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Investigation of Nested x? Test and AIC

in the Box-Cox Transformation Model*
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Abstract

This paper presents some of the simulation results of the nested x?
test in the simultaneous identification of the Box-Cox transformation
(BCT) model. It focus on the investigation of fitting a BCT polynomial
regression model to data generated by nonlinear model which does not
belong to the family of the BCT regression models. Three nonlinear
models are introduced for the simulation. Except for a second order
polynomial regression model, the rest two models are the exponential
regression model and the logistic regression model. The performances
of applied the nested x? test and the Akaike’s information criterion to

simultaneous identification of the BCT model are compared.

1. Introduction

In the analysis of complex economic activities with general linear regres-
sion models, it was often shown that some economic data do not fit models

with Gaussian noise. The Box-Cox transformation (BCT) model can offer
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the choice between linear and linear-in-logrithm models with Gaussian
noise [Box and Cox (1964)]. Chang (1977, 1980) gave a successful use of
the BCT in the analysis of demand for meat in the United States. He
pointed out that the linear or logarithm function is not suitable for the
analysis of demand for meat in the United States. James and David (1982)
investigated the income and food expenditure distribution by use of the
BCT. Poirier and Melino (1978) gave a discussion on the interpretation of
estimated coefficients in the BCT model. The other details of the theoreti-
cal works and applications can be mainly seen in: Poirier (1978}, Huang
and Grawe (1980), Bickel and Doksum (1981), Box and Cox (1982), Seaks
and Layson (1983), Tse (1984), Zarembka (1990) etc. But all of the ana-
lyses are within the confines of the fixed order BCT regression model. The
estimate of the BCT parameter is mainly based on the traditional maximum
likelihood (ML) method.

Yao (1992, 1994) [see also Yao and Hosoya (1994)] investigated the
simultaneous identification of the BCT regression model by the general
information criterion (GIC) and Akaike’s information criterion (AIC)
[Akaike (1973)]. The GIC discussed there is a developed result of an
asymptotic approximation of the cross-entropy risk for the purpose of
estimating the parameters of the BCT and the clan of regressions [the
original idea is given by Takeuchi (1976) and Hosoya (1983)] . The Monte
Carlo simulation showed that the estimate of the BCT parameter deter-
mined by the GIC is a little precise than that of determined by the AIC; but
it is on the contrary in identifying the order of the BCT polynomial regres-
sion model or of the BCT autoregressive model. Being a successful appli-
cation to the empirical analysis, a nonlinear model of Tokyo stock price
index was presented. Yao (1995) discussed the simultaneous identification

of the BCT model in view of the information criteria and the nested x” test



Investigation of Nested x? Test and AIC
805 in the Box-Cox Transformation Model —219—

[see Hosoya (1986)]. The emphases there are on the simultaneous estima-
tion of the BCT parameter and on the order of the regression part. The
Monte Carlo simulation results showed that the AIC and the GIC are very
similar in identification performance, the nested x* method, when used for
the point estimation, has a somewhat different feature. The latter has the
ability to control the probability of the identified orders those exceeding the
true order. The nested x?test tends to underestimate the order with com-
parably larger probability, especially in the case of the disturbance vari-
ance is large compared with the magnitude of variation of the regressor
part. But on the other hand, the AIC (and the GIC also) tends to overesti-
mate the order in general.

The investigations so far have not touched the problem of fitting the
BCT polynomial regression model to data generated by the model which
does not belong to the family of the BCT polynomial regression models. It
is clear that this is important for understanding the properties of the
information criteria methods and the nested x? method, and also very
necessary for the application of these methods to the investigation of
complex economic phenomena. Yao (1996b) gives some simulation results
about this kind of investigation in view of the information criteria methods.
The simulation results of Monte Carlo experiment showed that there is
almost no significant difference between the GIC and the AIC with the
application to the BCT model identification. It also showed that, in fitting
a BCT polynomial regression model to data set generated by logistic
regression model, the frequency distribution of the identified order depends
on the sample variance.

This paper investigates the properties of applying the nested x2 test to
fit a p-th order BCT polynomial regression model to data generated by the
three models as discussed in Yao (1996b), [see model (3-1), (3-2) and (3-3)
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below], to each of the model with three levels of disturbance term variance.
Furthermore, the critical value ¢ used in the nested x? test are chosen in
five levels from 0.10 to 0.30 by a fixed step of 0.05. For each of the cases
we studied, the Monte Carlo experiment is conducted for 5000 times replica-
tion. The simulation purpose here is to find a BCT polynomial regression
model that can best fit the data set generated by a model, even the model
itself does not belong to the family of the BCT polynomial regression
models. The usually used 0.05 critical value is not discussed in this paper
because Yao (1995) has pointed out that the comparatively small critical
value (for example ¢ < 0.05) makes the nested x? test underestimating the
true model order.

Our simulation results show that, both the nested x?test and the AIC
plays good performance in fitting the BCT polynomial regression model to
data generated by the three models which do not belong to the family of the
BCT polynomial regression models. It is reconfirmed the fact that the
nested «2 test has good ability to control the probability of the identified
orders those exceeding the true order. It also shows that the nested x? test
tends to underestimate the order especially for the case with large sample
variance. The AIC method in general tends to overestimate the true order.
In the identification of the true model order, for comparatively small
critical values, the nested x2 test is seen superior to the AIC. As for the
cases of underestimating the true order of the BCT polynomial regression
model, the properly estimated BCT parameter might make compensate for
the information loss by the underestimated order. This is true for both of
the two methods.

This paper proceeds as follows : In section 2, we first give an overview
of the BCT, then summarize the nested x%test and the AIC used in the

simultaneous identification of the BCT regression model. At the last part
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of this section, we present three nonlinear models including two models that
do not belong to the family of the BCT polynomial regression models. In
section 3 we discuss the Monte Carlo simulation of fitting a BCT
polynomial regression model to data generated by the three specified
models introduced in section 2. The simulation results are listed in tables
and are plotted in graphs for the three models, respectively. For each of
the models, we discuss three levels of the disturbance term variance and
five levels of critical value. The discussion of the simulation results is
summarized in section 4. We give the conclusions and remarks in section
5.

2. Models and Methods

2.1 The Box-Cox transformation Model
As a special power transformation, for any positive variable y, the Box

-Cox transformation (BCT) [Box-Cox (1964)] is defined as

[v*=1]A  A=0
o= | -
log v A=0,
or for the case y < Obuty > —a (a > 0),
[((y+a)—1]/2 A+0
w = (2-1)’

log (v+a) A=0,
where A is an unknown parameter called the BCT parameter. In general,
it is assumed that for each A, y¥ is a monotonous function of y over the
admissible range. Because of (2-1) is continuous at A = ( [see Yao (1994)],
so it is preferable for theoretical analysis. The following investigations are
only based on the transformation defined by (2-1). It is clear that all the
results will be hold for (2-1) if only we change y with (y+¢) in the

corresponding definitions.
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As for the BCT regression model, since both the dependent and in-
dependent variables can be transformed, the general BCT model has the
form

Yy = B4 Lo, e, + B g, (2-2)
where ¢ is random disturbance term generated by i.i.d. N(0, ¢. The
BCT regression model expressed in (2-2) can be specified and estimated.
For Ay =1, 0, and —1, y'* enters into model (2-2) linearly, as log y and
as the reciprocal of y. Thus the estimation procedure itself can choose the
transformation which best fits the data.

