Topological Classification

of the Scattered Countable Metric Spaces of Length 3

by

Shinpei Ока

Abstract

Based upon a general theory we shall present a topological classification of the scattered countable metric spaces of length 3 . The number of atoms of length 4 is also given.

1. Preliminaries. Let us start with Cantor's well-known process of deriving. (cf Kuratowski [1]) Let X be a topological space. Let $X^{(0)}=X$ and $X_{(0)}$ the set of the isolated points of $X^{(0)}$. If β is a non-limit ordinal, let $X^{(\beta)}=X^{(\beta-1)}-X_{(\beta-1)}$ and $X_{(\beta)}$ the set of the isolated points of $X^{(\beta)}$, where $\beta-1$ means the ordinal preceding β. If β is a limit ordinal, let $X^{(\beta)}=\bigcap_{\gamma<\beta} X^{(\nu)}$ and $X_{(\beta)}$ the set of the isolated points of $X^{(\beta)}$.

Each $X^{(\beta)}$ is a closed subset of X, and each $X_{(\beta)}$ is a discrete open subset of $X^{(\beta)}$.
A space X is called scattered if $X^{(\alpha)}=\emptyset$ for some α. The first ordinal α for which $X^{(\alpha)}$ vanishes is called the length of the scattered space X and is denoted by leng (X).

The following properties of a scattered space X will be used in this paper implicitly and frequently. Let β be an ordinal and U an open set of X.
(1) $X^{(\beta)} \cap U=U^{(\beta)}$ and $X_{(\beta)} \cap U=U_{(\beta)}$ (, and hence we have the following two).
(2) leng $(U)=\beta$ if and only if $U \cap X^{(\beta)}=\emptyset$ and $U \cap X^{(\gamma)} \neq \emptyset$ for every $\gamma<\beta$.
(3) $X_{(\beta)}$ is dense in $X^{(\beta)}$.

A scattered countable metric space X of length α has the following properties.
(4) The length α is a countable or finite ordinal. (For compact case, α is in addition a non-limit ordinal)
(5) If $\beta+1<\alpha$ then $\left|X_{(\beta)}\right|=\omega$ with ω the first countable ordinal identified with the countable cardinal. If $\beta+1=\alpha$ then $\left|X^{(\beta)}\right|=\left|X_{(\beta)}\right| \leq \omega$. (For compact case, $\left|X^{(\beta)}\right|=$ $\left|X_{(\beta)}\right|<\omega$ furthermore.)

If the length $\alpha>0$ is a non-limit ordinal and $\left|X^{\alpha-1}\right|=\beta, 1 \leq \beta \leq \omega$, the pair (α, β) is called the type of X.

As for a compact countable metric space X, the Mazurkiewicz-Sierpiński theorem ([2], also see [1]) says that the topological type of X is uniquely determined by its type (α, n) $1 \leq n<\omega$.

2. General theory.

Definition 1. Let X be a 0 -dimensional metric space and p a point of $X . X$ is said to be self-similar at p if every clopen set containing p is homeomorphic to X.

Proposition 1. X is self-similar at p if for any open neighborhood U of p there is a clopen set V of X such that $p \in V \subseteq U$ and $V \approx X$.
Proof. First note that a homeomorphism $f: X \rightarrow V$ can be taken so that $f(p)=p$. Indeed if not, say $f(p)=q \neq p$, take disjoint clopen neighborhoods O_{p}, O_{q} of p, q respectively so that $\mathrm{f}\left(O_{p}\right)=O_{q}$ and $O_{p} \cup O_{q} \subseteq \mathrm{~V}$, define a homeomorphism $g: V \rightarrow V$ by

$$
g(x)=\left\{\begin{array}{cl}
f(x) & \text { if } x \in \mathrm{O}_{p} \\
f^{-1}(x) & \text { if } x \in \mathrm{O}_{q} \\
x & \text { if otherwise }
\end{array}\right.
$$

and redefine $f^{\prime}=g \circ f$. Let W be a clopen set of X containing p. To show $W \approx X$ let U_{1} $\supseteq U_{2} \supseteq U_{3} \supseteq \cdots$ be a clopen neighborhood base of p. Take m_{1} so that $U_{m_{1}} \subseteq W$ and take a clopen set $V_{1} \subseteq U_{m_{1}}$ containing p and homeomorphic to X, with $h_{1}: X \rightarrow V_{1}$ a homeomorphism not moving p. Then take $m_{2}>m_{1}$ so that $\mathrm{U}_{m_{2}} \subseteq V_{1}-h_{1}(X-W)$ and take a clopen set $V_{2} \subseteq U_{m_{2}}$ containing p and homeomorphic to V_{1}, with $h_{2}: V_{1} \rightarrow V_{2}$ a homeomorphism not moving p. Further take $m_{3}>m_{2}$ so that $U_{m_{3}} \subseteq V_{2}-h_{2} \circ h_{1}(X-W)$ and take a clopen set $V_{3} \subseteq U_{m_{3}}$ containing p and homeomorphic to V_{2}, with $h_{3}: V_{2} \rightarrow V_{3}$ a homeomorphism not moving p.

