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The magnetic susceptibility and the magnetization as a function of magnetic field are calculated 

exactly for the antiferromagnetic Ising and Heisenberg models of a triangle cluster. Both characters 

of the bending of the inverse susceptibility as a function of temperature and. the 1/3 plateau of 

magnetization found in the Monte Carlo simulation study for the triangle based lattice systems survive 

even in a single triangle cluster. The quantum effect and the spin magnitude are discussed concerning 

the characters. 
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§ 1. Introduction 

Our recent Monte Carlo (MC) simulation study of the s = 1/2 antiferromagnetic 

Ising spin systems on triangular and kagome lattices has shown the peculiar characters in 
the magnetic susceptibility and the magnetization under the magnetic field. Those are the 

downward bending in the inverse of magnetic susceptibility from the Curie-Weiss like 
form at the characteristic temperature T* with decreasing temperature and the appearance 
of the 1/3 magnetization plateau for T < T* in the magnetization process. Such anomaly 
of magnetic susceptibility has been indicated by Sano, i) in his MC simulation study 

both for the Ising and Heisenberg models on the triangular lattice. After then, for the 
Heisenberg model, totally different low temperature behavior was proposed by the high 
temperature series expansion, 2

> but for Ising model any attention has not been paid. 3 > On 
the other side, the 1/3 magnetization plateau in the triangular lattice is well recognized 
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to appear for both models. 4
-
7

l However the correlation between these two characters has 

not been discussed carefully, up to now. 
In a general argument, the spin correlation of the geometrically frustrated spin 

systems is known to be restricted in short distance. s) A motivation is therefore directed 

toward the investigation of the equilateral triangle spin cluster, which is the unit structure 

of triangular and kagome lattices. 
In this investigation, we give the exact calculations of the magnetic susceptibility as 

a function of temperature and the magnetization under the magnetic field in a triangular 

cluster of s = 1/2 antiferromagnetic Ising and Heisenberg models, and in addition the 
s = 1 Ising model, to discuss the effects of quantum fluctuation and the spin magnitude 

on those quantities. The obtained results are briefly discussed as the character of 
frustrated· triangle spin structure, suppressing the long range order down to very low or 

zero temperature. 
The paper is constructed as follows: In the next section, eigen states are calculated 

for s = 1/2 Ising and Heisenberg models. In § 3 and § 4, the magnetic susceptibility 

and the magnetization under the magnetic field are calculated, respectively. The final 
section is devoted for conclusions and discussions. The result of the MC simulation 

study will be published in the future issue. 

§ 2. Eigen states of triangle cluster 

We first calculate the eigen states of three spin triangle cluster. The state functions 

of three spins {I II III} are denoted as 

I <I> I>= Iii i >' I <I> 2> =It U>' I <I> 3> =Iii t >' I <I> 4> =Ii ti>' 

I <l>s> = I Hi>, 11>6> =Ii H>, 11>7> =It it>, I <l>s> = I tt i>, (1) 

where up- and down-arrows denote respective spins of magnitude 1/2, respectively. 
For s = 1/2 Ising model, the spin Hamiltonian for the triangular cluster is given as 

(2) 

where a;= 2sf_ The s; is z component of ith spin S; and h the magnetic field.His the 
Hamiltonian for the original spin variable s in usual expression. The exchange coupling 
constant is chosen as an energy unit. The corresponding energies for ii are calculated as 
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Ising Heisenberg 

Fig. 1 . Energy spectra of Ising and Heisenberg model triangle 
clusters as a function of magnetic field h. 

Table 1. Eigenvalues and eigen functions of the Heisenberg 
model triangle cluster. The former is given in units of 
exchange coupling constant. 

eigenvalues eigen functions 

£1 = 3(1-h) 

t2=3(1+h) 

£3 = - (3+h) 

ts=-(3-h) 

l6 = 3 + h 

For the case of vanishing magnetic field h = . 0, the ground state is the 6-fold degenerate 
doublet and the excited state 2-fold degenerate quartet. By the magnetic field, the 
degeneracy of ground states is lifted into two 3-fold states and also that of the 2-fold 

degenerate excited state is also dissolved. 
The Hamiltonian of the spin-1/2 Heisenberg model triangle cluster is expressed as 

(4) 

The eigenvalues and the corresponding eigen functions in a complete form are solved as 
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in Tablel. 

The energy spectrum for both models is figured in Fig. 1 as a function of magnetic 
field. For the case of h = 0, the ground doublet state degenerates in 4-fold with energy 
E = - 3 and the excited state is 4-fold degenerate quartet with energy E = 3. As also 
in Ising model, the ground state degeneracy is not lifted completely, against the 

excited state. In both models, the ground state changes from doublet state to quartet 
one for greater value than 2 or 3 of h by level crossing for Ising or Heisenberg model, 
respectively. 

