF (KTERM.LT.3) GO TO 22
0709
         23
             IDATA (LENOUT)=28
0710
             LENOUT=LENOUT+1
0711
             GO TO 22
0712
             ENTER INCREMENT PLOT MODE
0713
      C
             IDATA (LENOUT)=30
0714
         24
             GO TO 50
0715
             OUTPUT BUFFER FORMAT IS (SYN), DATA, (ESC)
0716
            LENOUT=LENOUT+1
         30
0717
             APPEND (ESC) TO END THE BUFFER
0718
      C
             IDATA (LENOUT)=27
0719
             CALL ADOUT (LENGUT, IDATA)
0720
             25=(1)ATAGI
0721
0722
             LENOUT=1
             GO TO 50
0723
             OUTPUT BUFFER FORMAT IS DATA ONLY
0724
      C
             CALL ADOUT (LENOUT, IDATA)
0725
         40
             LENGUT=0
0726
             KOTLFT=MAXLEN-LENGUT-ITRAIL
0727
             TEKTRONIX BUG FIXED IN NEXT LINE
0728
      C.
             IF (NCHAR.LE.O) GO TO 90
0729
          70 NODATA=0
0730
```

501 COMPUTER PROGRAM DEVELOPMENT FOR THE SIMULATION — 97 — OF DATA-BASED NONSTATIONARY RANDOM PROCESSES

```
LENUNCHAR
0731
             IF(LEN.GT.KOTLFT) LENEKOTLFT
0732
             DO 80 I#1, LEN
0733
0734
             LENOUT#LENOUT+1
             IDATA(LENGUT)#IOUT(I)
0735
        80
             KOTLFT#MAXLEN-LENGUT-ITRAIL
        90
0736
             RETURN
0737
             FND
0738
             SUBROUTINE ADOUT (NCHAR, IARAY)
0739
             DIMENSION IARAY(1), KARAY(73)
0740
             COMMON LARRY (99), LU
0741
0742
             IF (LU .NE. 7) LU=1
             TEST FOR NCHAR=0
0743
      C
0744
             IF (NCHAR, LE. 0) RETURN
             OUTPUT ASCII CODE (95) TO SUPPRESS (CR) AND (LF)
0745
             PACK ADE ARRAY INTO AZ ARRAY
0746
             KK=(NCHAR+1)/2
0747
0748
             DO 10 I=1,KK
             II=I+I-1
0749
             KARAY(I)=IARAY(II) *256
0750
          IF (II .EQ. NCHAR) GO TO 20
10 KARAY(I)=KARAY(I)+IARAY(I+I)
0751
0752
0753
             KARAY(KK+1)=95*256
0754
             GO TO 30
          20 KARAY(I)=KARAY(I)+95
0755
             SEND THE ARRAY, SUPPRESSING CR AND LF.
0756
          30 K==NCHAR=1
0757
             CALL EXEC (2, LU, KARAY, K)
0758
             RETURN
0759
0760
             END
             SUBROUTINE ANMOD
0761
             ENTER ALPHA-NUMERIC MODE
0762
      C
             CALL ALFMD
0763
             DUMP THE OUTPUT BUFFER
0764
             CALL TSEND
0765
0766
             RETURN
0767
             END
             SUBROUTINE TWIND (MINX, MAXX, MINY, MAXY)
0768
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0769
              TIMAGX, TIMAGY, TRCOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0770
            2 TRPARZ, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPADZ,
0771
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0772
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0773
            5 KBEAMY, KMOVEF, KPCHAR (5), KDASHT, KMINSX, KMINSY, KMAXSX,
0774
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
0775
             DEFINE TERMINAL WINDOW IN TERMINAL COMMON AREA
      C
0776
             KMINSX=MINX
0777
             KMAXSX=MAXX
0778
             KMINSY=MINY
0779
0780
             KMAXSY=MAXY
             CALL RESCL
0781
             RETURN
0782
             END
0783
             SUBROUTINE PCLIP (X,Y)
0784
             COMMON LARY(20), TMINVX, TMINVY, TMAXVX, TMAXVY, TREALX, TREALY,
0785
            1 TIMAGX, TIMAGY, TRCOSF, TRSINF, TRSCAL, TRFACX, TRFACY, TRPAR1,
0786
            2 TRPAR2, TRPAR3, TRPAR4, TRPAR5, TRPAR6, KMOFLG(8), KPAD2,
0787
            3 KBAUDR, KGNFLG, KGRAFL, KHOMEY, KKMODE, KHORSZ, KVERSZ, KTBLSZ,
0788
            4 KSIZEF, KLMRGN, KRMRGN, KFACTR, KTERM, KLINE, KZAXIS, KBEAMX,
0789
0790
            5 KBEAMY, KMOVEF, KPCHAR(5), KDASHT, KMINSX, KMINSY, KMAXSX,
0791
            6 KMAXSY, KEYCON, KINLFT, KOTLFT, KUNIT
```

- 98 --

Vol. 52 No. 5

0792 KGNFLG#0
0793 IF(X,LT,TMINVX) GO TO 10
0794 IF(X,GT,TMAXVX) GO TO 10
0795 IF(Y,LT,TMINVY) GO TO 10
0796 IF(Y,GT,TMAXVY) GO TO 10
0797 10 KGNFLG#1
0798 20 RETURN
0799 END
0800 END5