Repeating this process we have a sequence $m_{1}<m_{2}<m_{3}<\cdots$ and a homeomorphism $h_{k} \circ h_{k-1} \circ \cdots \circ h_{1}: X-W \rightarrow h_{k} \circ h_{k-1} \circ \cdots \circ h_{1}(X-W) \subseteq U_{m_{k}-} U_{m_{k+1}}$ for each k. We can now define a homeomorphism $h: X \rightarrow W$ by

$$
h(x)= \begin{cases}h_{1}(x) & \text { if } x \in X-W \\ h_{k}(x) & \text { if } x \in h_{k-1} \circ h_{k-2} \circ \cdots \circ h_{1}(X-W) \\ x & \text { if otherwise }\end{cases}
$$

Thus $X \approx W$, which completes the proof.
Definition 2. Let $\alpha>0$ be a non-limit ordinal and let X be a scattered countable metric space of type $(\alpha, 1)$ with $\{p\}=X^{(\alpha-1)} . X$ is called an atom of length α if X is self-similar at p. A topological sum of at most countably many homeomorphic atoms is called a molecule . A molecule of the form

$$
\overbrace{A \oplus A \oplus}^{n} \overbrace{\cdots}
$$

with A an atom and $1 \leq n<\omega$ is denoted by $n A$. A molecule of the form

$$
\overbrace{A \oplus A \oplus A \oplus \cdots}^{\omega}
$$

with A an atom is denoted by ωA. A molecule M homeomorphic to βA with A an atom and $1 \leq \beta \leq \omega$ is called an A-molecule. The β is called the width of M and denoted by $\operatorname{wid}(M)$.

Examples. The atom of length 1 is the one point space. To count the atoms of length 2 , let X be a scattered countable metric space of type $(2,1)$ with $X^{(1)}=X_{(1)}=\{p\}$. Then X admits just three topological types. Each type is characterized by the existence of a clopen neighborhood base $X=U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \cdots$ of p satisfying
(r) $\left|U_{m}-U_{m+1}\right|=1$ for every m, or
(r) $\left|U_{1}-U_{2}\right|=\omega$ and $\left|U_{m}-U_{m+1}\right|=1$ for every $m \geq 2$, or
(s) $\left|U_{\mathrm{m}}-U_{m+1}\right|=\omega$ for every m.

Type r , type r^{\prime} and type s correspond to compact case, non-compact locally compact case and non-locally compact case, respectively. The X 's which admit clopen neighborhood bases satisfying (r), (r'), (s) are respectively denoted by r, r^{\prime}, s. Consequently the atoms of length 2 are r and s.

Definition 3. A space X is said to absorb a space Y if $X \approx X \oplus Y$. In particular, if X is an atom of length α with $\{p\}=X^{(\alpha-1)}, X$ absorbs Y if and only if X includes a clopen set not containing p and homeomorphic to Y. Thus, if a molecule X includes a clopen set homeomorphic to a molecule Y with leng $(Y)<\operatorname{leng}(X)$, then X absorbs Y.

If $3 \leq \alpha<\omega_{1}$ there are infinitely many scattered countable metric spaces of type $(\alpha, 1)$. However we have

Theorem 1. Let $\alpha>0$ be a finite ordinal. Then the number of atoms having length α is finite.

Theorem 2. Let $\alpha>0$ be a finite ordinal and let X be a scattered countable metric space of length α. Then every point p of X has a clopen neighborhood which is selfsimilar at p.

Theorem 3. Let $\alpha>0$ be a finite ordinal and let X be a scattered countable metric space of length α. Then X has a decomposition D consisting of finitely many clopen molecules such that
(*) for each atom A, at most one A-molecule is a member of D, and each member of D does not absorb the other member of D.

The decomposition D is unique in the sense that if D^{\prime} is another such decomposition then there is a bijection $\Phi: D \rightarrow D^{\prime}$ satisfying $M \approx \Phi(M)$ for every $M \in D$.

Examples. Theorem 1 and 2 do not hold if the length $\alpha>\omega$. Put $X=\left[0, \omega^{\omega}\right]$ and $\mathrm{A}_{n}=X-X_{(n)}, n=1,2,3, \ldots$, the subspace of X obtained by removing the limit ordinals whose cofinality is ω^{n}. Then each A_{n} is an atom of length $\omega+1$, and if $n<m$ then $A_{n} \neq A_{m}$ because

$$
\begin{aligned}
&\left(A_{n}\right)_{(n-1)} \cup\left(A_{n}\right)_{(n)}=X_{(n-1)} \cup X_{(n+1)} \approx \omega \mathrm{s} \\
& \text { but } \quad\left(A_{m}\right)_{(n-1)} \cup\left(A_{m}\right)_{(n)}=X_{(n-1)} \cup X_{(n)} \approx \omega r .
\end{aligned}
$$

As for Theorem 2, using A_{n} above, define $B_{n}=A_{n}-\left\{\omega^{\omega}\right\}$ and $Y=\left(\oplus_{n=1}^{\infty} B_{n}\right) \cup\{p\}$ with the topology such that the topology of $\oplus_{n=1}^{\infty} B_{n}$ is not disturbed and $U_{m}=\left(\oplus_{n=m}^{\infty} B_{n}\right) \cup$ $\{p\}, m=1,2,3, \ldots$, is a clopen neighborhood base of the new point p. Then Y is a scattered countable metric space of type $(\omega+1,1)$ with $\{p\}=\mathrm{Y}^{(\omega)}$. The point p has no clopen neighborhood in Y which is self-similar at p. Indeed, $\mathrm{U}_{m} \neq \mathrm{U}_{m+1}$ for every m because

$$
\left(U_{m}\right)_{(m-1)} \cup\left(U_{m}\right)_{(m)} \approx \omega s \oplus \omega r \quad \text { but } \quad\left(U_{m+1}\right)_{(m-1)} \cup\left(U_{m+1}\right)_{(m)} \approx \omega r
$$