§ 3. Magnetic susceptibility 

The longitudinal (z component) uniform magnetic susceptibility per spin is 
expressed in general form as 

X = 3~[ <(~:aJ 2 >-< ~ai>
2
], 

l l 

(5) 

where < > denotes the thermal average, 

1 ~ 

<A> =-Tre-13HA z ' 

Z is the partition function of the system at h = 0, the symbol Tr denotes the trace 
operation and /3 the inverse temperature l/T in units of Boltzmann constant. 

The longitudinal uniform susceptibility of Ising model X1 is expressed as 

(6) 

explicitly. The inverse of this magnetic susceptibility is drawn in Fig. 2 as a function of 
temperature. As can be seen in the figure, the inverse magnetic susceptibility shows the 
distinct downward deviation at T/ --- 1.2 from high temperature Curie-Weiss like linear 
form. Below the temperature T/ it decreases with temperature linearly like a Curie law, 

that is, toward the vanishing at zero temperature. This might be accounted by mixing 
of the quartet excited state with the doublet ground state for T > T1 *. The temperature 
dependence of susceptibility is globally resembled to those found in the MC simulation 

study for Ising model on the triangular and the kagome lattices. 
The magnetic susceptibility for the Heisenberg model is also calculated to see 

whether the bending of the inverse magnetic susceptibility found in the Ising model is 
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Fig. 2. The inverse longitudinal uniform susceptibility as a function of T. The solid 
line denotes for the Ising model, Xr1. and the broken line for the Heisenberg 
one, XH1. analytically given in eqs. (6) and (7) , respectively. 

affected by the quantum effect or not. The exact expression of magnetic susceptibility 

for the Heisenberg model x H is given as 

(7) 

This expression is drawn in Fig. 2 together with the result of the Ising model. The similar 
bending as in Ising model is also seen in the Heisenberg model at the characteristic 
temperature ri:-- 1.5, somewhat higher than that of Ising model T1 * ------- 1.2. 

The magnetic susceptibilities for two models show the similar temperature 
dependence qualitatively, except the difference in the value of T*. This difference comes 
from that of the magnitude of excitation gap, 1.5 times greater in the Heisenberg model 
than the Ising one. The coincidence of the Curie and Curie-Weiss constants at low and 
high temperatures, respectively, in two models is easily found as same limiting values 
at y-. 0 and T_. 00 in eqs. (6) and (7) . Then it may be claimed that the magnetic 

susceptibility, and furthermore the bending in it, do not seem to be affected by the 
quantum effect as far as the triangle cluster is considered. Such bending of magnetic 
susceptibility was firstly shown by Sano 1) on the MC simulation study of the Ising and 
Heisenberg models on the triangular lattice by showing the absence of temperature 
dependence of average squared magnetization < m2 > , which is proportional to the 
magnetic susceptibility, at low temperature region. The present result for cluster are in 
good correspondence with the behavior of < m2 > in Ref. 1 for both models. 
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§ 4. Magnetization plateau 

The magnetization per spin is calculated by the following formulation, 

m=+< Z: sf>. 
l 

In the case of Ising model, the magnetization m1 is expressed as 

e3/3(h-l) _e-3/3(h+l) + e/3(l+h) _e/3(1-h) 

m =----------------
1 e3/3 (h-1) + e-3/3 (1z+1) + 3 (e/3 (1+h) + e/3 (1-h)) · 

(8) 

(9) 

This function is drawn as a function of magnetic field h for two values of Tin Fig. 3. As 
shown in the figure, the 1/3 plateau appears in the magnetization in cases of the lower 
temperature than T1 *. Where the magnetic field at the plateau region is about the energy 
scale of the exchange coupling constant. 

For Heisenberg model, the magnetization mH is expressed as 

1 3(e-3/3(1-h) _e-3/3(h+l)) +2(e/3(3+h) _e/3(3-h)) +e/3(h-3) _e-/3(h+3) 

mH= 3. e-3/3(1-h) +e-3/3(h+l) +2(e/3(3+h) +e/3(3-h)) +e/3(h-3) _e-/3(h+3) (10) 

and this function shows similar behavior as Ising model, depicting the 1/3 plateau in the 
case of T< r;, as shown in Fig. 3. 

At low temperature and low field limit (T, h < 1), eqs. (9) and (10) have same 
limiting expression mi (T-+0, h-+0) = mH(T-+0, h-+0) = +tanh( /3h) and it is seen 

in the same gradient of the initial rising at low temperature case (T= 0.5) in Fig. 3. At 
absolute zero temperature, this limiting value for weak field has finite value of 1/3, in 

contrast to the result of Ising-like anisotropic Heisenberg model by the explicit numerical 
diagonalization method. 6> The magnitude of h at steep rising from 1/3 plateau up to full 
polarization (m = 1) for sufficiently low temperature case (T < r*) is well accounted 

from the values of h for the level crossing. . 