For different A, (; =1, 2, -, p), model (2.2) can be specified into
mainly three types of BCT regression models [see Spitzer (1982)] or six
types of BCT regression models [see Yao and Hosoya (1994), there the
model classification cover all possible main versions of the BCT regression
models]. We consider in this paper the specified model that only the
independent variable is transformed

W = fot B+ Bex®+, o, +BixPte (2-3)

We will fit this BCT polynomial regression model to the data sets generated

by models defined by (3-1) and (3-2) as well as (3-3), respectively.

2.2 The Nested x? Test for BCT Regression Model
We summarize the nested x? test [which is given by Hosoya (1986)] in this
subsection. The application to hierarchical statistical models is studied by
Hosoya (1989). It applies the generalized likelihood ratio (GLR) test of
equal marginal error rate to the model selection problems. The process of
applied this method to the identification of the BCT model can be seen in
Yao (1995).

Suppose that the parameter 8 = (6, &, -+, 6) specifying a density of
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observations, where 4, is r;-dimensional parameter vector. The hypoth-
esis H, implies that 8,4y = G+ = - = 6 = 0 (H, implies that no such
specification is imposed). For ; < j(1 < i, j < p) denote by L, the log
-likelihood ratio for testing H; against H; The test for H; in the pres-
ence of such nested alternative hypotheses would use L;, by using a test
with critical region
R ={L; < ¢;, for some j & (1+1, -, p},

where the ¢;’s are determined so that Pr{R | H;} is equal to the required
size. The P-value which corresponds to this test is evaluated as P(g*) =
Pr{Q < ¢* | H;}, where @ = min(P;|i+1 < j < p) is the P-value based
on L; and g* is the observed value of . The test for the critical region
R will here be termed a GLR test [see Hosoya (1989)]. For the case all
degrees of freedom are 1 and p < 13, the algorithm for the P-value is
available in Hosoya and Katayama (1987).

Now we consider the P-th order BCT polynomial regression model (2

-2) with the expression of density function

Foloyz, =, Yl Bo, Bry vy B, 0%, A) = (2-4)
n 7 2 n
WeXp{_%‘f Zt=1<‘yw_—BO—Ztﬂ(kage)) } tl—=I1 i

For a set of # independent observations {v;, x.}%, the simultaneous esti-
mation of the BCT parameter and the order of the regression model by the
nested x? test proceeds by the following steps:
1.Given p, we consider the family of polynomial regression models
that each of the orders is less than or equals to p. We first
calculate the #,xp matrix of the maximum log-likelihood for
given », and different fixed A, =1, 2, ---, nx. Then by the maxi-
mum log-likelihood estimation, the BCT parameter A; for j-th

order polynomial regression model can be determined. We denote
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the maximum log-likelihood by L(;, A;), j =1, 2, =, p.
2. For p=1, 2, -, p—1, we calculate the difference of the two maxi-
mum log-likelihood ratio LR(%, j) defined as follows:

LR(k, ) = 2[L(j, %) —L(k, &)], j = k+1, =, 1, (2-5)
where £ is the order of the polynomial regression model. We treat
this as the input to the subroutine program given by Hosoya and
Katayama (1987). By this way, the P-values {P.}4=} can be
obtained.

3.For the given significance level ¢, if there exists some index £ that
satisfied P, > @, we choose the first 2 to be the estimate of the
order of the polynomial regression model. Thatistosay p = k. If
P, < o forallthe £, k=1, 2, -, p—1, then wehave 5 = p. The
corresponding A5, which we want to estimate, is the estimator of the

BCT parameter that best fits the model.

2.3 The AIC for BCT Regression Model

The AIC was first introduced for the purpose of comparison and selection
among several models [Akaike (1973)]. The introduction of objective
criterion enables the objective comparison of models that are usually
selected subjectively by the analysts. The details of the AIC theory can be
seen in Sakamoto, Ishiguro, Kitagawa (1986). Yao (1994) shows the proc-
ess of using the AIC in the simultaneous identification of the BCT regres-
sion model.

Suppose i, vz, -**, y» be independent, positive random variables and
consider the p-th order BCT polynomial regression model, say model (2-3)
with an expression of probability density function (2-4) indexed by the BCT
parameter A. For a set of # independent observations {y;, x;}%i, the

simultaneous estimation of the BCT parameter and the order of the regres-
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sion model can be determined by the AIC. Because the number of free
parameters in model (2-4) for given (p, A) is (p+1), therefore the AIC for
the BCT model (2-4) is:

AIC (5, A) = C+nlog(5%(p, 0)—2A—1) 2} log(ye)+2(p+1),

(2-6)
where C = n(1+log(27)). The identification problem between the two
given probability density function f(p1, A1) and f(p,, A) is dealt by the
minimum principle of the AIC. Choose the model f(p1, A1) if

AIC (p1, &) < AIC (p, A, (2-7)
and the model f(p», A») otherwise.

2.4 Three Nonlinear Models

For the purpose of evaluating the performances of the nested x* test and
the AIC in model identification of the BCT regression model by Monte
Carlo simulation, data generation is considered by three types of nonlinear
regression models. Except for a second order polynomial regression
model, the others are the so called exponential regression model and logis-
tic regression model. The three models that will be used in the Monte

Carlo experiment are:

Model A: y = i+ bix+cux’+e, (2-8)
Model B: y = @z +bf+ e, (2-9)
Model C: y = as+1/(1+exp(—x))+ &, (2-10)

where &; (i =1, 2, 3) is random disturbance term generated by 7.i.d. N(0,
6%, a; and b; (i =1, 2, 3, j =1, 2) are constant. We call model B an
exponential regression model, and Model C a logistic regression model. It
is clear that Model B and Model C do not belong to the family of the BCT

polynomial regression models.
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3. Data Generation and Numerical Evaluation

In this section we conduct Monte Carlo experiment based on model (2-8)
and model (2-9) and also model (2-10). The purpose is to investigate the
properties of the nested x* method and the AIC method in fitting the BCT
polynomial regression model (2-3) to data generated by the above
mentioned nonlinear regression models. The numerical calculations are
conducted by the FORTRAN programs presented by Yao (1992).

In view of model (2-8), (2-9) and (2-10), let us consider the following

three specified nonlinear regression models :

YV = 5+0.8x: +064X?+ &Et1, (3_1)
Yiz = D+ 2%+ €1, (3-2)
yiz = 5+1/(1+exp(—x:))+ & (3-3)

For the sample size #, we need first to generate random data set {eu}?-1,
the value of the disturbance term e, (i =1, 2, 3) is random number and
obtained from 7.7.d. N(0, ¢8). We choose the sample size # = 100 in this
paper. The independent variable x, is defined as x: = #40(¢ =1, 2, -,
n). By this procedure, for a given data set {x.}?-1, wWe can generate data
set {vu, x:e}t, =1, 2, 3.