To make the proof go smooth we shall give two easy technical lemmas.
Lemma 1. Let X, R be spaces and p a point of X. Let $X=U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \cdots$ be a clopen neighborhood base of p. Assume each $U_{m}-U_{m+1}$ is written

$$
U_{m}-\mathrm{U}_{m+1}=X_{m}^{0} \cup X_{m}^{1} \cup \cdots \cup X_{m}^{k m}\left(k_{m}=0 \text { may happen }\right)
$$

by finitely many mutually disjoint clopen sets $X_{m, 0}^{i}, 0 \leq i \leq k_{m}$, of X such that

$$
X_{m}^{1} \approx X_{m}^{2} \approx \cdot \cdot \approx X_{m}^{k m} \approx R .
$$

If $\left|\left\{m \mid k_{m} \geq 1\right\}\right|=\omega$ then there is a clopen neighborhood base $X=V_{1} \supseteq V_{2} \supseteq V_{3} \supseteq \cdots$ of p satisfying

$$
V_{m}-V_{m+1}=X_{m}^{0} \cup R_{m}
$$

for every m, where R_{m} is a clopen set of X such that $X_{m}^{0} \cap R_{m}=\emptyset$ and $R_{m} \approx R$.
Proof. Rewite $\left\{X_{m}^{i} \mid m=1,2,3, \ldots, 1 \leq i \leq k_{m}\right\}=\left\{X_{1}, X_{2}, X_{3}, \ldots\right\}$ so that if $X_{m}^{i}=X_{n}, X_{m^{\prime}}^{i{ }^{\prime}}=X_{n^{\prime}}$ and $m<m^{\prime}$ then $n<n^{\prime}$. We have only to put

$$
V_{m}=\{p\} \cup\left(\cup_{j=m}^{\infty} X_{j}^{0}\right) \cup\left(\cup_{j=m}^{\infty} X_{j}\right) .
$$

Notation. We use the notation $M \stackrel{h}{\in} D$ to mean that D contains a member homeomorphic to M.

Lemma 2. Let X be a scattered countable metric space of finite length and let D
be a decomposition of X into finitely many clopen molecules satisfying (*) of Theorem 3. Let M be a clopen A-molecule of X (not necessarily satisfying $M \stackrel{h}{\in} D$) with A an atom. Then M is absorbed by a member N of D with leng $(N)>\operatorname{leng}(M)$ or D contains, as a member, an A-molecule of width not smaller than the width of M.

Proof. Let $\alpha=\operatorname{leng}(M)$. If $\operatorname{wid}(M)=\omega\left(\right.$ which is equivalent to $\left.\left|M^{(\alpha-1)}\right|=\omega\right)$,
writing $M^{(\alpha-1)}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$, decompose M as $M=\cup_{i=1}^{\infty} A_{i}$ with A_{i} a clopen atom homeomorphic to A and satisfying $\left\{x_{i}\right\}=A_{i}^{(\alpha-1)}$. Since $|D|<\omega$, some member N of D contains countably many elements, say $x_{i}, x_{i,}, x_{i 3}, \ldots$, of $M^{(\alpha-1)}$. Put $M^{\prime}=\cup_{j=1}^{\infty}\left(A_{i j} \cap N\right)$. Then M^{\prime} is a clopen molecule homeomorphic to M and included in N. If leng $M=$ leng N then $M \approx N$. If leng $M<$ leng N then M is absorbed by N by the remark following Definition 3.

If $\operatorname{wid}(M)$ is finite, also writing $M^{(\alpha-1)}=\left\{x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right\}$, decompose M as $M=\bigcup_{i=1}^{k}$ A_{i} with A_{i} a clopen atom homeomorphic to A and satisfying $\left\{x_{i}\right\}=A_{i}^{(\alpha-1)}$. Take $N_{i} \in D$ so that $x_{i} \in N_{i}$, then N_{i} includes a clopen atom $A_{i} \cap N_{i}$ homeomorphic to A. If leng (M) $<\operatorname{leng}\left(N_{i}\right)$ for some i, then N_{i} absorbs A and hence M because $\operatorname{wid} M<\omega$. If $\operatorname{leng}(M)=$ $\operatorname{leng}\left(N_{i}\right)$ for every i, then N_{i} should be an A-molecule for every i. Since an A-molecule appeas at most once as a member of D, we have $N_{1}=N_{2}=\cdots=N_{k}$ so that $\operatorname{wid}(M) \leq$ $\operatorname{wid}\left(N_{1}\right)$. This completes the proof.

Proof of Theorem 1,2 and 3. We shall prove Theorem 1, 2 and 3 simultaneously by induction on α. These therems are trivially true if $\alpha=1$. Let γ be a finite ordinal and assume Theorem 1, 2 and 3 are valid for for every $\alpha<\gamma$. To first show Theorem 2 for γ, let X be a scattered countable metric space of length γ and p a point of X. Let p $\in X_{(\beta)}$ and, using 0-dimensionality, take a clopen set U of X so that $\mathrm{U} \cap X^{(\beta)}=\{p\}$.
If $\beta<\gamma-1$ then leng $(U) \leq \gamma-1$ so that induction hypothesis assures the existence of a clopen neighborhood V of p included in U and self-similar at p. Thus we may assume that type $X=(\gamma, 1)$ and $\{p\}=X^{(\gamma-1)}=X_{(\gamma-1)}$. Let $X=U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \cdots$ be a clopen neighborhood base of p. Since leng $\left(U_{m}-U_{m+1}\right)<\gamma$ it follows from induction hypothesis that each $U_{m}-U_{m+1}$ has a decomposition D_{m} consisting of finitely many clopen molecules and satisfying (*). Clearly each member of D_{m} is of length less than γ. Now define a equivalence relation \sim on the set $\{1,2,3, \ldots\}$ as follows : $m \sim m$ ' if and only if for each atom $A, \omega A \stackrel{h}{\epsilon} D_{m}$ is equivalent to $\omega A \stackrel{h}{\in} D_{m^{\prime}}$, and $n A \stackrel{h}{\epsilon} D_{m}, 1 \leq n<\omega$, is equivalent to $n^{\prime} A \stackrel{h}{\in} D_{m^{\prime}}, 1 \leq n^{\prime}<\omega .\left(n \neq n^{\prime}\right.$ may happen. $)$