§ 5. Conclusions and discussions 

The longitudinal uniform magnetic susceptibility and the magnetization as 
functions of temperature and external magnetic field, respectively, have been calculated 

in this study for the s = 1/2 Ising and Heisenberg spin triangle clusters. 
We can recognize the distinct bending in the inverse magnetic susceptibility drawn 
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as a function of temperature in spin clusters of both of the Ising and Heisenberg models. 

Even for a single triangle cluster survives the bending found in our MC simulation study 
for the triangular and kagome lattices of s = 112 Ising spin. 

The 1/3 magnetization plateau has been revealed in the magnetization processes 

for both spin models on triangle cluster, as the temperature was decreased below the 
temperature T*, at which the inverse magnetic susceptibility shows the bending in each 
spin model. Such plateau was also found in MC study of Ising spin triangular and 
kagome lattice systems. 

It should be noticed that any quantitative difference is not found between two 

spin models for the calculated quantities. Furthermore, such characters of magnetic 
susceptibility and magnetization have also been found for the case of spin magnitude 
s = 1 Ising model, though the explicit expressions and figures are not shown here. The 

ground state of Heisenberg model on the triangular lattice is the symmetry breaking 
ordered state, 9

-
12

) contrasting with the disorder state of the Ising model on the same 

lattice and of both models on the kagome lattice. Even in the case of different ground 

state in the lattice systems, the finite temperature magnetic excitation seems to be 
governed by local doublet-quartet one. This fact is a peculiar character of the two­
dimensional frustrated system, retaining the disorder down to low temperature. 

From the present cluster calculation and the MC simulation study, we can 
speculate that the magnetic susceptibility and the magnetization plateau originate in 

the local low energy states. We may fairly well expect that the low energy states of 
triangle based lattices, such as triangular and kagome lattices, are well approximated 
as the direct product of the low energy states of the local triangle. These similarities 

between the cluster and the lattice should be studied in the near future, in the relation 
to the concept of the geometrically frustrated structure. 13

'
14

) Therein the low energy 

excitation is not affected so much by the quantum effect and by the spin magnitude. For 

further confirmation concerning the quantum effect, the exact calculation of magnetic 
susceptibility for the Heisenberg spin cluster of finite size is now in progress, toward the 
resolution of previous confliction. 1

'
2

) 

Finally in the relation with the experimental observations, 13
'
14

) some discussions 

have ever been given for the deviation in the inverse magnetic susceptibility at low 
temperature from the Curie-Weiss behavior. 15

) However, those discussions are restricted 
to the phenomenological one. The present exact calculation based on two spin models 
gives the theoretical basis of their phenomenological two-population model. 15

) The 

experiments of the magnetic susceptibility and the magnetization process should be paid 
the attention in the relationship between them. 
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Fig. 3. The magnetization as a function of h for T = 0.5 sufficiently lower than 
T" and T= 1.5 nearly equal value to T" for both models. The solid line 
depicts for the Ising model and the broken line for the Heisenberg one, 
analytically given in eqs. (9) and (10), respectively. 

References 

[ 1] K. Sano: Prog. Theor. Phys., 77 (1987) 287. 
[ 2 ] W. Zheng, R. R. P. Singh, ~- H. Mckenzie and R. Coldea: Phys. Rev., B71 (2005) 

134422. 
[ 3 ] M. Mekata: J. Phys. Soc. Jpn., 64 (1995) 4609. 
[ 4] B. D. Metcalf: Phys. Lett., 45A (1973) 1. 

[ 5] S. Miyashita: J. Phys. Soc. Jpn., 55 (1986) 3605. 
[ 6] H. Nishimori and S. Miyashita: J. Phys. Soc. Jpn., 55 (1986) 4448. 
[ 7] A. Honecker, J. Schulenburg and J. Richter: J. Phys.: Condens. Matter, 16 (2004) 

S749. 
[ 8] R. Moessner and J. T. Chalker: Phys. Rev., B58 (1998) 12049. 
[ 9] B. Bemu, P. Lecheminant, C. Lhuillier and L. Pierre: Phys. Rev., B50 (1994) 

10048. 
[10] R.R. P. Singh and D. A. Huse: Phys. Rev. Lett., 68 (1992) 1766. 
[11] D. J. J. Farnell, R. F. Bishop and K. A. Gernoth: Phys. Rev., B63 (2001) 

220402. 
[12] L. Capriotti, A. E. Trumper and S. Sorella: Phys. Rev. Lett., 82 (1999) 3899. 

-48-



Magnetic Susceptibility and Magnetization Plateau in Triangular Spin. Cluster 

[13] A. P. Ramirez: Annu. Rev. Mater. Sci., 24 (1994) 453. 
[14] A. P. Ramirez, G. P. Espinosa and A. S. Cooper: Phys. Rev. Lett., 64 (1990) 

2070, Phys. Rev., B45 (1992) 2505. 
[15] P. Schiffer and I. Daruka: Phys. Rev., B56 (1997) 13712. 

-49-