We fit the BCT polynomial regression model (2-3) to data generated by
the above three models, respectively. The largest order of the BCT
polynomial regression model used in the simulation is chosen to be 7.
Then, for all the estimated orders those exceeding 7 are put to be 7. For
both the nested x? method and the AIC method, the experiments are
performed for three levels of the variance of the disturbance term, ¢§ = 0.5,
1.0, 1.5. Corresponding to these selected models, the critical values used in
the nested x? test are chosen from 0.10 to 0.30 with a fixed step of 0.05.

The Monte Carlo experiments are performed for all the three models with
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5000 replications.

In the Monte Carlo simulation, for each of generated data sets and an

initial given BCT parameter A, we need to estimate the P-value (and the
AIC) for order p=1, 2, ---, 7 and the BCT parameter A; = /10—|-<ﬂi;——1
——7') AA, j=1, 2, - m, where n; is a given (odd) number and AA is a
given real value. The initial given A, and #; as well as AA should be
determined by a pre-test or based on some prior information about the BCT
parameter and the pattern of the frequency distribution. In the following
experiments, we choose A = 1.0, 7, = 17 and A1 = 0.25. In view of the
nested x? test and according to the minimum principle of the AIC, we can
simultaneously get the estimates of 5 and A for both of the two methods.
The estimator (5, A) can determine the best fitted BCT regression model
for the generated data set. We can choose an enough large #, to satisfy
any required precise of the estimated BCT parameter.
Remarks ;: For the space of this paper, in the following Tables 3.2 to 3.5,
we only listed the simulation results for #, = 15. It gives no effects on the
BCT regression model identification because the estimated frequencies are
zero at the BCT parameter of —1 or 3.

To show the simultaneous identification processes, for the space of this
paper, we only give a distribution of the estimated ML and the estimated
P-values for one experiment (in 5000 times) of fitting the BCT polynomial
regression model (2-3) to data generated by the nonlinear regression model
(3-1). Intable 3.1 the estimated minimum ML for the seven orders in levels
of the BCT parameter are marked by underline. Based on these estimated
ML, the P-value can be estimated for the corresponding order. We listed
them at the last row. For the 0.1 critical value, for example, it can be seen
that the P-value is first over 0.1 at the 2nd order and the corresponding

estimated BCT parameter is s (= 0.75). That is to say in this experiment,
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the best fitted BCT regression model to the data generated by model (3-1)
is the 2nd order BCT polynomial regression model with the estimated BCT
parameter 0.75. This experiment gives a contribution of ‘1’ to the upper
block of table 3.2 at (0.75, 2). The upper block in Table 3.2 is the results

of repeating the experiment by 5000 times.

Table 3.1 Distribution of the Estimated ML Values and
the P-values by the Nested x? Method

Order
A 1 2 3 4 5 6 7
-1.00 -26.13 -26.13 -24.78 -23.74 -22.30 -18.73  -17.08
-0.75 -20.96 -20.90 -19.62 -18.48 -17.06 -13.81 -12.47
-0.50 -16.58 -16.34 -15.17 -13.93 -12.51 -9.60 -8.54
0.25 -13.07 -12.48 -11.45 -10.11 -8.70 -6.13 -5.31
0.00 -10.47 -9.35 -8.50 -7.06 -5.65 -3.42 -2.81
0.25 -8.82 -7.00 -6.34 -4.79 -3.38 -1.47 -1.04
0.50 -8.15 -5.43 -4.97 -3.31 -1.90 -0.30 -0.01
075 847 4.68 -4.40 263  -120 011 029
1.00 -9.74 -4.74 -4.61 273 -1.28 -0.23 -0.13
1.25 -11.93 -5.61 -5.57 -3.58 <211 -1.30 -1.24
1.50 -14.99 -7.28 -7.28 -5.16 -3.67 -3.05 -3.03
175 -1884 -9.72 -9.68 -7.44 -5.91 -5.47 -5.46
2.00 -23.42 -12.91 -12.75 -10.38 -8.81 -8.50 -8.50
2.25 -28.65 -16.80 -16.45 -13.93 -12.31 <1212 -12.12
2.50 -34.46 -21.36 -20.74 -18.07 -16.39 -16.28 -16.27
2.75 -40.78 -26.54 -25.57 -2275 -21.00 -20.94  -20.94
3.00 -47.55 -32.31 -30.93 -27.94 -26.10 -26.09 -26.08
P-value 0.0162 0.1122 0.0638 0.1177 0.1538 0.5444 il

Fit BCT model (2-3) to data generated by model (3-1), o2 = 1.0.

Table 3.2 shows the distribution of the estimated frequencies in 5000
times replicated Monte Carlo experiments by the nested x? test and the
AIC. The simulation result by use of the nested x? test is only one of the
results of fitting the BCT polynomial regression model to data generated by
model (3-1) in the case of the variance of ¢Z = 1.0 and the given critical

value @ = 0.15. The estimated BCT parameter A(p) for order p(p = 1,
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2, =, 7) is the weighted mean of {/1,-}'{7_“1, namely
2o\, N, b ” _
=Y axud) (3-40)
where N(1;, p) which being listed in the main block respectively for the
nested x? method and the AIC method, is the number of the estimated

frequency at the BCT parameter A; and the order p,

N@) = )" NG, 8). (3-5)
The estimated BCT parameter 1 is the weighted mean of {/1‘,-}:":, namely
F= Y 2 AL (3-6)

where N(J;) is the number of the estimated frequency at the BCT parame-
7 na
ter &, N(A) = ) NGk, p) for j=1,2 -, m, and N = )" N(2)
The estimate of order p should be determined by
p = max N(p). (3-7)
If there exists one more estimated orders, i. e. for example max N(pr) =
max N(ps), we usually choose the larger one, § = max (p1, p2)-

The results of the simulation experiment for fitting the BCT
polynomial regression model to data generated by the exponential regres-
sion model (3-2) and the logistic regression model (3-3) in the same situation
are summarized and given in the following table 3.3 and table 3.4, respec-

tively.
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Table 3.2 The Frequencies Distribution in 5000 Times Replications
by the Nested x* Method and the AIC
Order
A; 1 2 3 4 5 6 7 | Total
Nested x° Method N(A)
-0.75 0 0 0 0 0 0 0 0
-0.50 0 0 0 0 0 0 0 0
025 2 0 0 0 0 0 0 2
0.00 10 0 0 1 0 0 1 12
025 77 16 4 1 2 1 2 103
0.50 280 165 29 13 9 8 16 520
075 332 691 67 33 36 24 25 1208
1.00 136 1237 108 63 28 40 46 1658
125 25 901 66 49 32 22 32 1127
150 2 250 33 9 11 7 9 321
175 0 31 4 5 3 1 3 47
200 0 1 1 0 0 0 0 2
225 0 0 0 0 0 0 0 0
250 0 0 0 0 0 0 0 0
275 0 0 0 0 0 0 ¢} 0
N(p) 864 3292 312 174 121 103 134 5000
/\(p) 0.6690 1.0326 1.0088 1.023 10062 09903 0.9851 0.9651
AIC NA)
075 0 0 0 0 0 0 0 0
-0.50 0 0 0 0 0 0 0 0
-0.25 1 0 0 0 0 0 0 1
0.00 6 1 0 1 0 0 1 9
0.25 41 20 7 1 2 1 2 74
0.50 145 185 49 21 16 9 19 444
0.75 152 740 125 59 50 36 33 1195
1.00 70 1183 198 118 56 63 53 1741
1.25 10 803 133 82 56 39 38 1161
1.50 1 211 43 25 14 16 15 325
1.75 0 24 6 5 6 2 4 47
2.00 0 1 2 0 0 0 0 3
225 0 0 0 0 0 0 0 0
2.50 0 0 0 0 0 0 0 0
275 0 0 0 0 0 0 0 0
N(p) 426 3168 563 312 200 166 165 5000
A(p) 0.6585 1.0100 1.0004 10313 10175 10301 0.9985 0.9809

Fit BCT model (2-3) to data generated by model (3-1), o} =10.
The nested method used critical value = 0.15.