Note that the number of equivalence classes by \sim is finite because the number of atoms of length less than γ is finte by induction hypothesis. We can thus take l so that

$$
|C \cap\{l, l+1, l+2, \ldots\}|=0 \text { or } \omega
$$

for every equivalence class C.
We shall prove that U_{l} is self-similar at p. For convenience let U_{l} be renamed X, let
U_{l+m-1} be renamed $U_{m}, m=1,2,3, \ldots$, and let D_{l+m-1} be renamed $D_{m}, m=1,2,3, \ldots$ Let

$$
A_{1}, A_{2}, \ldots, A_{k}
$$

be all the atoms of length less than γ so arranged that if $i \leq j$ then $\operatorname{leng}\left(A_{i}\right) \geq \operatorname{leng}\left(A_{j}\right)$.
Recalling how we took l we see that for each $1 \leq i \leq k$ one and only one of the following three cases occurs :
(a_{i}) $\omega A_{i}{ }^{h} \in D_{m}$ for countalbly many m ' s .
(b_{i}) $\omega A_{i} \stackrel{h}{\notin} D_{m}$ for every m, and $n A_{i} \stackrel{h}{\in} D_{m}, 1 \leq n<\omega$, for countably many m's (with n maybe varying).
($\left.c_{i}\right) \omega A_{i}, n A_{i} \notin D_{m}$ for every m and $1 \leq n<\omega$.
Using Lemma 1 we shall remake U_{m} and D_{m} (at most) k times as follows : First consider the case $i=1$. If $\left(c_{1}\right)$ occurs there is nothing to do. If $\left(a_{1}\right)$ does, apply Lemma 1 with $R=\omega A_{1}$ and $k_{m}=0$ or 1 to remake $U_{m}, m=1,2,3, \ldots$, so that $U_{m}-U_{m+1}$ has a decomposition \tilde{D}_{m} satisfying :
(d) \tilde{D}_{m} contains only one member homeomorphic to ωA_{1} and no member homeomorphic to $n A_{1}, 1 \leq n<\omega$.
(e) The members of D_{m} coincide with those of \tilde{D}_{m} except for A_{1}-molecules.

If (b_{1}) occurs, apply Lemma 1 with $R=A_{1}$ to remake $U_{m}, n=1,2,3, \ldots$, so that U_{m} U_{m+1} has a decomposition \tilde{D}_{m} satisfying :
(d’) \tilde{D}_{m} contains only one member homeomorphic to A_{1} and no member homeomorphic to $\beta A_{l}, 2 \leq \beta \leq \omega$.
(e') The members of D_{m} coincide with those of \tilde{D}_{m} except for A_{1}-molecules.
In either case, \tilde{D}_{m} may not satisfy the latter half of the condition (*). To avoid unnecessary discussion, do not make a new decomposition of $U_{m}-U_{m+1}$ so that (*) is satisfied. Let \tilde{D}_{m} be renamed D_{m} again.

Repeat this modification (at most) k times until ending at A_{k}, where A_{k} is, of course, the one point space. Then the U_{m}, D_{m} thus obtained satisfy the following:
(f) D_{m} coincides with $D_{m^{\prime}}$ for every m, m^{\prime} in the sense that there is a bijection $\Phi: D_{m}$ $\rightarrow D_{m^{\prime}}$ satisfying $M \approx \Phi(M)$ for every $M \in D_{m}$. In particular $U_{m}-U_{m+1} \approx U_{m^{\prime}}-U_{m^{\prime}+1}$ for every m, m^{\prime}.
(g) For each $1 \leq i \leq k, D_{m}$ contains at most one A_{i}-molecule, and this A_{i}-molecule is homeomorphic to ωA_{i} or A_{i}. (This is not necessary here but will be used later.)

It follows from (f) and Proposition 1 that U_{l} (renamed X) is self-similar at p, which completes the proof of Theorem 2 for γ.

To use later let D_{m} be finally modified so that (f), (g) and (*) hold simultaneously. Let $M_{1}, M_{2}, \ldots, M^{t}$ be all the members of D_{m} arranged so that if $i \leq j$ then leng $\left(M^{i}\right) \geq$ $\operatorname{leng}\left(M^{j}\right)$. Define $D_{m}^{i}, 0 \leq i \leq t$, inductively as follows : $D_{m}^{0}=D_{m}$ and

$$
D_{m}^{i}=\left\{\begin{array}{cl}
D_{m}^{i-1} & \text { if } M^{i} \notin D_{m}^{i-1} \\
\left\{M^{i} \cup\left(\cup E^{i}\right)\right\} \cup\left(D_{m}^{i-1}-E^{i}\right) & \text { if } M^{i} \in D_{m}^{i-1}
\end{array}\right.
$$

where E^{i} denotes the members of D_{m}^{i-1} absorbed by M^{i} and $\cup E^{i}$ denotes the union of members of E^{i}. Of course $M^{i} \cup\left(\cup E^{i}\right) \approx M^{i}$. Let D_{m}^{t} be renamed D_{m} again. It is easy to see that the new $D_{m}, m=1,2,3, \ldots$, satisfy (f), (g) and (*).

