x

学位論文

Immunohistochemically Detected Expression of ATRX, TSC2, and PTEN Predicts Clinical Outcomes in Patients With Grade 1 and 2 Pancreatic Neuroendocrine Tumors

香川大学大学院医学系研究科

機能構築医学 専攻

臟器制御·移植学 部門

上村 淳

This article is distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).

"This is the Accepted Version of the following article: Immunohistochemically Detected Expression of ATRX, TSC2, and PTEN Predicts Clinical Outcomes in Patients With Grade 1 and 2 Pancreatic Neuroendocrine Tumors; Annals of surgery; Volume Publish Ahead of Print (Octover 9, 2019) doi: 10.1097/SLA.00000000003624, which has been published in final form at https://doi.org/10.1097/SLA.000000000003624 . "

1 ORIGINAL ARTICLE

$\mathbf{2}$ Immunohistochemically Detected Expression of ATRX, TSC2, and PTEN Predicts 3 **Clinical Outcomes in Patients with Grade 1 and 2 Pancreatic Neuroendocrine** Tumors 4 Jun Uemura, MD¹; Keiichi Okano, MD, PhD, FACS¹; Minoru Oshima, MD, PhD¹; $\mathbf{5}$ Hironobu Suto, MD¹; Yasuhisa Ando, MD¹; Kensuke Kumamoto, MD, PhD¹; Kyuichi 6 Kadota, MD, PhD²; Shuji Ichihara, MD, PhD³; Yasutaka Kokudo, MD, PhD⁴; Takashi 78 Maeba, MD, PhD⁵; Yoshihide Nanno, MD, PhD⁶, Hirochika Toyama, MD, PhD⁶; Yasutsugu Takada, MD, PhD⁷; Mitsuo Shimada, MD, PhD, FACS⁸; Kazuhiro Hanazaki, 9 MD, PhD⁹; Tsutomu Masaki, MD, PhD¹⁰; Yasuyuki Suzuki, MD, PhD¹ 10 11 Departments of ¹Gastroenterological Surgery and ²Pathology, Faculty of Medicine, 12Kagawa University, Kagawa, Japan 13³Department of Gastroenterological Surgery, Kagawa Prefectural Central 14Hospital, Kagawa, Japan. 15⁴Department of Surgery, Kagawa Rosai Hospital, Kagawa, Japan. ⁵Department of Surgery, Japan Community Health Care 16

1	Organization Ritsurin Hospital, Kagawa, Japan.
2	⁶ Division of Hepato-biliary-pancreatic Surgery, Department of Surgery, Kobe
3	University Graduate School of Medicine, Kobe, Japan
4	⁷ Department of Hepato-Biliary-Pancreatic and Brest Surgery, Ehime University
5	Graduate School of Medicine, Ehime, Japan
6	⁸ Department of Digestive and Transplant Surgery, Tokushima University, Tokushima,
7	Japan
8	⁹ Department of First Surgery, Kochi University School of Medicine, Kochi, Japan
9	¹⁰ Departments of Gastroenterology and Neurology, Faculty of Medicine, Kagawa
10	University, Kagawa, Japan
11	Address Correspondence to: Keiichi Okano, MD, PhD, FACS
12	Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University
13	1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
14	E-mail: <u>kokano@med.kagawa-u.ac.jp</u> Fax: +81 (87) 891-2439 Tel: +81 (87) 891-2438
15	Financial Support: Supported by a Grant-in-Aid for Scientific Research (25462115)
16	from the Ministry of Education, Science and Culture of Japan.

1	The authors have no financial conflicts of interest related to this work.
2	Running title: ATRX, TSC2 and PTEN in clinical outcome for PNETs
3	Category: Original article
4	Manuscript length: abstract, 261 words; main text, 2715 words; 3 tables; 4 figures; 1
5	supplementary table; 2 supplementary figures
6	Key words: Pancreatic Neuroendocrine Tumors, ATRX, TSC2, PTEN, G1, G2
7	

1 ABSTRACT

2	Objective: The goal of this retrospective study was to clarify the clinical implications
3	of immunohistochemically detected protein expression for genes that are frequently
4	mutated in pancreatic neuroendocrine tumors (PNETs).
5	Background: The clinical management of PNETs is hindered by their heterogenous
6	biological behavior. Whole-exome sequencing recently showed that five genes
7	(DAXX/ATRX, MEN1, TSC2, and PTEN) are frequently mutated in PNETs. However, the
8	clinical implications of the associated alterations in protein expression remain unclear.
9	Methods: We collected Grade 1 and 2 (World Health Organization 2017 Classification)
10	primary PNETs samples from 100 patients who underwent surgical resection. ATRX,
11	DAXX, MEN1, TSC2, and PTEN expression were determined immunohistochemically
12	to clarify their relationships with prognosis and clinicopathological findings.
13	Results: Kaplan-Meier analysis indicated that loss of TSC2 (n=58) or PTEN (n=37) was
14	associated with significantly shorter overall survival, and that loss of TSC2 or ATRX
15	(n=41) was associated with significantly shorter recurrence-free survival. Additionally,
16	loss of ATRX or TSC2 was significantly associated with nodal metastasis. In a

1	multivariate analysis, combined loss of TSC2 and ATRX (n=31) was an independent
2	prognostic factor for shorter recurrence-free survival (hazard ratio 10.1, 95% confidence
3	interval 2.1-66.9, p=0.003) in G2 PNETs.
4	Conclusions: Loss of ATRX, TSC2, and PTEN expression might be useful as a method
5	of clarifying the behavior and clinical outcomes of Grade 1 and 2 PNETs in routine
6	clinical practice. Combined loss of TSC2 and ATRX had an especially strong,
7	independent association with shorter recurrence-free survival in patients with G2 PNETs.
8	Loss of pairs in ATRX, TSC2, or PTEN would be useful for selecting the candidate for
9	postoperative adjuvant therapy.