816
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Table 3.3 The Frequencies Distribution in 5000 Times Replications
by the Nested x? Method and the AIC
Order
A; 1 2 3 4 5 6 7 Total
Nested x° Method N(A)
-0.75 2 0 0 0 0 0 0 2
-0.50 0 0 0 1 0 0 0 1
-0.25 7 2 0 0 0 1 0 10
0.00 47 12 2 0 0 0 3 64
025 132 82 16 6 5 3 1 245
0.50 225 316 33 14 17 9 22 636
0.75 226 695 61 40 28 20 27 1097
1.00 144 912 94 53 19 29 33 1284
1.25 54 741 93 31 32 24 27 1002
1.50 14 333 52 25 18 14 15 471
1.75 1 100 26 12 5 3 8 155
2.00 0 16 4 5 2 1 1 29
225 0 2 2 0 0 0 0 4
2.50 0 0 0 0 0 0 0 0
275 0 0 0 0 0 0 0 0
N(p) 852 3211 383 187 126 104 137 5000
Alp) | 0.6408 10117 1.077 10602 1.0278 1.0313 09982 0.9557
AlIC N
-0.75 0 0 0 0 0 0 0 0
-0.50 1 1 0 1 0 0 0 3
-0.25 2 2 0 0 0 2 0 6
0.00 25 14 4 0 1 0 3 47
0.25 60 90 27 10 4 5 3 199
0.50 109 315 65 24 24 15 24 576
0.75 101 708 133 56 48 27 32 1105
1.00 71 850 185 98 37 50 39 1330
125 27 673 152 73 52 34 32 1043
1.50 10 284 78 42 24 25 23 486
1.75 1 91 35 16 5 7 12 167
2.00 0 16 4 5 6 1 2 34
225 0 2 2 0 0 0 0 4
250 0 0 0 0 0 0 0 0
275 0 0 0 0 0 0 0 0
275 0 0 0 0 0 0 0 0
N(p) 407 3046 685 325 201 166 170 5000
Alp) | 06529 09924 10288 10654 1.0336 1.0407 1.0309 0.9791

Fit BCT model (2-3) to data generated by model (3-2), s =1.0.
The nested method used critical value o= 0.15.
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Table 3.4 The Frequencies Distribution in 5000 Times Replications

by the Nested x* Method and the AIC

Order
A 1 2 3 4 5 6 7 Total
Nested x* Method N(A)
-0.75 1 1 1 0 0 0 0 3
-0.50 11 1 0 0 0 0 ] 12
-0.25 33 4 2 3 1 0 2 45
0.00 117 19 5 2 3 3 4 153
0.25 248 20 10 10 3 3 9 303
0.50 503 29 21 11 16 9 13 602
075 826 56 17 15 14 13 20 961
1.00 936 62 31 26 14 22 23 1114
125 731 60 24 23 15 17 19 889
1.50 450 39 19 15 7 9 15 554
1.75 208 15 11 8 8 3 6 259
2.00 58 6 4 4 0 4 2 78
225 20 1 0 1 0 1 1 24
2.50 1 0 0 0 1 0 0 2
275 0 0 0 0 1 0 0 1
N(p) 4143 313 145 118 83 84 114 5000
A(p) | 09584 09433 09741 10169 0.9819 10387 0.9583 0.961
AlIC NA)
-0.75 1 1 1 0 0 0 0 3
-0.50 10 2 0 0 0 0 0 12
-0.25 28 6 5 3 1 2 2 47
0.00 102 18 9 4 6 5 5 149
025 209 4] 22 13 7 6 9 307
0.50 432 56 41 21 23 16 16 605
0.75 698 108 57 28 27 20 24 962
1.00 798 123 64 45 34 29 26 1119
125 624 104 51 34 18 22 20 873
150 391 70 35 15 12 15 19 557
1.75 179 32 14 12 10 5 6 258
2.00 48 10 6 7 1 5 5 82
225 16 4 0 0 1 1 1 23
2.50 1 0 0 0 1 0 0 2
275 0 0 0 0 1 0 0 1
N(p) 3537 575 305 182 142 126 133 5000
Ap) 09588 09722 09295 09835 0.9489 0.9841 09774 | 0.9603

Fit BCT model (2-3) to data generated by model (3-3), &% = 1.0
The nested method used critical value a=0.15.
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To investigate the performance of applied the nested x* test to model
identification in case of the disturbance term variance and the given critical
values changed, we summarize 45 three-dimension graphs in nine figures
from figure 3.1.1 to figure 3.3.3. They are the simulation results of fitting
the BCT polynomial regression model (2-3) to the data sets generated by the
three nonlinear models mentioned above. Figure 3.1.1. to figure 3.1.3 show
the results of fitting the BCT polynomial regression model (2-3) to the data
sets generated by model (3-1) in three levels of the disturbance term
variance of ¢¢ = 0.5, 1.0, 1.5, respectively. In each of the figures, we give
five plots corresponding to the critical values o from 0.10 to 0.30 with a
fixed step of 0.05. Each of the bar graphs is based on the distribution of the
estimated frequency N(A;, p) in 5000 times replicated Monte Carlo experi-
ments. Table 3.2 is concentrated into one of the plot in figure 3.1.2 for «
= 0.15. All of the simulations for data sets generated by the exponential
regression model (3-2) are conducted by the same way, the results are
plotted in figures 3.2.1, 3.2.2, 3.2.3 for three levels of variance and five
levels of critical values, respectively. The same Monte Carlo experiment
results for fitting the data generated by the logistic regression model (3-3)
are plotted in figure 3.3.1 and figure 3.3.2 as well as figure 3.3.3. In each of
the figures, the simulation result by the AIC method is also listed there for
the model and the disturbance term variance indicated. Then the differ-
ence of the performances between the nested x? test and the AIC can be
observed visually. A number of properties of the Monte Carlo simulations
can be obtained by a detailed observation of those graphs. This will be
discussed in the next section in detail.