To show Theorem 1 for γ, let

$$
A_{1}, A_{2}, \ldots, A_{k}
$$

be all the atoms of length less than γ as above, and let ρ_{γ} be the number of atoms of length γ. We shall prove

$$
\text { (\#) } \rho_{\gamma} \leq 3^{k}
$$

Note that we have already proved above that a scattered countable metric space X of type $(\gamma, 1)$ with $\{p\}=X^{(\gamma-1)}$ includes a clopen set U containing p and admitting a clopen neighborhood base $U=U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \cdots$ of p for which each $U_{m}-U_{m+1}$ has a finite decompsition D_{m} into clopen molecules satisfying (f), (g) and $\left(^{*}\right)$. If X is an atom of length γ we can identify X with U. Since $U_{1}-U_{2} \approx U_{m}-U_{m+1}$ for every m , the number of topological types of U (and hence of X) is not greater than that of $U_{1}-U_{2}$. By (g), the number of topological types of $U_{1}-U_{2}$ is not greater than 3^{k}, where for each $1 \leq i \leq k$, the ' 3 ' corresponds to the three cases, $\omega A_{i} \stackrel{h}{\in} D_{1}, A_{i} \stackrel{h}{\in} D_{l}$ and $\omega A_{i}, A_{i} \notin D_{1}$. Consequently (\#) follows. This completes the proof of Theorem 1 for γ.

Remark. The inequality (\#) is far from a good estimate because the right side counts many impossible combinations of molecules with respect to the condition (*).

To finally show Theorem 3 for γ, let X be a scattered countable metric space of length γ. Using 0 -dimensionality we have a discrete family $\left\{A_{x} \mid x \in X^{(\gamma-1)}\right\}$ of clopen sets of X satisfying $x \in A_{x}$ for each $x \in X^{(\gamma-1)}$. By Theorem 2 we can assume A_{x} is an atom of length γ. Gathering homeomorphic atoms, we obtain finitely many mutually disjoint clopen molecules $M_{1}, M_{2}, \ldots, M_{m}$ of length γ such that $M_{1} \cup M_{2} \cup \cdots \cup M_{m}=\cup_{x \in X}^{(\gamma-1)}$ U_{x}, and for each atom A of length γ, an A-molecule appears at most once in M_{1}, M_{2}, \ldots, M_{m}. By induction hypothesis $X-\left(M_{1} \cup M_{2} \cup \cdots \cup M_{m}\right)$ has a decomposition D consisting of finitely many clopen molecules of X satisfying $(*)$. For each $1 \leq i \leq m$ define E_{i} inductively as follows :

$$
\left\{\begin{array}{l}
E_{1} \text { is the members of } D \text { absorbed by } M_{1} ; \\
E_{i} \text { is the members of } D-\left(\cup_{j=1}^{i-1} E_{j}\right) \text { absorbed by } M_{i} .
\end{array}\right.
$$

Define

$$
D^{\prime}=\left\{M_{i} \cup\left(\cup E_{i}\right) \mid 1 \leq i \leq m\right\} \cup\left(D-\cup_{i=1}^{m} E_{i}\right)
$$

with $\cup E_{i}$ denoting the union of members of E_{i}. Then D^{\prime} is a desired decomposition of X satisfying (*).

To check the uniequness let D, D^{\prime} be two such decompositions of X and suppose to the contrary that there is $\beta \leq \gamma$ admitting an atom A of length β and an A-molecule M such that

$$
M \stackrel{h}{\in} D \text { and } M \stackrel{h}{\notin} D^{\prime} \text {, or } M \stackrel{h}{\in} D \text { and } M \stackrel{h}{\in} D^{\prime} .
$$

We may assume the β is the largest one satisfying these conditions. If, for instance, the former happens then $M \stackrel{h}{\in} D$ and (*) say that M is not absorbed by any member of D and hence of D^{\prime} whose length greater than β. Thus by Lemma 2, D^{\prime} contains an A-molecule N satisfying wid $M \leq \operatorname{wid} N$ so that wid $M<$ wid N because the equality would imply $M \approx N$. Then $N \in D$ and $\left(^{*}\right)$ say again that N is not absorbed by any member of D of length greater than β. Thus by Lemma 2 again, D contains an A-molecule L with wid $N \leq \operatorname{wid} L$ so that wid $M<$ wid L. This implies that two different A-molecules M, L are members of D, which contradicts $(*)$. This completes the proof of Theorem 3 for γ. We have thus finished the proof of Theorems 1, 2 and 3.

The following corollary is a key to counting the number of atoms of length 3 and 4 .
Corollary 1. Let $2 \leq \alpha<\omega$ and let X be a scattered countable metric space of type $(\alpha, 1)$ with $\{p\}=X^{(\alpha-1)}$. Then X is an atom if and only if p has a clopen neighborhood base $X=U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \cdots$ satisfying :
(1) $U_{m}-U_{m+1} \approx U_{m^{\prime}}-U_{m^{\prime}+1}$ for every m, m^{\prime}.
(2) If we decompose $U_{1}-U_{2}$ into finitely many clopen molecules satisfying $\left(^{*}\right)$ of Theorem 3, then every member M of the decomposition is of the form $M \approx \omega A$ or $M \approx A$ with A an atom.
The topological type of $U_{1}-U_{2}$ is uniquily determined.
Remark. Condition (2) is indispensable for the uniqueness as the following trivial example shows : Let $X=[0, \omega]$ and $U_{m}=[m, \omega], U^{\prime}{ }_{m}=[2 m, \omega], m=0,1,2, \ldots$