1 INTRODUCTION

2	Pancreatic neuroendocrine tumors (PNETs) are uncommon tumors that account for 1-2%
3	of all pancreatic neoplasms ^{1, 2} . The main, well-known prognostic factor for PNETs is
4	World Health Organization (WHO) histological grade, which classifies PNETs as G1, G2,
5	G3, or neuroendocrine carcinoma (PNEC) based on mitotic counts and Ki-67 labeling
6	indices ³ . PNEC is an extremely rare tumor that is associated with an exceptionally poor
7	prognosis ⁴⁻⁶ . On the other hand, the biological behavior of well-differentiated PNETs
8	(G1/G2) differs considerably between cases ⁷⁻¹² . Some tumors grow slowly and do not
9	recur, even after marginal excision by enucleation, but other tumors expand aggressively
10	and metastasize rapidly. Although the Ki-67 proliferative index is a valuable prognostic
11	factor that is currently employed in routine clinical practice, it remains difficult to predict
12	which G1 and G2 tumors will recur and behave aggressively ¹² .
13	Whole-exome sequencing of PNETs has revealed several key genetic
14	alterations ¹³ . Genes in the PI3K/Akt pathway, including TSC2, PTEN, and PIK3CA,
15	were mutated in 15% of PNETs ¹³ . Mutually exclusive somatic inactivating mutations in
16	either the DAXX or ATRX genes have been reported to be present in as much as 33% to

1	43% of PNETs in case series ^{13, 14} . Loss of function in these proteins leads to telomere
2	dysfunction and results in impaired non-homologous end joining, alternate lengthening
3	of telomeres, and general genomic instability ^{15, 16} .
4	If it is possible to establish consistent associations between the above mentioned
5	genetic alterations and clinical outcomes, then immunohistochemical analyses of the
6	associated proteins could be deployed rapidly in routine clinical practice as a
7	supplement to the WHO grading system. We therefore sought to investigate the
8	associations of immunohistochemically determined protein expression with clinical
9	outcomes and pathological characteristics in cases of G1 and G2 primary PNETs.
10	Protein expression was evaluated for the genes ATRX, DAXX, MEN1, TSC2, and PTEN.
11	
12	MATERIALS AND METHODS
13	This study was approved by institutional review boards of Kagawa University and each
14	study center (No. H23-076).

15 **Patients and Tissue Samples**

16 We reviewed findings for 100 patients with PNETs who received resection of the

Uemura J et al

1	pancreas at 4 university hospitals affiliated with the Shikoku Consortium of Surgical
2	Research (SCSR ¹⁷), Kobe University Hospital and 3 related hospitals in Kagawa
3	prefecture between September 1996 and November 2016. All tumor specimens were
4	formalin-fixed and paraffin-embedded. The paraffin blocks from the 100 patients were
5	prospectively prepared for pathologic and immunohistochemistry (IHC) studies at
6	Kagawa University. To definitively confirm the diagnosis and grade according to the
7	WHO 2017 classification ³ , all cases were independently reviewed by a pathologist (KK)
8	experienced in the diagnosis of PNETs. High grade pancreatic neuroendocrine
9	carcinomas (in other words, G3 or PNEC cases under the WHO 2017 classification)
10	were excluded. Mixed tumors with a pancreatic ductal adenocarcinoma, squamous, or
11	acinar component (MiNEN under the WHO 2017 classification) were also excluded.
12	For patients with multiple tumors, the largest tumor was assessed. Patients were
13	followed up and overall survival was analyzed. Disease recurrences were generally
14	identified using computed tomography imaging. Tumors were staged in accordance
15	with the 7th edition of the TNM staging system for pancreas tumor issued by the
16	American Joint Committee on Cancer ¹⁸ .

1 Immunohistochemistry

2	Formalin-fixed paraffin-embedded samples were cut into sections (thickness, 4 μ m) for
3	immunolabeling. Immunohistochemical labeling was carried out using a Bond III and
4	Bond Max automatic immunostainer (Leica Microsystems, Wetzlar, Germany) after
5	incubation of the sample in a decloaking chamber for antigen activation. All samples were
6	stained immunohistochemically with the following antibodies: ATRX (Sigma-Aldrich, St.
7	Louis, MO, USA; HPA001906), DAXX (Sigma-Aldrich, HPA008736), MENMenin
8	(Bethy1 Laboratories, Montgomery, TX, USA; Clone A300-105A), TSC2, Tuberin
9	(Santa Cruz Biotechnology, Satna Cruze, CA, USA; C-20), PTEN (Dako, Carpinteria,
10	CA, USA; Clone 6H2.1), p53 (Dako, DO-7), Rb (QED Bioscience, San Diego, CA, USA;
11	3C8), p16 (MTM Laboratories, Tucson, AZ, USA; E6H4).
12	IHC results were interpreted by a pathologist (KK) and a surgeon (JU) who were
13	experienced with IHC assessment. They were completely blinded to all clinical data and
14	the tumor status of each patient's slides at the time of analysis. ATRX and DAXX
15	expressions were classified as either positive, defined as unequivocal nuclear staining in
16	tumor cells; or negative, defined as complete absence of nuclear staining in the presence

1	of an unequivocal internal positive control provided by non-neoplastic cells with
2	retained nuclear expression (for example lymphocytes, endothelial cells, or stromal
3	cells) ^{16, 19} . MEN1 (Menin) was evaluated as follows: results were scored as positive if
4	the intensity of cytoplasmic staining was stronger than the intensity of nuclear staining.
5	Immunohistochemical staining for TSC2 (Tuberin) and PTEN were evaluated by an
6	individual immunoreactivity score (IRS). Staining intensity was scored as $0 =$ negative,
7	1 = weak, $2 =$ moderate, or $3 =$ strong. Two parameters, the intensity and the percentage
8	of cells stained, were obtained and multiplied. IRS ≥ 100 was regarded as positive and
9	IRS < 100 was regarded as negative. P53 immunolabeling was classified as follows:
10	normal if 5–30% of tumor cells were stained positively on p53 immunolabeling; and
11	abnormal if either <5% of tumor cells were stained positively on p53 immunolabeling
12	(suggesting the presence of an intragenic deletion or nonsense mutation) or if $>30\%$ of
13	tumor cells were stained positively on p53 immunolabeling (suggesting the presence of
14	a missense mutation) ^{5, 17, 20} .