For the further investigation of the nested x* method, we then summa-
rize the distribution of the estimated frequencies and the BCT parameter in

5000 times replicated Monte Carlo experiments for nonlinear model (3-1) in
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the three cases of the variance of ¢ = 0.5, 1.0, 1.5, with five levels of
critical values ¢ = 0.10, 0.15, 0.20, 0.25, 0.30. The results are listed in
table 3.5 respectively for the two methods. As for table 3.5, the upper
block shows the frequency distribution of the estimated N(p) [see (3-5)] in
percentage form for different order » (p =1, 2, ---, 7). The simulation
results in view of the AIC are listed at the last three lines. The last column
that just on the right of this block lists the estimated percentage values of
those exceeding the true order. We denote it as d(a, 0% and in the
tables as d %. As the true model is the 2nd order BCT regression model
(3-1), (0.1, 0.5) = 12.08 is the sum of the percentage from the 3rd order to
the 7th order. The lower block shows the estimated BCT parameters A(p)
(p=1,2, -, 7) [see (3-4)] for models distinguished by three levels of
variance and five critical values used in the nested x* test. The last three
lines are the simulation results estimated by the AIC method. The last
column just on the right of this block lists the estimated BCT parameters
A which is defined by (3-6).

The distribution of the estimated order and the BCT parameters for
fitting model (2-3) to data generated by exponential regression model (3-2)
are listed in table 3.6. The same Monte Carlo simulation results for logistic
regression model (3-3) are summarized in table 3.7. The 4% in these two
tables shows the percentage of the estimated frequencies those exceeding

the estimated order which is determined by (3-7).
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Table 3.5 Distribution of the Estimated Order and
the BCT Paramater for Data Generated by Model (3-1)

Order ad%
a o 1 2 3 4 5 6 71 k2
Nested x* Method

010 05 756 8036 4.72 240 162 1.44 1.90 | 12.08
10| 2298 6522 4.56 238 158 1.42 1.86 | 11.80

15| 3526 53.34 426 228 156 1.42 1.88 | 11.40

015 0.5 490 7782 6.52 348 242 212 274 | 1728
10| 1728 6584 6.24 348 242 2.06 268 | 1688

15! 2786 5580 592 344 226 2.00 272 | 1634

020 05 354 73.82 8.18 408 326 3.02 410 | 22.64
10| 1352  64.20 8.02 400 328 2.96 4.02 | 22.28

15| 2300 5526 7.78 38 318 2.90 4.02 | 21.74

025 0.5 274 6876 9.28 556 392 4.08 566 | 28.50
10| 1074 6166 8.96 538 376 4.04 546 | 2760

15] 1946 53.96 8.58 506 374 3.86 534 | 26.58

030 05 204 6470 1018 638  4.56 4.84 7.30 | 33.26
10 850 5898  10.00 622 442 470 718 | 32.52

15| 1584 5274 9.46 596  4.28 4.58 7.14 | 31.42

AIC

0.5 1.84 6928  11.68 634 408 3.42 336 | 2888

1.0 852 6336 1126 624 400 332 3.30 | 28.12

15{ 1582 5740 1052 588  3.90 3.24 324 | 26.78

Nested x> Method A

010 05| 0411 1023 0995 1021 0963 0993 1016 | 0.974
10| 0672 1042 0991 1011 0975 1014 1005 | 0952

15] 0767 1048 0994 1024 0962 1004 0995 | 0943

015 05| 0403 1014 1018 1030 1015 1000 1006 | 0.984
10| 0669 1033 1009 1023 1006 099 0985 | 0.965

150 0770 1.037 0998 1026 0998 0990 0982 | 0956

020 05| 0400 1007 1010 1038 1032 1007 1013 | 0.988
10! 0666 1.024 099 1035 1023 1020 0998 [ 0973

151 0772 1027 099 1039 1006 1002 0991 | 0.963

025 05| 0394 1003 1009 1039 1017 1017 1006 | 0.990
10| 0664 1015 099 1042 1015 1019 1014 | 0977

15| 0767 1022 0983 1041 099 1019 1009 | 0.968

030 05| 0392 1000 1012 1021 1011 1013 1013 | 0992
10! 0659 101t 0999 1023 1015 1017 1001 | 0.980

151 0766 1016 099 1020 0994 1014 1002 | 0973

AIC

05| 0400 1.000 1003 1030 1017 1023 1009 | 0993

10| 0659 1010 1000 1031 1018 1030 0999 | 0981

151 0768 1016 0989 1037 1001 1014 0994 | 0974

Replicated Monte Carlo Experiments by 5,000 Times.
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Table 3.6 Distribution of the Estimated Order and
the BCT Paramater for Data Generated by Model (3-2)
Order d%
a o 1 2 3 4 5 6 7| k2
Nested x° Method
010 05 6.28 78.26 7.76 2.70 162 1.56 1.82 | 1546
1.0 23.42 63.24 6.08 2.30 156 1.52 1.88 | 1334
1.5 36.40 51.30 522 226 1.46 1.44 192 | 12.30
015 05 4.00 74.40 9.72 4.18 2.60 2.16 294 |1 21.60
1.0 17.04 64.22 7.66 374 252 2.08 274 | 18.74
15 28.90 53.84 6.84 352 2.36 1.94 260 | 17.26
020 0S5 2.76 70.08 11.28 492 3.46 3.04 446 | 27.16
10 13.04 62.46 9.38 4.80 3.26 2.90 416 | 24.50
15 24.06 5322 8.04 4.46 3.24 2.88 410 | 22.72
025 05 198 65.24 13.36 5.86 4.04 3.78 574 | 32.78
1.0 10.58 59.88 10.76 5.58 3.88 382 550 | 29.54
1.5 20.06 5216 9.56 5.38 3.84 3.80 520 | 27.78
030 05 1.50 59.82 14.78 6.88 4.50 4.88 7.64 | 38.68
1.0 8.46 56.48 12.32 6.42 4.40 4.60 7.32 | 35.06
15 16.62 50.62 10.92 6.08 4.28 4.40 7.08 | 32.76
AlC
0.5 124 59.38 16.24 7.64 5.06 4.82 5.62 | 39.38
1.0 726 57.06 13.92 7.14 4.68 4.68 526 | 35.68
15 14.76 51.36 12.76 6.80 4.62 4.46 524 | 33.88
Nested x° Method A
010 0.5 0.312 0974 1.160 1.135 1.006 1.010 1.047 | 0.954
1.0 0.651 1021 1.083 1.109 0.987 1.020 1.021 | 0.940
1.5 0.779 1.026 1.050 1.095 1.007 1.021 1.016 | 0.938
015 05 0.314 0.965 1.131 1.078 1.081 1.056 1.026 { 0.967
1.0 0.641 1.012 1.077 1.060 1.028 1031 0.998 | 0.956
15 0.771 1.022 1.039 1.047 1015 1.031 1.010 | 0.951
020 05 0.288 0.960 1.102 1.089 1.085 1.038 1.046 | 0.975
1.0 0.641 0.999 1.065 1.079 1.045 1.028 1.043 | 0.967
1.5 0.767 1015 1.029 1.061 1.026 1.009 1.044 | 0.960
025 05 0.268 0.959 1.066 1.090 1.068 1.078 1.051 | 0.981
1.0 0.642 0994 1.045 1.069 1.040 1.060 1.035 { 0.973
15 0.769 1006 1.025 1.067 1.017 1.041 1.034 | 0.967
030 05 0.293 0.956 1.072 1.068 1.050 1.036 1.041 | 0.986
1.0 0.644 0.993 1.030 1.053 1035 1.037 1029 | 0.979
1.5 0.773 1.002 1.014 1.049 1.025 1.023 1.025 | 0971
AIC
0.5 0.274 0.959 1.065 1.073 1.078 1.048 1.035 | 0.984
1.0] 0653 0992 1.029 1.065 1034 1.041 1.031 | 0.979
1.5 0.769 1.002 1.023 1.066 1.023 1.029 1.025 | 0.972