Proof of Corollary 1. The 'if' part is assured by Proposition 1. The existence of such U_{m} has already been verified in the proof of Theorem 2 above. To show the uniqueness let $U_{m}^{\prime}, m=1,2,3, \ldots$, be another such neighborhood base of p and let D, D^{\prime} be the decompositions of $U_{1}-U_{2}$ and $U_{1}^{\prime}-U_{2}^{\prime}$ respectively satisfying $\left(^{*}\right)$. We first prove the assertion that if $M \in D$ then $U_{1}^{\prime}-U_{2}^{\prime}$ includes a clopen set homeomorphic to M, and if $M^{\prime} \in D^{\prime}$ then $U_{1}-U_{2}$ includes a clopen set homeomorphic to M^{\prime}. In case M is a single atom of length β, let $\{a\}=\mathbf{M}^{(\beta-1)}$, take m so that $a \in U_{m}^{\prime}-U_{m+1}^{\prime}$ and take a clopen neighborhood U of a included in $M \cap\left(U_{m}^{\prime}-U_{m+1}^{\prime}\right)$. Then $U \approx M$ because M is an atom.

It follows from (1) that $U_{1}^{\prime}-U_{2}^{\prime}$ includes a clopen set homeomorphic to U and hence to M. If M is not a single atom then, by (2), M is of the form $M=\bigcup_{i=1}^{\infty} A_{i}$ with A_{i}
mutually disjoint clopen atoms homeomorphic to a commom atom A of length β. Write $M^{(\beta-1)}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ with $x_{i} \in A_{i}$ for each i. Take m so that $M \cap U_{m}^{\prime}=\emptyset$, take k $<m$ so that $\left|M^{(\beta-1)} \cap\left(U_{k}^{\prime}-U_{k+1}^{\prime}\right)\right|=\omega$ and, writing $M^{(\beta-1)} \cap\left(U_{k}^{\prime}-U_{k+1}^{\prime}\right)=\left\{x_{i 1}, x_{i 2}\right.$, $\left.x_{i 3}, \ldots\right\}$, put $U=\left(\cup_{j=1}^{\infty} A_{i j}\right) \cap\left(U_{k}^{\prime}-U_{k+1}^{\prime}\right)$. Then $M \approx U \subseteq U_{k}^{\prime}-U_{k+1}^{\prime}$. It follows from (1) that $U_{1}^{\prime}-U_{2}^{\prime}$ includes a clopen set homeomorphic to U and hence to M.

Quite similarly we can find a clopen set of $U_{1}-U_{2}$ homeomorphic to M^{\prime}. This completesthe proof of the assertion. Now suppose to the contrary that $U_{1}-U_{2} \not \approx U_{1}^{\prime}-U_{2}^{\prime}$ so that there is $\beta \leq \alpha-1$ admitting an atom A of length β and an A-molecule M such that

$$
M \stackrel{h}{\in} D \text { and } M \stackrel{h}{\oplus} D^{\prime} \text {, or } M \stackrel{h}{\oplus} D \text { and } \mathrm{M}^{\frac{h}{\in}} D^{\prime} .
$$

Combined with the assertion above, this however leads to a contradiction in the same way as in the last part of the proof of Theorem 3. This completes the proof of Corollary 1.

The first easy application of Theorem 3 is the following.
Proposition 2. Let X be a scattered countable metric space of type $(2, n), 1 \leq n<$ ω. Then X admits just $n+2$ topological types as follows :

$$
n r, n s, k r \oplus(n-k) s, 1 \leq k \leq n-1, \text { and } n r \oplus \mathrm{~N}
$$

with N the countable discrete space.
Note that a finite points space is absorbed by nr and $n s$, and that N is absorbed by $n s$ but not by $n r$.

Proposition 3. Let X be a scattered countable metric space of type $(2, \omega)$. Then X is homeomorphic to one and only one of the following spaces :

$$
\omega r, \omega s, k r \oplus \omega s, 1 \leq k<\omega, k s \oplus \omega r, 1 \leq k<\omega, \text { and } \omega r \oplus \omega s
$$

Note that N is absorbed by ωr as well as by ωs so that N does not appear in the decomposition.
3. Classification. Let us start with counting the number of atoms of length 3 .

Theorem 4. The number of atoms of length 3 is nine.
Proof. Let X be an atom of length 3 with $\{p\}=X^{(2)}=X_{(2)}$ and let $X=U_{1} \supseteq U_{2} \supseteq U_{3}$ $\supseteq \cdots$ be a clopen neighborhood base of p satisfining (1), (2) in Corollary 1. By virtue of the uniqueness of $U_{1}-U_{2}$ we have only to count the topological types of $U_{1}-U_{2}$. Let D be the finite decomposition of $U_{1}-U_{2}$ into clopen molecules satisfying (*). By (2) of Corollary 1, the molecules which may appear as members of D are the following six :

$$
r, \omega r, s, \omega s, \text { the one point space and } \mathrm{N} .
$$

Searching the possible combinations of the six molecules satisfying $(*)$, we obtain the following nine topological types of $U_{1}-U_{2}$.