15 Statistics

16 All statistical analyses were performed using JMP13 (SAS Institute Inc., Cary, NC,

1	USA). For the investigated clinicopathologic parameters, between-group comparisons
2	were performed using the chi-square test or Fisher's exact test. Survival curves were
3	estimated using the Kaplan-Meier method, and differences in survival were compared
4	using the log-rank test. A two-sided p-value <0.05 was considered statistically
5	significant. Variables that were found to be significant in univariate analysis at the
6	p<0.05 level were included in the multivariate analysis in a backward stepwise fashion.
7	Cox proportional hazards models were used for the multivariate analysis.
8	
9	RESULTS
9 10	RESULTS Clinicopathological characteristics and outcome
10	Clinicopathological characteristics and outcome
10 11	Clinicopathological characteristics and outcome The study included a total of 100 patients who underwent surgical resections for G1 and
10 11 12	Clinicopathological characteristics and outcome The study included a total of 100 patients who underwent surgical resections for G1 and G2 PNETs. Their clinical and pathological characteristics are compared with clinical
10 11 12 13	Clinicopathological characteristics and outcome The study included a total of 100 patients who underwent surgical resections for G1 and G2 PNETs. Their clinical and pathological characteristics are compared with clinical outcomes in Table 1. Briefly, the median age at operation was 63 years (range, 23-88),

1	re-evaluated tumors, 57 were NET G1 and 43 were NET G2.

2	The IHC results are also shown in Table 1. A single formalin-fixed paraffin-
3	embedded sample did not react with any immunohistochemical labeling, and was
4	excluded from the IHC evaluation. Among the 99 remaining tumors, loss of ATRX was
5	detected in 41 (41.4%) (Figure 1A, B), loss of DAXX was detected in 64 (64.6%), loss
6	of MEN1 was detected in 25 (25.3%), loss of TSC2 was detected in 58 (58.6%) (Figure
7	2A, B), and loss of PTEN was detected in 37 (37.8%) (Figure 3A, B).
8	Kaplan-Meier survival analysis (Table 1) indicated that nodal metastasis
9	(p=0.0513), liver metastasis (p<0.0001), vascular invasion (p=0.0142), perineural
10	infiltration (p=0.0002), loss of TSC2 (p=0.007) (Figure 2C), and loss PTEN (p=0.0486)
11	(Figure 3C) were significantly associated with shorter OS. Kaplan-Meier recurrence
12	analysis indicated that WHO classification (p=0.0005), tumor size (p<0.0001), liver
13	metastasis (p=0.008), vascular invasion (p=0.0003), perineural infiltration (p=0.00124),
14	loss of ATRX (p=0.0117) (Figure 1D), and loss of TSC2 (p=0.009) (Figure 2D) were
15	significantly associated with shorter recurrence-free survival (RFS).

Taking advantage of the large number of tumors that were profiled, we also analyzed

1	the associations between pairs of protein expression statuses and clinical outcomes
2	(Figure 4, Supplementary figures 1, and 2). Interestingly, combined negative expression
3	of any 2 of the 3 proteins ATRX, TSC2, and PTEN had strong associations with clinical
4	outcome. Loss of both TSC2 and ATRX (n=31) was associated with significantly shorter
5	RFS (Figure 4B). Loss of both TSC2 and PTEN (n=30) was also associated with
6	significantly shorter RFS. (Supplementary figure 1B) Loss of both ATRX and PTEN
7	(n=45) was also associated with significantly shorter RFS. (Supplementary figure 2B)
8	In contrast, OS or RFS did not differ significantly between single protein expression loss
9	and positive (intact) protein expression. Thus, loss of pairs in ATRX, TSC2, or PTEN
10	would be clinically important than just single loss of individual genes.
11	WHO 2017 grade is based on Ki-67 or mitosis assessment, and has been accepted as
12	the most important prognostic factor for PNETs. Among the 57 patients with G1 PNETs,
13	only 1 developed recurrence (time to recurrence: 20 months after surgery). Considering
14	the indolent nature of G1 PNETs, we limited the multivariate RFS analysis to the 43
15	patients who had G2 PNETs. The multivariate analysis demonstrated that vascular
16	invasion (hazard ratio 13.5, p=0.03) and nodal metastasis (hazard ratio 6.8, p=0.02) were

1	independent prognostic factors for RFS. Single losses of ATRX, TSC2, are PTEN were
2	not independent prognostic factors for RFS. However, multivariate analysis of combined
3	protein expressions demonstrated that loss of TSC2 and ATRX (hazard ratio 10.1,
4	p=0.003) was an independent prognostic factor for RFS (Table 2).
5	Associations between protein expression and clinicopathological factors
6	Table 3 summarizes the associations of ATRX, DAXX, MEN1, TSC2, and PTEN
7	negativity with clinicopathological parameters (details are shown in the supplementary
8	table). The loss of ATRX was significantly associated with tumor size (p=0.0215), nodal
9	metastasis (p=0.0145), recurrence (p=0.0412), vascular invasion (p=0.0047), and
10	perineural infiltration (p=0.0024). The loss of MEN1 was significantly associated with
11	WHO classification grade (p=0.0205), tumor size (p=0.0299), liver metastasis (p=0.0231),
12	hormone production (p=0.0033), and vascular invasion (p=0.024). The loss of TSC2 was
13	significantly associated with tumor size (p=0.0240), nodal metastasis (p=0.0016), liver
14	metastasis (p=0.0194), recurrence (p=0.0109), hormone production (p=0.0008), and
15	vascular invasion (p=0.0302). The loss of PTEN was significantly associated with tumor
16	size (p=0.0202), recurrence (p=0.0446), and vascular invasion (p=0.0078).