Replicated Monte Carlo Experiments by 5,000 Times.
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Table 3.7 Distribution of the Estimated Order and
the BCT Paramater for Data Generated by Model (3-3)
Order d%
a o 1 2 3 4 5 6 71 k1
Nested x° Method
010 0.5 87.94 4.86 1.94 1.54 1.00 116 156 | 12.06
1.0 88.36 4.50 1.96 154 0.96 116 1.52 | 11.64
15 88.46 4.44 1.98 1.50 0.94 1.12 156 | 11.54
0.15 05 82.48 6.66 2.90 248 1.58 1.66 224 1 17.52
1.0 82.86 6.26 2.90 236 1.66 1.68 228 | 17.14
1.5 82.88 6.20 2.96 228 1.64 1.76 228 | 17.12
020 05 77.10 812 4.06 262 2.42 2.30 338 | 22.90
1.0 77.52 7.72 4.10 2.62 2.36 232 336 | 22.48
1.5 77.66 7.58 4.06 2.62 2.38 232 338 | 2234
025 0.5 72.04 9.06 4.94 3.46 3.02 292 4.56 | 27.96
1.0 72.40 8.76 4.88 3.46 3.04 298 448 | 27.60
15 72.48 8.60 4.76 356 3.06 3.00 4.54 | 27.52
030 0.5 66.94 10.18 5.82 4.14 3.44 3.62 5.86 | 33.06
1.0 67.34 9.70 582 4.06 3.52 3.70 5.86 | 32.66
15 67.46 9.54 5.74 412 3.58 3.70 586 | 32.54
AIC
0.5 69.92 12.22 6.22 3.62 2.78 258 2.66 | 30.08
1.0 70.74 11.50 6.10 3.64 2.84 252 2,66 | 2926
15 70.68 11.56 6.08 3.68 2.86 252 262 | 2932
Nested x* Method A
010 05 0.955 0977 1.034 1.104 0910 1.047 1.010 | 0.961
1.0| 0955 0983 1.015 1.046  0.943 1.056 1020 | 0961
1.5 0.958 0988 0.995 1.030 0931 1.040 1.016 | 0963
015 05 0.959 0937 0.990 1.061 0930 1.051 0.958 | 0.962
1.0 0958 0943 0.974 1.017 0982 1.039 0.958 | 0.961
15 0961 0943 0.980 1.000 0979 1.026 0.963 | 0.963
020 0S5 0960 0950 0.953 0998 0942 0.967 0.988 | 0.961
1.0} 0959 0964 0916 1013 0960 0.974 0.993 | 0.961
15 0.962 0962 0.932 1000 0943 0.963 0991 | 0.962
025 05 0956 0975 0.929 1.006 0916 0.964 1.007 | 0.960
10 0.959 0968 0.932 0.984 0942 0.966 0.992 | 0.960
15 0.961 0.962 0.956 0979 0933 0.958 0.990 | 0.962
030 0S5 0957 0972 0.936 1.004 0935 0.956 0.969 | 0.959
1.0 0958 0976 0.947 0991 0947 0.955 0.968 | 0.960
1.5 0959 0972 0.957 0992 0950 0.945 0.968 | 0.961
AIC
0.5 0961 = 0964 0.931 0.996 0923 0.973 0.993 | 0.961
10{ 0959 0972 0.930 0.984 0949 0.984 0.977 | 0.960
1.5 0.961 0971 0.942 0.974 0.948 0.980 0.975 | 0.962

Replicated Monte Carlo Experiments by 5,000 Times.
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4. Discussion

The simulation results of fitting the BCT model (2-3) to data generated by
the 2nd order polynomial regression model (3-1) for the case of o§ = 1.0 are
listed in table 3.2. The critical value @ = 0.15 is used in the nested x test.
The distributions of the estimated frequencies in 5000 times experiments by
the nested x? method and the AIC method are listed in two blocks, respec-
tively. It shows that both of the two methods have good performance of
fitting the BCT polynomial regression model to the data generated by
polynomial regression model. In the 5000 times replicated experiments by
the nested 2 test, there are 1237 times that just fitting the true model (3-1),
and there appears 1183 times by the AIC method. As far as the identifica-
tion of the true 2nd order model, it shows 3292 times in 5000 replicated
experiments by the nested x? method and 3168 times in 5000 replicated
experiments by the AIC method. Each of the above four frequencies takes
the maximum in the case it is discussed. The frequencies of fitting the true
model or identifying the true model order by the nested x? test are larger
than that of by the AIC. In view of the nested x* test, the percentage of
the overestimated frequency those exceeding the true model order is 16.83%
(approximately equals to the critical value @ = 0.15). But the percentage
of the overestimated frequency by the AIC is 28.12%, which is significantly
higher than that of determined by the nested «x2 test. Asfor the estimation
of the BCT parameter, the AIC seems better than the nested x? test but the
difference is not too large. In view of the AIC method, the estimate of the
BCT parameter is 1.01, this is the weighted mean determined by the fre-
quencies against the identified true model order 2, N(4;,, 2). It is better
than that of determined by the nested x? method, which is 1.03. If we
choose the BCT parameter by the weighted mean determined by N(4)), it
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shows the result of 0.98 by the AIC method, and 0.97 by the nested x*
method. In the whole, for comparatively small critical values (a < 0.25),
the nested x? method is superior to the AIC method in the identification of
the true model order, but it is the reverse in the estimate of the BCT
parameter. This conclusion is coincidence with the result obtained by Yao
(1995).

Table 3.3 shows the simulation result of fitting the BCT model (2-3) to
data generated by the exponential regression model (3-2) for the case of
o2 = 1.0 and the critical value ¢ = 0.15 is also used in the nested x” test.
An observation of the two blocks tells us that the performances of the two
methods in model identification are very similar to the case where fitting
the data generated by model (3-1) as discussed above. The nested x? test
suggests us to choose the 2nd order BCT polynomial regression model with
the BCT parameter 1.01 to fit model (3-2). The AIC suggests us to choose
the 2nd order BCT polynomial regression model with the BCT parameter 0.
99 to fit the same model. Table 3.4 shows the distributions of the estimated
frequencies by the nested x? test and the AIC, for fitting the BCT model (2
-3) to data generated by the specified logistic regression model (3-3). For
the case of variance of the disturbance term ¢8 = 1.0, both the two methods
suggest us to use the order 1 BCT polynomial regression model with the
BCT parameter 0.96 to fit the data set generated by model (3-3). In view
of the nested x? method, the estimated frequency 4143 suggests us to
choose order 1 BCT model. This estimated frequency is highly larger than
that of estimated by the AIC method (3537). In this meaning we can say the
power of the nested x? test is higher than that of the AIC in this case.

