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The recent development of next-generation sequencing technology for extensive mutation analysis, and beadarray
technology for genome-wide DNA methylation analysis has made it passible to obtain integrated pictures of genetic and
epigenetic alterations, using the same cancer samples. In this study, we aimed to characterize such a picture in esophageal
squamous cell carcinomas (ESCCs). Base substitutions of 55 cancer-related genes and copy number alterations (CNAs) of
28 cancer-related genes were analyzed by targeted sequencing. Forty-four of 57 ESCCs {(77%!) had 64 non-synonymous
somatic mutations, and 24 ESCCs (42%) had 35 CNAs, A genome-wide DNA methylation analysis using an Infinium
Humaniviethylation450 BeadChip array showed that the CpG island methylator phenotype was unlikely to be present in
ESCCs, a different situation from gastric and colon cancers. Regarding individual pathways affected in ESCCs, the WNT
pathway was activated potentially by aberrant methylation of its negative regulators, such as SFRP1, SFRP2, SFRP4, SFRP5,
50X17, and WIFT (33%). The p53 pathway was inactivated by TP53 mutations (70%), and potentially by aberrant
methylation of its downstream genes. The cell cycle was deregulated by mutations of CDKN24 {9%), deletions of
CDKN2A and RB1 (32%), and by aberrant methylation of COKN2A and CHFR {9%). In conclusion, ESCCs had unigue
methylation profiles different from gastric and colon cancers. The genes involved in the WNT pathway were affected
mainly by epigenetic alterations, and those involved in the p53 pathway and cell cycle regulation were affected mainly by
genetic alterations. © 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) is one
of the most malignant cancers worldwide, and a
predominant histological type of esophageal can-
cer [1,2], To understand ESCC development, many
studies have been conducted showing that TP53 is
most frequently mutated (35-849%), and that other
genes, such as CDKN2A, CDKN2B, EGFR, NFE2L2,
PIK3CA, MLH1, and BRAF, are mutated with relatively
low frequencies [3-7]. Recently, four comprehensive
mutation analyses by whole-genome and whole-
exome sequencing have been reported in ESCCs, and
ADAM29, AJUBA, ARIDIA, FAM135B, FATI1, FATZ,
FAT3, FAT4, KEAP1, KMT2D, NOTCHI1, NOTCH?Z,
NOTCH3, and ZNF750 were newly identified as
mutated genes [8-11].

Epigenetic alterations, such as aberrant DNA
methylation, are deeply involved in human cancer
development [12-15]. Especially, aberrant DNA meth-
ylation of a CpG island (CGI) in a promoter region
causes silencing of its downstream gene and is known
as a major mechanism for inactivation of tumor-
suppressor genes [16]. In ESCCs, CDKN2A has been
reported to be methylated in 19-88% of cases [17-19],
and its methylation is associated with metastatic and
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invasive phenotypes of ESCCs [20]. Additional genes,
such as APC, CDHI, CDKN2B, and RASSF1, have also
been reported to be methylated in ESCCs [21-26].

In this study, we aimed to establish an integrated
picture of genetic and epigenetic alterations in ESCCs
taking advantage of two novel technologies. Next-
generation sequencing (NGS) technology has enabled
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geal squamous cell carcinoma; CGl, CpG island; CNY, copy number
variation; RRDR, relative reading depth to the reference; array-CGH,
ricroarray-based comparative genomic hybridization; TSS, transcrip-
tion start site; 755200, 200-bp upstream region from a transcription
start site; OS, overall survival; dCRT, definitive chemoradiotherapy;
CIMP, CpG island methylator phenotype.
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CGH + SNP 4 x 180K microarray (Agilent Technolo-
gies). The microarray was scanned with an Agilent
G2565BA microarray scanner (Agilent Technologies),
and the scanned data were processed using the
Agilent CytoGenomics Software (Agilent Technolo-
gies). Arelative copy number of a gene was obtained as
two to the power of the mean log2 ratio of all probes
within the gene.

Analysis of Gene Expression by Oligonucleotide
Microarray

Gene expression levels in normal esophageal
mucosae and ESCC cell lines (KYSE30, KYSESO0,
KYSE220, and KYSE270) were analyzed using the
GeneChip Human Genome U133 Plus 2.0 microarray
(Affymetrix, Santa Clara, CA, USA), as described
previously [32]. Genes with signal intensities of 250
or more were considered expressed genes,

Analysis of DNA Methylation

Analysis of DNA methylation was performed using
an Infinium HumanMethylation450 BeadChip array,
which covered 482,421 CpG and 3,091 non-Cp@G sites
{Illumina, San Diego, CA), as described previously [33].
The methylation level of a CpG site was represented by
a 8 value, which ranged from 0 (completely unmethy-
lated) to 1 (completely methylated). A corrected B
value was calculated using a measured beta value and
the fraction of cancer cells in a sample [A corrected B
value=the B value measured x 100/(the fraction of
cancer cells in the sample (%))] [28].

All the CpG sites were grouped into 193,531
genomic “segments”, each of which was defined by
its location against a transcription start site (TSS) and
relative location against a CGI. Genomic segments
were divided into 299,563 genomic “blocks” smaller
than 500bp, and 292,265 genomic blocks on auto-
somes were used for the analysis. The numbers of
genomic segments and blocks in this study were
different from those in our previous study [30]. This is
because genomic segments and blocks with probes
that failed to produce reliable g value in any samples
were excluded in the previous study [30], but not in
this study. A DNA methylation level of a genomic
block was evaluated using the mean of corrected B
values of the Cp( sites within the genomic block, and
the methylation status of the genomic block was
classified into unmethylated (corrected g value < 0.4),
partially methylated (0.4 <corrected g value <0.8),
and heavily methylated (corrected g value >0.8).