DISCUSSION

3	In this study of 100 patients with G1 or G2 PNETs who received curative-intent
4	surgery, loss of ATRX, TSC2, and PTEN was immunohistochemically observed in
5	41%, 58%, and 37% of the patients and was associated with shorter OS or RFS in
6	univariate analyses. Furthermore, ATRX, MEN1, TSC2, and PTEN status were
7	identified as biologic traits that had associations with different sets of clinicopathologic
8	features. Interestingly, clinical outcomes had strong associations with combined
9	negative expression for pairs of the proteins ATRX, TSC2, and PTEN. For patients with
10	G2 PNETs, multivariate Cox proportional hazards regressions demonstrated that
11	combined loss of TSC2 and ATRX was an independent prognostic factor for RFS
12	(hazard ratio 10.1, $P = 0.003$). In contrast, loss of single protein expression had no
13	significant association with OS or RFS in multivariate analysis.
14	Altogether, our results for ATRX, TSC2, and PTEN suggest that, as compared
15	with assessments of single genetic alterations, assessments of combined genetic
16	alterations are more predictive of survival outcomes. Previous sequencing studies and

1	studies of genetically engineered mouse models have established that the accumulation
2	of genetic alterations contributes to clonal evolution and thereby has a considerable
3	influence on the biology of malignant tumors ²¹⁻²³ . In an earlier study of pancreatic
4	ductal adenocarcinoma (PDAC), we reported comparable consequences related to
5	combined gene status for TP53, CDKN2A/p16, and SMAD4/DPC4: increasing numbers
6	of alterations were associated with shorter survival. ²⁰ Curiously, single-gene alterations
7	of ATRX, TSC2, and PTEN had no significant associations with OS or RFS in our
8	multivariate analyses of PNETs from the present study. In our earlier study of PDAC,
9	alterations to 1 of the 3 investigated genes had a significant association with OS when
10	assessed individually. The differences between the nature of PNETs and PDACs may
11	reflect the role of single-gene alterations. Further studies of the relationship between
12	clinical outcomes and the cooperative interaction of essential genes in PNETs appear
13	warranted.
14	Mutations in DAXX or ATRX have been detected in about 40% of PNETs. Jiao et
15	al. ¹³ showed that <i>DAXX</i> and <i>ATRX</i> mutations were associated with prolonged survival
16	in patients with PNETs. In contrast, Marinoni et al. ¹⁶ showed that the loss of DAXX and

1	ATRX expression was correlated with significantly shortened RFS. More recently,
2	Chou et. al. ¹⁹ reported that single loss of expression of ATRX as determined by IHC is a
3	useful independent predictor of shorter overall survival, while DAXX has no impact on
4	clinical outcomes. The present study also confirmed that loss of ATRX protein
5	expression in PNETs was associated with worse outcomes, as evaluated using
6	univariate analysis. The discrepant findings regarding DAXX and ATRX may be
7	explained by associations with differences in disease stages. Specifically, patients with
8	advanced stage disease (stages III and IV) were dominant in the study by Jiao et al. ¹³ ,
9	and all patients with ATRX- and DAXX-negative tumors presented with metastatic
10	disease. ATRX and DAXX loss may be associated with shorter survival in early stage
11	cases, but results may be different for advanced stage or metastatic cases. Because the
12	detailed roles of the genes in each stage are unclear, further studies would be required to
13	confirm whether this is a true association and to investigate potential mechanisms.
14	Among the down-regulated genes found in PNETs, TSC2 is a tumor suppressor of
15	the Akt/mTOR pathway with GTPase activating function ²⁴ . TSC2 mutation leads to
16	tuberous sclerosis complex. Chromosome arm 16p, which contains TSC2, has been

1	found to be lost in 37% of PNETs ^{25, 26} . <i>PTEN</i> is another important tumor suppressor
2	gene that is involved in the same pathway. PTEN is also frequently mutated or lost in
3	several forms of sporadic or familiar cancers. In PNETs, however, the frequency of loss
4	is between 10% and 29% ²⁵⁻²⁷ . Missiaglia et al. ²⁴ showed that TSC2 cytoplasmic protein
5	level was down-regulated in 35% of patients with PNETs, while staining of PTEN
6	was altered in nuclear, cytoplasmic, or both cell compartments in around 60% of cases.
7	TSC2 staining correlated with both overall survival and disease-free survival in patients
8	with assumed complete tumor excision. Our findings support their results in that neither
9	PTEN nor TSC2 was an independent prognostic predictor in our multivariate analysis.
10	However, we also found that combined loss of these proteins had a strong association
11	with clinical outcomes. Several pieces of evidence associated with our TSC2 and PTEN
12	findings support the hypothesis that the Akt/mTOR pathway is involved in PNETs
13	progression ^{24, 28, 29} . Deficiency of both TSC2 and PTEN may reduce the inhibition of
14	mTOR activity more strongly than either single alteration. The current study's finding
15	related to the accumulation of genetic alterations in the Akt/mTOR pathway may
16	present some clues for selecting treatment targets for mTOR inhibition.

1	The IHC-based results of the current study should be clinically valuable and might
2	have links to treatment options. In routine clinical practice, IHC results for ATRX,
3	TSC2, and PTEN could be obtained promptly from surgical specimens or biopsy
4	samples. For example, combined negative expression for pairs of ATRX, TSC2, and
5	PTEN could provide rapidly available predictions of high-risk status for postoperative
6	recurrence, which might apply to about one-third of the patients. The group of patients
7	with high-risk status might be suitable candidates for adjuvant treatment.
8	Endoscopic ultrasound fine needle aspiration (EUS-FNA) has altered the
9	diagnostic strategy for pancreatic tumor ^{20, 30, 31} . Genetic variants can be preoperatively
10	assessed immunohistochemically using EUS-FNA materials. Surgical approaches that
11	include standard lymph node dissection may be more beneficial in patients who are at
12	elevated risk of nodal metastasis (as potentially identifiable from ATRX or TSC2 loss).
13	Additionally, when considering entry into upcoming clinical trials, it would be
14	reasonable to stratify patients based on genetic status. Such stratification may help to
15	accurately define the role of currently available molecular targeted agents.
16	The present study has several limitations. First, the study design is retrospective.