The plots in figure 3.1.1, for five levels of critical « respectively, give
details of the estimated frequencies in fitting the BCT polynomial regres-

sion model (2-3) to data generated by nonlinear model (3-1) with disturbance
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term variance of ¢¢ = (0.5. The last graph is the result given by the AIC
method. The simulation performances for different critical values can be
observed by the peak of the column and the symmetry against the BCT
parameter A{(i= —1, 0, --, 3). In the identification of the BCT regres-
sion model order in view of the nested x? test, it is most powerful when
choosing the lower critical value 0.10. The power will be degenerate as the
critical value increased. The symmetry of the frequency distribution
against the BCT parameter tells us that the high level of critical value gives
good estimate of the BCT parameter. The performance of the AIC method
is almost the same as the nested x? method when choosing critical value
0.25. Figure 3.1.2 and figure 3.1.3 give the results for the cases the distur-
bance term variance of ¢¢ = 1.0, 1.5, respectively. The performances of
the two methods in the identification of the BCT model can be compared by
the plots with the same critical value in the three figures. An observation
of these figures shows that both of the two methods tends to underestimate
the order of the BCT regression model as the disturbance term variance
increased. The nested x? test is more sensitive to the changes of the
variance.

The plots in figure 3.2.1, for five levels of critical @ respectively, give
the details of the estimated frequencies in fitting the BCT polynomial
regression model to data generated by exponential model (3-2). It is the
case of the disturbance term variance of ¢¢ = (.5. Figure 3.2.2 and figure
3.2.3 give the same simulation results for the case the disturbance term
variance of ¢ = 1.0, 1.5, respectively. The properties are very similar to
the above discussions on figure 3.1.1 to figure 3.1.3. For both of the data
sets generated by nonlinear model (3-1) and exponential model (3-2), in the
case of the disturbance term variance is large, for example ¢Z = 1.5, the

performance of the AIC in the estimate of the true order seems better than
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that of the nested x? test. This can observed by figure 3.1.3 and figure 3.
2.3, as the peak of the column at the 2nd order with BCT parameter A =1
determined by the AIC is higher than that of determined by the nested x®
test for all the given different given critical values.

The plots in figure 3.3.1, for five levels of critical value @ respectively,
give the details of the estimated frequencies in fitting the BCT polynomial
regression model (2-3) to data generated by the logistic model (3-3) for the
case of the disturbance term variance of ¢§ = 0.5. The simulation result in
view of the AIC is listed at the last of this figure. Figure 3.3.2 and figure
3.3.3 give the simulation results for the case of the disturbance term
variance of o2 = 1.0, 1.5, respectively. The observation of the three fig-
ures show that there is almost no difference between the two methods in
estimate of the BCT parameter. All the cases suggest choosing the Ist
order BCT polynomial regression model to fit the logistic model (3-3). The
power of estimating the simulation model order by the nested x* test with
lower critical values is higher than that of the AIC. The performance of
the AIC method is almost the same as the nested x* method with critical
value of @ = 0.25 for all the three cases of model (3-3) specified by ¢¢ =
0.5, 1.0, 1.5.

The upper block in table 3.5 shows that the nested x” test can give a
good identification of the true 2nd order in fitting the data generated by
model (3-1). The changes of the disturbance term variance only give
effects on the distribution of the estimated frequencies that the identified
order less than the true order. The larger the disturbance term variance is,
the smaller the estimated percentage at the true order is. It is the reverse
for the percentage of the underestimated order. Furthermore, the percent-
age of the estimated orders those exceeding the true order is almost fixed

no matter how the disturbance term variance moved. From table 3.5 we
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can see that as the critical value ¢ increases, the estimated frequency of
the identified order less than the true order decreases, the frequency of the
identified order exceeding the true order increases. From this table we can
also see that the percentage of the frequencies exceeding the true order
increases with the significance level increases. The value of d(a, ¢°) is
very near to the given critical value ¢. This result is just in accordance
with what the P-value implies. The AIC method tends to overestimate
the model order. By choosing the critical value, the nested x® test holds
the good property of controlling the levels of overestimate the model order.
We can also see that for comparatively small critical value (for example, «
< (.2), the nested x? test is better than the AIC in identifying the order of
the BCT polynomial regression model. The above result is coincidence
with the conclusion that we have got in the earlier investigations [see Yao
(19965)]. The estimated results of the BCT parameter listed in the lower
block show that except for the case of order 1, the estimated A, for order
p (p=2, -, 7) and A, which being estimated by the total 5000 times
experiments, are very near to 1. The disturbance term variance has not
significant effects on the estimate of the BCT parameter. There is no
significant difference between the nested x? method and the AIC method.

As for the case of underestimating the true order of the BCT model,
the estimated BCT parameter seems to make good compensate for the
information loss by the lower estimated order. The virtues of simultane-
ous identification of the BCT regression model by the use of the nested x*
test or the AIC can be seen here. In case of underestimate the true order,
the estimate of the BCT parameter is very sensitive to the disturbance term
variance. This conclusion is true for both the nested x? method and the
AIC method.

Table 3.6 show the estimates of the BCT parameter in fitting BCT
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regression model (2-3) to data generated by the exponential regression
model (3-2). The pattern of the percentage distribution of the estimated
order and the BCT parameter are very similar to the results showed by
table 3.5. The simulation result suggest us to use the 2nd order BCT
polynomial regression model with the BCT parameter A= 098 to fit
model (3-2). The estimated BCT parameters we get here for the three
levels of the variance are in the interval of (0.96, 1.0). Furthermore, it can
be seen that for each of the given critical value @, for all the three levels of
the disturbance term variance especially for the lower variance, the esti-
mate of d(a, ¢?) is much higher than @. It seems, to some extent, in
conflict with the property of the nested x? test. It may be explained by the
fact that the divergence between the BCT polynomial regression model and
the exponential regression model is too large. The properly explanation
need a further investigation and we left it as an open question. Table 3.7
lists the experiment results in fitting the BCT polynomial regression model
(2-3) to data generated by the logistic regression model (3-3). In view of
the distribution of the estimated order in 5000 replication experiments for
three levels of the variance, we can see that the best fitted model is the 1st
order BCT polynomial regression model. The variance of the disturbance
term almost has no effect on the estimate of the BCT parameter. Both of

the two methods suggest to choose the BCT parameter A= 0.96.

5. Conclusions and Remarks

To investigate the basic characteristics of the nested x* test and the AIC in
the application of fitting the BCT polynomial regression model to data
generated by nonlinear models, which do not belong to the family of the

BCT polynomial regression models, we conduct 5000 replicated simulation
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experiments for three nonlinear models, a 2nd order polynomial regression
model and an exponential regression model as well as a logistic regression
model, respectively. For each of the models, we discuss three levels of the
variance of disturbance term, and also five levels of the critical values used
in the nested x? test. The simulation results capture quite well character-
istics of the nested x? test and the AIC.