atoms of length 3	examples in $\left[0, \omega_{1}\right)$	residues	note
$X(r)$	$\left[0, \omega^{2}\right]$	\emptyset	c, rh
		N	lc, rh
		$n s, 1 \leq n<\omega$	
		ωr	lc, rh
		ωs	
		$n s \oplus \omega r, 1 \leq n<\omega$	
		$\omega r \oplus \omega s$	
$X\left(r^{\prime}\right)$	$\left[0, \omega^{2}\right]-\{\omega(2 n-1) \mid 1 \leq n<\omega\}$	\emptyset	rh
		$n s, 1 \leq n<\omega$	
		ωr	rh
		ωs	
		$n s \oplus \omega r, 1 \leq n<\omega$	
		$\omega r \oplus \omega s$	
$X(s)$	$\left[0, \omega^{3}\right]-\mathrm{C}_{\omega}$	\emptyset	rh
		$n r, 1 \leq n<\omega$	
		ωr	
		ωs	rh
		$n s \oplus \omega s, 1 \leq n<\omega$	
		$\omega r \oplus \omega s$	
$X(\mathrm{r} \oplus s)$	$\begin{gathered} \left.\left[0, \omega^{3}\right]-\mathrm{C}_{\omega}\right) \cup \\ \left\{\omega^{2} n+\omega \mid n<\omega\right\} \end{gathered}$	\emptyset	
		ωr	
		ωs	
		$\omega r \oplus \omega s$	
$X(\omega r)$	$\left[0, \omega^{3}\right]-\mathrm{C}_{\omega^{2}}$	\emptyset	rh
		$n s, 1 \leq n<\omega$	
		ωs	
$X(\omega s)$	$\left[0, \omega^{4}\right]-\left(\mathrm{C}_{\omega} \cup \mathrm{C}_{\omega^{3}}\right)$	\emptyset	rh
		$n r, 1 \leq n<\omega$	
		ωr	
$X(\mathrm{~s} \oplus \omega r)$	$\begin{gathered} {\left[0, \omega^{3}\right]-\left\{\omega^{2}(2 n-1)+\omega m \mid\right.} \\ 1 \leq n<\omega, m<\omega\} \end{gathered}$	\emptyset	
		ωs	
$X(r \oplus \omega s)$	$\begin{gathered} \left(\left[0, \omega^{4}\right]-\left(\mathrm{C}_{\omega} \cup \mathrm{C}_{\omega_{3}}\right)\right) \cup \\ \left\{\omega^{3} n+\omega \mid n<\omega\right\} \end{gathered}$	\emptyset	
		ωr	
$X(\omega r \oplus \omega s)$	$\begin{gathered} \left(\left[0, \omega^{4}\right]-\left(\mathrm{C}_{\omega} \cup \mathrm{C}_{\omega_{3}}\right)\right) \cup \\ \left\{\omega^{3} m+\omega^{2} n+\omega \mid m<\omega, \mathrm{n}<\omega\right\} \end{gathered}$	\emptyset	

Table 1

$$
\begin{gathered}
r, r \oplus \mathrm{~N}, s, r \oplus s, \\
\omega r, \omega s, s \oplus \omega r, r \oplus \omega \mathrm{~s}, \omega \mathrm{r} \oplus \omega s .
\end{gathered}
$$

Consequently the molecule N appears only in $r \oplus \mathrm{~N}=r^{\prime}$ because, in the other seven cases, N is always absorbed. This completes the proof of Theorem 4 .
Let

$$
\begin{gathered}
X(r), X\left(r^{\prime}\right), X(s), X(r \oplus s) \\
X(\omega r), X(\omega s), X(s \oplus \omega r), X(r \oplus \omega s), X(\omega r \oplus \omega s)
\end{gathered}
$$

denote the corresponding topological types of X.
Let X be a scattered coutable metric space of type $(3,1)$ and D the finite decomposition of X into clopen molecules satisfying $\left({ }^{*}\right)$. By virtue of the uniqueness of D, to count the topological types of X is to count the decompositions D. The decomposition D is of the form

$$
D=\{A\} \text { or } D=\{A\} \cup\left\{M_{\lambda} \mid \lambda \in \Lambda\right\},
$$

where A is homeomorphic to one of the nine atoms above and M_{λ} is a molecule of length less than 3. Let us call $X-A$ the residue of A. Each M_{λ} is homeomorphic to one of the following :
$n r, 1 \leq n<\omega, \omega r, n s, 1 \leq n<\omega, \omega s, \mathrm{~N}$ and the finite points spaces.
Choosing the possible combinations among them so that $(*)$ is satisfied, we have Table 1 giving topological classification of the scattered countable metric spaces of type $(3,1)$. (Recall that, as stated after Definition 3, an atom A of length 3 with $\{p\}=$ $A^{(2)}$ absorbs an molecule M of length less than 3 if and only if A includes a clopen set homeomorphic to M and not containing p.) In the table, $C_{\beta}, \beta=\omega, \omega^{2}, \omega^{3}$, denotes the set of ordinals less than ω_{1} whose cofinality is β. The topology of each example in $\left[0, \omega_{1}\right)$ is that induced from the order topology on $\left[0, \omega_{1}\right)$. The symbols c, lc, rh mean respectivelly compact, locally compact, rankwise homogeneous. A scattered space X is defined to be rankwise homogeneous if for each ordinal β and $x, x^{\prime} \in X(\beta)$ there is a homeomorphism $\mathrm{h}: X \rightarrow X$ sending x to x^{\prime}.

Let us go on to the type $(3, k), 1 \leq \mathrm{k}<\omega$. Let $A_{i}, 1 \leq i \leq 9$, denote in order the nine atoms of length 3 and for each i, R_{i} the set of residues of A_{i} listed in the table above. For example, $A_{1}=X(r)$ and

$$
R_{1}=\{\emptyset, \mathrm{N}, \omega r, \omega s, \omega r \oplus \omega s\} \cup\{n s \mid l \leq n<\omega\} \cup\{n s \oplus \omega r \mid l \leq n<\omega\}
$$

Theorem 5. Let X be a scattered countable metric space of type $(3, k), 1 \leq k<\omega$.