1	Furthermore, the patients did not all receive the same treatment (e.g., type of operation
2	and lymph node dissection). To validate the individual and combined expressions of
3	ATRX, TSC2, and PTEN as prognostic biomarkers, a prospective study with a large
4	series of patients is clearly warranted.
5	In conclusion, we found that IHC-demonstrated loss of ATRX, TSC2, and PTEN
6	occurred in 41%, 58%, and 37% of the patients, and was associated with worse OS
7	and/or RFS in univariate analyses. Furthermore, ATRX, MEN1, TSC2, and PTEN were
8	identified as biologic traits that were associated with different sets of clinicopathologic
9	features. Combined negative expression of pairs of ATRX, TSC2, and PTEN had strong
10	associations with clinical outcome in G2 PNETs. IHC-identified loss of ATRX, TSC2,
11	and PTEN protein expressions might be clinically valuable and should be linked with
12	treatment options. Loss of pairs in ATRX, TSC2, or PTEN would be clinically useful for
13	selecting the candidate for postoperative adjuvant therapy in patients with Grade 1 and 2
14	PNETs.

16 Acknowledgements

1	We acknowledge	Professor	Shinichi	Yachida f	for ins	piring	this study.	

 $\mathbf{2}$

3	Figure Legends
J	Figure Degenus

4 Figure 1

- 5 ATRX protein expression and its relationships with the overall and recurrence-free
- 6 survival of patients with pancreatic endocrine tumors (PNETs).
- 7 Immunohistochemistry with anti-ATRX antibody (Sigma-Aldrich, HPA001906)
- 8 (original magnification X40): (A) PNET tissue with positive staining and (B) PNET
- 9 tissue with negative staining. Kaplan-Meier curves showing the correlations between
- 10 ATRX immunostaining status and (C) overall survival and (D) recurrence-free survival.

11 **Figure 2**

- 12 Tuberous sclerosis 2 (TSC2) protein expression and its relationships with the overall
- 13 and recurrence-free survival of patients with pancreatic endocrine tumors (PNETs).
- 14 Immunohistochemistry with anti-tuberin antibody (Santa Cruz, C-20) (original
- 15 magnification X40): (A) PNET tissue with positive staining and (B) PNET tissue with
- 16 negative staining. Kaplan-Meier curves showing the correlations between tuberin
- 17 immunostaining and (C) overall survival and (D) recurrence-free survival.

1 Figure 3

2	PTEN protein expression and its relationships with the overall and recurrence-free
3	survival of patients with pancreatic endocrine tumors (PNETs).
4	Immunohistochemistry with anti- PTEN antibody (Dako, Clone 6H2.1) (original
5	magnification X40): (A) PNETs tissue with positive staining and (B) PNETs tissue with
6	negative staining. Kaplan-Meier curves showing the correlations between PTEN
7	immunostaining status and (C) overall survival and (D) recurrence-free survival.
8	Figure 4
9	Kaplan-Meier survival curves stratified by combined TSC2 and ATRX protein expression
10	status. (A) Correlation between combined TSC2 and ATRX protein expression status and
11	overall survival. (B) Correlation between combined TSC2 and ATRX protein expression
12	status and recurrence-free survival.
13	Supplementary Figure 1
14	Kaplan-Meier survival curves stratified by combined TSC2 and PTEN protein expression
15	status. (A) Correlation between combined TSC2 and PTEN protein expression status and
16	overall survival. (B) Correlation between combined TSC2 and PTEN protein expression

1	status and recurrence-free survival.					
2	Supplementary Figure 2					
3	Kapla	n-Meier survival curves stratified by combined ATRX and PTEN protein				
4	expre	ssion status. (A) Correlation between combined ATRX and PTEN protein				
5	expre	ssion status and overall survival. (B) Correlation between combined ATRX and				
6	PTEN	I protein expression status and recurrence-free survival.				
7						
8	Refer	rences				
9	1.	Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin				
10		Gastroenterol 2005; 19(5):753-81.				
11	2.	Halfdanarson TR, Rabe KG, Rubin J, et al. Pancreatic neuroendocrine tumors				
12		(PNETs): incidence, prognosis and recent trend toward improved survival. Ann				
13		Oncol 2008; 19(10):1727-33.				
14	3.	Lloyd RV OR, Kloppel G, Rosai J, editors. WHO Classification of Tumours of				
15		Endocrine Organs 4th edition IARC 2017.				
16	4.	Gao H, Liu L, Wang W, et al. Novel recurrence risk stratification of resected				

1		pancreatic neuroendocrine tumor. <i>Cancer Lett</i> 2018; 412:188-193.
2	5.	Yachida S, Vakiani E, White CM, et al. Small cell and large cell neuroendocrine
3		carcinomas of the pancreas are genetically similar and distinct from well-
4		differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 2012;
5		36(2):173-84.
6	6.	Benetatos N, Hodson J, Marudanayagam R, et al. Prognostic factors and survival
7		after surgical resection of pancreatic neuroendocrine tumor with validation of
8		established and modified staging systems. Hepatobiliary Pancreat Dis Int 2018;
9		17(2):169-175.
10	7.	Fesinmeyer MD, Austin MA, Li CI, et al. Differences in Survival by Histologic
11		Type of Pancreatic Cancer. Cancer Epidemiology Biomarkers & amp; Prevention
12		2005; 14(7):1766-1773.
13	8.	Gibril F, Doppman JL, Reynolds JC, et al. Bone metastases in patients with
14		gastrinomas: a prospective study of bone scanning, somatostatin receptor
15		scanning, and magnetic resonance image in their detection, frequency, location,
16		and effect of their detection on management. J Clin Oncol 1998; 16(3):1040-53.