In fitting the BCT polynomial regression model (2-3) to data generated
by models that do not belong to the family of the BCT polynomial regres-
sion models, simulation results show that both of the two methods play
good performances in model identification. The nested x? test has the
ability to control the probability of the identified orders those exceeding the
true order, but it tends to underestimate the true order, especially for the
case with a large variance of disturbance term. To avoid overestimating
the order of the BCT regression model, we suggest to choose comparatively
small critical value, or to choose larger critical value on the reverse. The
AIC method in general tends to overestimate the true order of the model.
As for the case of underestimating the true order of the BCT regression
model, the properly estimated BCT parameter seems to make compensate
for the information loss by the underestimated lower order. This is true
for both of the two methods. For comparatively small critical values, the
nested x? test plays good performance than the AIC in the estimation of the
true model order. Furthermore, simulation results show that both of the
two methods suggest using the 2nd order BCT polynomial regression model
with the BCT parameter 4, =~ 0.98 to fit the exponential regression model
(3-2), and using the 1st order BCT polynomial regression model with the
BCT parameter A4 = 0.96 to fit the logistic regression model (3-3).

In the cases of fitting data set generated by exponential regression

model, it is seen that for all the given critical value ¢ and for the three
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levels of the variance of disturbance term, especially for the case with
lower variance, the percentage of the estimated frequencies those exceed-
ing the true order is much higher than 100 ¢. This result seems in conflict
with the property of the nested x? test. We will left it as an open question.
The conclusions reached in this paper should be tempered for the stochastic
specifications which have been made and the general nature of Monte Carlo
experimentation. The robustness of our conclusions, seems difficult to
prove but very impor'tant,v should also be discussed.

It is so regret to say that, for some constraints on the computation, in
this paper the concrete simulation models are not presented. The discus-
sion based on the concrete simulation models may give good contributions
to the comparison of the nested x? test and the AIC. Also the mixed
method based on the nested x? test and the AIC [see Yao (1995)] may play
an important role in the model identification. Our forthcoming paper will

discuss these issues.
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Figure 3.1.1 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model (3-1)

in 5000 Times Replicated Experiments
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Figure 3.1.2 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model (3-1)

in 5000 Times Replicated Experiments
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Figure 3.1.3 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model (3-1)

in 5000 Times Replicated Experiments
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Figure 3.2.1 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model (3-2)

in 5000 Times Replicated Experiments
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Figure 3.2.2 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model (3-2)

in 5000 Times Replicated Experiments
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Figure 3.2.3 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model (3-2)
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Figure 3.3.1 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model (3-3)
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Figure 3.3.2 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model (3-3)

in 5000 Times Replicated Experiments
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Figure 3.3.3 Distribution of the Estimated Frequencies
for Fitting Model (2-3) to Data Generated by Model 3-3)

in 5000 Times Replicated Experiments

a=015

a=0.25

AIC

a=0.10

a=020

=0.30

[ed




Investigation of Nested x? Test and AIC
841 in the Box-Cox Transformation Model —256—

References

Akaike, H., (1973). “Information theory and an extension of the maximum likelihood
principle”, 2nd International Symposium on Information Theory, Eds. B. P. Petrov
and F. Csaki, 267-281, Budapest : Akademia Kiado.

Bickel, P.] and Doksum, K. A, (1981), “An analysis of transformations revisited”,
Journal of the American Statistical Association, Vol 76, 296-311.

Box, G.E. P, and Cox, D. R, (1964). “An analysis of transformations”, Journal of the
Royal Statistical Society B26, 211-43.

—(1982). “An analysis of transformations revisited, rebutted”, Journal of the Amer-
ican Statistical Association, Vol. 77, 209-10.

Chang, H.S, (1977). “Functional forms and the demand for meat in the United States”,
The Review of the Economics and Statistics Vol 59, 355-9.

Chang, H. S, (1980). “Functional forms and the demand for meat in the United States:
A Reply”, The Review of the Economics and Statistics Vol. 62, 148-50.

Hosoya, Y., (1983), “Some results related to model selection based on estimated risk”,
Discussion Paper No. 44, Faculty of Economics, Tohoku University.

——(1984). “Information criteria and tests for time-series models”, Time Series Analy-
sis + Theory and Practice 5, 39-50, Ed. Anderson O. D., Elsevier Science Publishers,
Amsterdam.

—(1986). “A simultaneous test in the presence of nested alternative hypotheses”,
Journal of Applied Probability, 23A, 187-200.

—(1989). “Hierarchical statistical models and generalized likelihood ratio test”,
Journal of Royal Statistical Society, B. 51, 435-47.

Hosoya, Y.and Katayama, S.(1987). “A p-value algorithm for a nested x? test”,
Annual Report of the Economic Society, Tohoku University, Vol. 49, No.1, 83-90.

Huang, G.J. and Grawe, O.R,, (1980). “Functional forms and the demand for meat in
the United States: A Comment”, The Review of the Ecomomics and Statistics Vol.
62, 144-6.

James, B.R.and Davied, S. M, (1982). “Analysis of income and food expenditure
distributions: A Flexible Approach”, The Review of the Ecomomics and Statistics
Vol. 64, 104-9.

Poirier, D. J.,, (1978). “The use of the Box-Cox transformation in limited dependent
variable models”, Journal of the American Statistical Association, Vol. 73, 284-7
Poirier, D. J. and Melino, A, (1978). “A note on the interpretation of regression coeffi-

cients within a calss of truncated distributions”, Econometrica 46, 1207-9.



—256— Kagawa University Economic Review 842

Sakamoto, Y. and Isiguro, M and Kitagawa, G., (1986). Akaike information critevion
statistics, D. Reidel Publishing Company, Tokyo.

Seaks, T.G.and Layson, S. K., (1983). “Box-Cox estimation with standard
econometric problems”, The Review of the Economics and Statistics Vol. 65, 1604

Spitzer, J.J., (1982). “A fast and efficient algorithm for the estimation of parameters in
models with the Box~Cox transformation”, Journal of the Awmerican Statistical
Association, Vol. 77, 760-6.

Takeuchi, K, (1976), “The distribution of information statistic and the criterion of
fitness of model”, Suri Kagaku, (in Japanese), Vol. 153, 12-18

Tse, Y. K, (1984). “Testing for linear and log-linear regressions with heteroscedas-
ticity”, Economics Letters Vol. 16, 63-9.

Yao, F, (1992). “Analysis of the Box-Cox transformation with general information
criterion and Akaike information criterion”, Master Degree Thesis, Graduate School
of Economics, Tohoku University.

—(1994). “Analysis of the Box-Cox transformation with general information crite-
rion and Akaike information criterion”, Annual Report of the Economic Society,
Tohoku University Vol. 56, No. 1, 123-39.

——(1995). “Information criteria and the nested x* method for the Box-Cox data
transformation”, Annual Report of the Ecomomic Society, Tohoku University Vol
57, No. 2, 85-99.

——(1996a). “Econometric analysis of nonlinear and nonstationary relationships: Infer-
ence and Computational Methods”, Working Paper No. 17, the Institute of Eco-
nomic Research, Kagawa University, April 1996.

——(1996b). “Investigation of information criteria in the Box-Cox transformation
model”, Kagawa University Economic Review Vol.69, No, 2-3, 267-95.

Yao, F.and Hosoya, Y.(1994). “Statistical model identification in the Box-Cox data
transformation”, Discussion Paper No. 109, Faculty of Economics, Tohoku Univer-
sity.

Zarembka, P.(1990). “Transformation of variables in econometrics”, Econometrics,
261-64, Eds. Eatwell, J., Milgate, M., Newman, P., the Macmillan Press Ltd.