Then X can be written uniquely as

$$
X \approx A_{i 1} \oplus A_{i 2} \oplus \cdots \oplus A_{i k} \oplus R
$$

where $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq 9$ and $R \in R_{\mathrm{i} 1} \cap R_{i 2} \cap \cdots \cap R_{i k}$.
In the case of type ($3, \omega$), almost molecules of length less than 3 are absorbed and vanish.

Theorem 6. Let X be a scattered countable metric space of type ($3, \omega$). Then X can
be written uniquely as

$$
X \approx \oplus_{i=1}^{\infty} X_{j} \oplus R,
$$

where $X_{j} \in\left\{A_{1}, A_{2}, \ldots, A_{9}\right\}$ and

$$
R \in\{\emptyset, \omega r, \omega s\} \cup\{n r \mid n<\omega\} \cup\{n s \mid n<\omega\}
$$

$R=n r$ is possible only when $X_{j}=A_{3}$ or A_{6} for every j,
$R=n s$ is possible only when $X_{j}=A_{1}$ or A_{2} or A_{5} for every j,
$R=\omega r$ is possible only when $X_{j}=A_{1}$ or A_{2} or A_{4} or A_{8} for finitely many j 's and
$X_{j}=A_{3}$ or A_{6} for the other j 's and
$R=\omega s$ is possible only when $X_{j}=A_{3}$ or A_{4} or A_{7} for finitely many j 's and $X_{j}=$ A_{1} or A_{2} or A_{5} for the other j 's.
4. The number of atoms of length 4 . Let ρ_{n} denote the number of atoms of length n . As verified before, $\rho_{1}=1, \rho_{2}=2, \rho_{3}=9$. Compared with ρ_{3}, the number ρ_{4} is considerably large. In fact a rough calculation gives at least

$$
\rho_{4} \geq 3^{9}-1=19682
$$

This inequality is obtained in the following way. Let X be an atom of length 4 with $\{p\}$ $=X^{(3)}$ and let $X=U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \cdots$ be a clopen neighborhood base of p satisfying (1), (2) of Corollary 1. Assume further that the finite decomposition D of $U_{1}-U_{2}$ into clopen molecules satisfying $(*)$ contains no molecule of length less than 3 . Then the number of topological types of $U_{1}-U_{2}$ is $3^{9}-1$, the right side of the inequality, where foreach $1 \leq i \leq 9$, the ' 3 ' coresponds to the three cases, $A_{i} \stackrel{h}{\in} D, \omega A_{i} \stackrel{h}{\in} D$ and $A_{i}, \omega A_{i}$ $\stackrel{h}{\notin} D$.

To determine ρ_{4}, we should take account of the molecules of length less than 3 which may appear in the decomposition. Consider the following table.

molecules	nonabsorbers
N	A_{1}
r	$A_{3}, \omega A_{3}, A_{6}, \omega A_{6}$
s	$A_{1}, \omega A_{1}, A_{2}, \omega A_{2}, A_{5}, \omega A_{5}$
ωr	$A_{1}, A_{2}, A_{3}, \omega A_{3}, A_{4}, A_{6}, \omega A_{6}, A_{8}$
ωs	$A_{1}, \omega A_{1}, A_{2}, \omega A_{2}, A_{3}, A_{4}, A_{5}, \omega A_{5}, A_{7}$

Table 2

The molecules in the first column are those of length less than 3 which can appear as memebers of the decomposition of $U_{1}-U_{2}$. The second row, for example, means A_{3}, $\omega A_{3}, A_{6}, \omega A_{6}$ do not absorb r but the others do.

Table 2 tells us :
(1) The following pairs of molecules can not appear simaltaneously as members of the decomposition of $U_{1}-U_{2}$.
$\mathrm{N} \& r, \mathrm{~N} \& s, \mathrm{~N} \& \omega r, \mathrm{~N} \& \omega s, r \& s, r \& \omega r, s \& \omega s$
Indeed, N and r have no common nonabsorber ; N is absorbed by $s, \omega r$ and $\omega s ; r$ and s have no common nonabsorber ; r and ωr are both r-molecules ; s and ωs are both s-molecules.
(2) $r \& \omega s$ appear simultaneously only if A_{3} appears and the others do not appear.
(3) $s \& \omega r$ appear simultaneously only if one or two of A_{1}, A_{2} appear and the others do not appear.
(4) ωr \& ωs appear simultaneously only if one or two or three or four of $A_{1}, A_{2}, A_{3}, A_{4}$ appear and the others do not appear.
(5) More than two molecules do not appear simaltaneously because one of them absorbs another.

Thus the number of the decompositions D of $U_{1}-U_{2}$ satisfying (*) and containing at least one molecule of length less than 3 is

$$
1+\left(3^{2}-1\right)+\left(3^{3}-1\right)+\left(3^{2} 2^{4}-1\right)+\left(3^{3} 2^{3}-1\right)+1+\left(2^{2}-1\right)+\left(2^{4}-1\right)=412
$$

The first five terms correspond to the cases where only one of the five molecules

$$
\mathrm{N}, r, s, \omega r, \omega s
$$

appears. The last three terms correspond to the cases discussed in (2), (3), (4) above.
Adding 412 to 19682 we have
Theorem 7. $\rho_{4}=20094$.

References.

[1] K. Kuratowski, Topology vol. II, Academic Press (1968).
[2] S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27.