1	9.	Hashim YM, Trinkaus KM, Linehan DC, et al. Regional lymphadenectomy is
2		indicated in the surgical treatment of pancreatic neuroendocrine tumors (PNETs).
3		Ann Surg 2014; 259(2):197-203.
4	10.	Krampitz GW, Norton JA, Poultsides GA, et al. Lymph nodes and survival in
5		pancreatic neuroendocrine tumors. Arch Surg 2012; 147(9):820-7.
6	11.	Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic
7		endocrine tumors. Gastroenterology 2008; 135(5):1469-92.
8	12.	Nanno Y, Matsumoto I, Zen Y, et al. Pancreatic Duct Involvement in Well-
9		Differentiated Neuroendocrine Tumors is an Independent Poor Prognostic Factor.
10		Ann Surg Oncol 2017; 24(4):1127-1133.
11	13.	Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes
12		are frequently altered in pancreatic neuroendocrine tumors. Science 2011;
13		331(6021):1199-203.
14	14.	Scarpa A, Chang DK, Nones K, et al. Whole-genome landscape of pancreatic
15		neuroendocrine tumours. Nature 2017; 543:65.
16	15.	Heaphy CM, de Wilde RF, Jiao Y, et al. Altered telomeres in tumors with ATRX

1		and DAXX mutations. Science 2011; 333(6041):425.
2	16.	Marinoni I, Kurrer AS, Vassella E, et al. Loss of DAXX and ATRX are associated
3		with chromosome instability and reduced survival of patients with pancreatic
4		neuroendocrine tumors. Gastroenterology 2014; 146(2):453-60.e5.
5	17.	Asano E, Okano K, Oshima M, et al. Phenotypic characterization and clinical
6		outcome in ampullary adenocarcinoma. J Surg Oncol 2016; 114(1):119-27.
7	18.	Edge S BD, Compton CC, et al. AJCC cancer staging manual, 7 edition. Springer
8		2010.
9	19.	Chou A, Itchins M, de Reuver PR, et al. ATRX loss is an independent predictor of
10		poor survival in pancreatic neuroendocrine tumours. Hum Pathol 2018.
11	20.	Oshima M, Okano K, Muraki S, et al. Immunohistochemically detected
12		expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly
13		predicts survival in patients with resectable pancreatic cancer. Ann Surg 2013;
14		258(2):336-46.
15	21.	Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer
16		2007; 7(9):645-58.

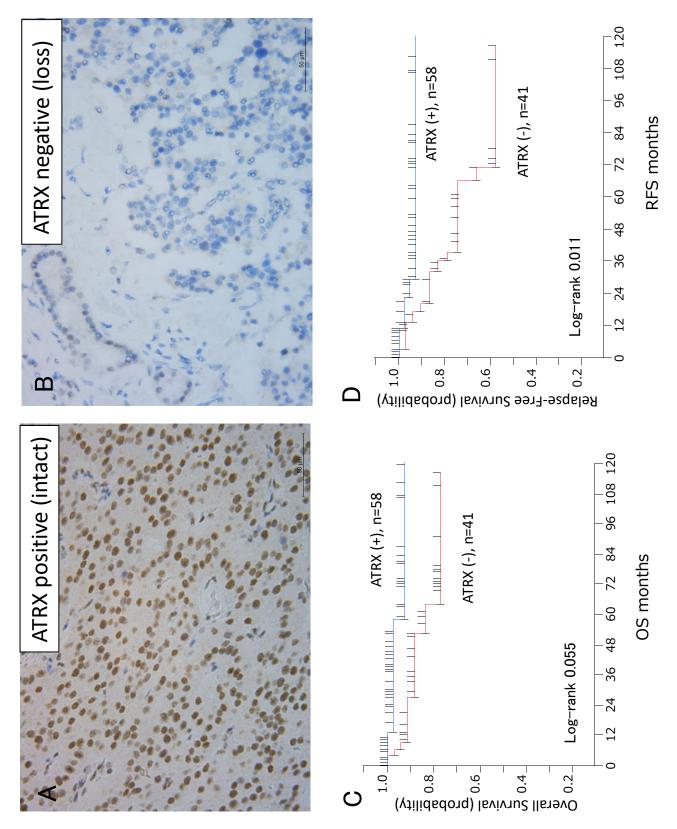
1	22.	Izeradjene K, Combs C, Best M, et al. Kras(G12D) and Smad4/Dpc4
2		haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive
3		adenocarcinoma of the pancreas. Cancer Cell 2007; 11(3):229-43.
4	23.	Tuveson D, Hanahan D. Translational medicine: Cancer lessons from mice to
5		humans. Nature 2011; 471(7338):316-7.
6	24.	Missiaglia E, Dalai I, Barbi S, et al. Pancreatic endocrine tumors: expression
7		profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 2010;
8		28(2):245-55.
9	25.	Chung DC, Brown SB, Graeme-Cook F, et al. Localization of putative tumor
10		suppressor loci by genome-wide allelotyping in human pancreatic endocrine
11		tumors. Cancer Res 1998; 58(16):3706-11.
12	26.	Rigaud G, Missiaglia E, Moore PS, et al. High resolution allelotype of
13		nonfunctional pancreatic endocrine tumors: identification of two molecular
14		subgroups with clinical implications. Cancer Res 2001; 61(1):285-92.
15	27.	Perren A, Komminoth P, Saremaslani P, et al. Mutation and expression analyses
16		reveal differential subcellular compartmentalization of PTEN in endocrine

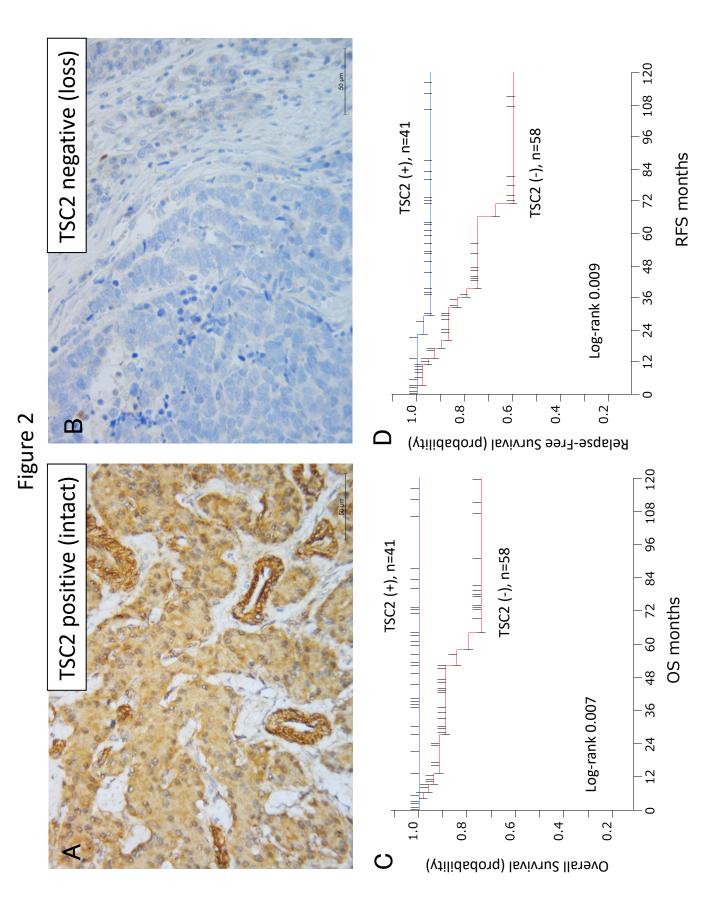
1		pancreatic tumors compared to normal islet cells. Am J Pathol 2000; 157(4):1097-
2		103.
3	28.	Chou WC, Lin PH, Yeh YC, et al. Genes involved in angiogenesis and mTOR
4		pathways are frequently mutated in Asian patients with pancreatic neuroendocrine
5		tumors. Int J Biol Sci 2016; 12(12):1523-1532.
6	29.	Qian ZR, Ter-Minassian M, Chan JA, et al. Prognostic significance of MTOR
7		pathway component expression in neuroendocrine tumors. J Clin Oncol 2013;
8		31(27):3418-25.
9	30.	Chatzipantelis P, Konstantinou P, Kaklamanos M, et al. The role of
10		cytomorphology and proliferative activity in predicting biologic behavior of
11		pancreatic neuroendocrine tumors: a study by endoscopic ultrasound-guided fine-
12		needle aspiration cytology. Cancer 2009; 117(3):211-6.
13	31.	Piani C, Franchi GM, Cappelletti C, et al. Cytological Ki-67 in pancreatic
14		endocrine tumours: an opportunity for pre-operative grading. Endocr Relat
15		Cancer 2008; 15(1):175-81.

Table 1. Clinicopathological Parameters and Outcome (n=100)	rameters and Outcome	(n=100)					
Variable	No. of Patients (%)		Overall Survival (%)	(%)	Recurrence-F	Recurrence-Free Survival (%)	
		3 years	5 years	Log-rank	3years	5 years	Log-rank
				(P Value)			(P Value)
Overall	100	94.1	89.2		87.2	85.2	
Gender				0.1245			0.4577
Female	49 (49.0)	97.1	97.1		93.0	89.1	
Male	51 (51.0)	91.4	80.8		82.3	82.4	
Age, years				0.749			0.708
Mean	60.8 (SD, 15.1)						
Median	63						
Range	23-88						
<65	55(55.0)	93.8	85.6		87.7	87.7	
.≥65	45(45.0)	94.5	94.5		86.9	82.6	
Outcome							
Follow-up, months							
Median	43.5						
Range	1-147						
WHO classification (2010)				0.0974			0.0005
NET G1	57 (57.0)	95.7	95.7		97.6	97.6	
NET G2	43 (43.0)	92.1	82.4		74.1	70.0	
Tumor Location				0.5429			0.1632

Head	56 (56.0)	92.1	85.5		79.5	79.5	
Body/tail	44 (44.0)	95.7	91.8		92.9	89.6	
Tumor size, mm				0.1293			<0.0001
Mean	24.3 (SD, 20.8)						
Median	20						
Range	0.8-156						
≤20 mm	51 (52.6)	97.6	97.6		100	100	
.>20 mm	46 (47.4)	94.9	86.4		72.6	68.1	
Nodal metastasis				0.0513			0.1286
Negative	77 (77.0)	96.9	94.1		89.5	87.1	
Positive	23 (23.0)	84.4	72.4		87.2	74.7	
Liver metastasis				<.0001			0.0080
Negative	92 (92.0)	97.5	94.9		88.7	86.5	
Positive	8 (8.0)	57.1	42.9		50.0	50.0	
Type of hormone production				0.2424			0.2010
Non-functioning	75(75.0)	92.1	84.2		85.9	82.3	
Functioning	25(25.0)	100	100		90.7	90.7	
Lymphatic invasion				0.1963			0.2342
Negative	71(78.0)	94.8	91.5		86.3	83.7	
Positive	20(22.0)	94.7	81.2		84.4	84.4	
Vascular invasion				0.0142			0.0003
Negative	55(60.4)	97.7	97.7		97.6	94.1	

Positive	36(39.6)	90.3	77.3		67.1	67.1	
Perineural infiltration				0.0002			0.00124
Negative	67(75.3)	98.2	98.2		91.8	89.0	
positive	22(24.7)	84.0	44.8		60.7	60.7	
Immunohistochemistry							
ATRX				0.0558			0.0117
Negative (loss)	41(41.4)	88.6	84.0		78.9	74.3	
Positive (intact)	58(58.6)	97.9	93.0		92.8	92.8	
DAXX				0.7908			0.2882
Negative (loss)	64(64.6)	94.5	88.1		83.0	80.1	
Positive (intact)	35(35.4)	93.7	93.7		95.7	95.7	
MEN1 (Menin)				0.5940			0.3759
Negative (loss)	25(25.3)	90.4	84.0		83.7	83.7	
Positive (intact)	74(74.7)	95.3	91.2		88.4	85.5	
TSC2 (tuberin)				0.007			0.009
Negative (loss)	58(58.6)	89.1	79.7		79.3	74.9	
Positive (intact)	41(41.4)	100	100		94.2	94.2	
PTEN				0.0486			0.0721
Negative (loss)	37(37.8)	90.1	84.1		84.5	78.4	
Positive (intact)	61(62.2)	98.3	94.0		88.6	88.6	
p53				0.1975			0.4697
abnormal (loss)	65(67.0)	92.9	89.0		87.0	83.8	


normal (intact)	32(33.0)	100	93.4		85.2	85.2	
Rb1				0.4927			0.5786
Negative (loss)	45(45.4)	92.1	92.1		88.2	84.2	
Positive (intact)	54(54.6)	95.9	85.2		85.6	85.6	
P16				0.3067			0.7769
Negative (Ioss)	29(29.3)	96.0	87.3		85.1	85.1	
Positive (intact)	70(70.7)	95.0	91.6		88.5	85.6	


Table 2. Multivariate Analysis o	f Relapse-Free Survival	for patients with G2 PNETS	including Loss of	
Combined Gene Protein Expres	sion			
Variables	Hazard Ratio	95% CI	р	
TSC2 and ATRX negative	10.1	2.1-66.9	0.003	
Vascular invasion	lar invasion 10.9 1.3-10.3 0.02			
Nodal metastasis	5.8	1.2-29.3	0.02	
Perineural invasion	2.1	0.5-10.3	0.46	

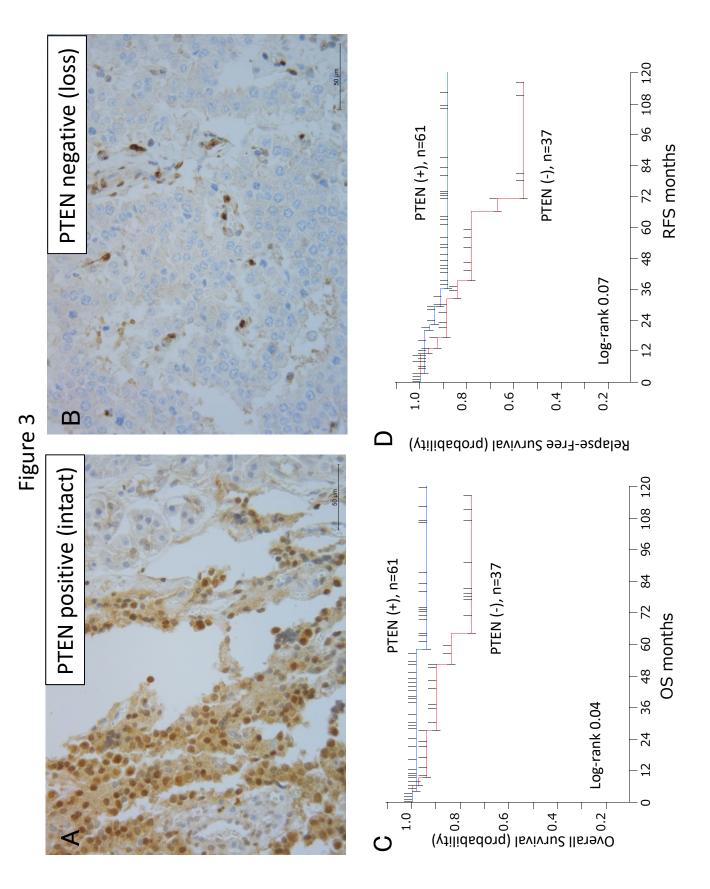

	Ν	Clinicopathological Parameters	P value
ATRX negative (loss)	35	Perineural invasion	0.002
		Venous invasion	0.004
		Nodal metastasis	0.014
		Tumor size (>20 mm)	0.021
		Recurrence	0.041
MEN1 negative (loss)	25	Hormone production	0.003
		Venous invasion	0.012
		Grade	0.02
		Liver metastasis	0.023
		Tumor size (>20 mm)	0.029
TSC2 negative (loss)	58	Hormone production	0.0008
		Nodal metastasis	0.001
		Recurrence	0.01
		Liver metastasis	0.019
		Tumor size (>20 mm)	0.024
		Venous invasion	0.03
PTEN negative (loss)	32	Venous invasion	0.007
		Tumor size (>20 mm)	0.02
		Recurrence	0.044

Table 3. Summary of significant association between phenotypes and clinicopathological parameters (n=100)

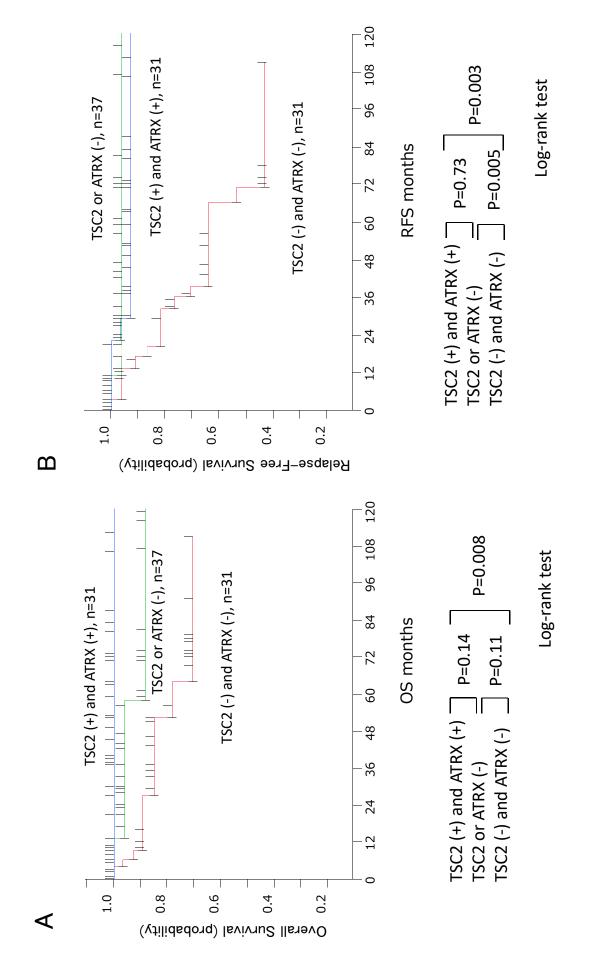


Figure 4