Selection of Genes of Cancer-Related Pathways

Six cancer-related pathways (the WNT pathway,
the AKT/mTOR pathway, the MAPK pathway, the
p33 pathway, cell cycle regulation, and mismatch
repair) were selected because these pathways have
been repeatedly reported to be altered in ESCCs
[9-11,34-37]. Genes involved in the six cancer-related
pathways were selected from the Kyoto Encyclopedia of
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Genes and Genomes Pathway Database (http://www.
genome.jp/kegg/). Regarding the pathways activated in
ESCCs, their negative regulators were selected. Regard-
ing the pathways inactivated in ESCCs, their positive
regulators and downstream effectors were selected. A
total of 81 genes were selected for analyses of the six
cancer-related pathways (Supplementary Table S4 and
Figure 81). Among the 81 genes, 25 genes were analyzed
for base substitutions, 67 genes for methylation silenc-
ing, and 11 genes for both (Supplementary Table 5S4 and
Figure §1). For the analysis of methylation silencing, we
used a CGI in a 200-bp upstrearn region from a
transcription start site (TSS200) whenever probes were
available in this region because DNA methylation of a
CGI in a TSS200 is known to consistently silence its
downstream gene [12,37-40j] (Supplementary Table S5).

Western Blot Analysis

Proteins in total cell lysate (5 ug) were separated by
sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis, and were transferred to a polyvinylidene
difluoride membrane (Millipore, Billerica, MA). Phos-
pho-p44/42 MAPK (ERK1/2) and p44/42 MAPK
(ERK1/2) were detected using a rabbit polyclonal
antibody against phospho-p44/42 MAPK (1:1,000;
C8T4370; Cell Signaling Technology, Danvers, MA),
and a rabbit polyclonal antibody against p44/42
MAPK (1:1,000; C5T4695; Cell Signaling Technology,
Danvers, MA), respectively. Protein bands were
visualized by enhanced chemiluminescence,

Clustering Analysis

Unsupervised hierarchical clustering analysis was
periormed using R 2.15 [R Core Team (2012) R: a
language and environment for statistical computing.
R TFoundation for Statistical Computing, Vienna,
Austria. ISBN  3-900051-07-0, URL htip://www.
R-project.org/] with the Heatplus package [Alexander
Ploner (2011) Heatplus: Heatmaps with row and/or
column covariates and colored cluster, R package version
2.2.0] from Bioconductor [41]. The Euclidean distance
was used as distance function both for samples and
genes. From the 299,563 genomic blocks, 7,384 blacks
located in TS5200 CGIs were used for the clustering
analysis because methylation of TS5200 CGIs is known
to silence their downstream genes [12,38,39].

Statistical Analysis

Overall survival (OS) was calculated from the date of
diagnosis to the date of death or the final date of
survival confirmation. Survival curves were drawn by
the Kaplan-Meier method, and were compared by the
log-rank test. Fisher’s exact test was used to evaluate a
significant difference in an association between a
pathway alteration and clinicopathological charac-
teristics. All statistical analyses were conducted by
PASW statistics version 18.0.0 (SPSS Japan, Inc.,
Tokyo, Japan).
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Figure 2. Associations between DNA methylation profile and gene
mutations. (A) Unsupervised hierarchical clustering analysis using
7,384 genomic blocks with 755200 CGls. ESCCs in Clusters la and Ib
had larger numbers of aberrantly methylated genes than those in
Cluster II. Alterations of oncogenes and tumor suppressor genes were
distributed in the three clusters with similar frequencies. (B)

We further compared the numbers of aberrantly
methylated genes with those in gastric and colon
cancers, in which the presence of the CIMP is
known [30,42-46]. Unsupervised hierarchical cluster-
ing analysis was conducted using corrected methyl-
ation profiles of 120 cancers, including the 57 ESCCs,
43 gastric cancers [47] (Supplementary Figure S3A),
and 20 colon cancers (NCBI GEO DataSets; Accession
no. GSE42752) [48] (Supplementary Figure S3B). The
analysis produced four major clusters (Figure 2B).
Interestingly, cancers of the same tissues formed
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Unsupervised hierarchical clustering analysis of 120 cancers (57 ESCCs,
43 gastric cancers, and 20 colon cancers). Cancers in Clusters lll and IV
had larger numbers of aberrantly methylated genes than those in
Clusters V and VI. Cancers in Cluster VI had larger numbers of
aberrantly methylated genes than those in Cluster V, rather resembling
those in Cluster IV.

subclusters within the major clusters. In addition,
gastric and colon cancers were split into Clusters IV
and VI, which had a large and small, respectively,
numbers of aberrantly methylated genes. ESCCs were
in Clusters V and VI, both of which had a small
number of aberrantly methylated genes, and cancers
in clusters IIT and IV were considered CIMP positive.
These results showed that the numbers of aberrantly
methylated genes in ESCCs were smaller than those in
gastric and colon cancers, and the CIMP is unlikely to
be present in ESCCs.
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Figure 3. Genetic and epigenetic alterations in three growth-
promoting pathways. (A) In the WNT pathway, none of the 57 ESCCs
had an activating point mutation, but 19 ESCCs (33%) had heavy
methylations of one or more of the\r 16 negative regulators. Expression
levels obtained by microarray analysis of normal esophageal mucosae
are also shown, and those higher than 250 are shown in red. Five of the
six genes heavily methylated in ESCCs were not expressed in normal
esophageal mucosae, suggesting that the five genes were methylated

DISCUSSION

A genome-wide methylation analysis and an
extensive mutation analysis of 57 ESCCs were con-
ducted here, and they showed (i) that 44 of the 57
ESCCs (77%) had 64 non-synonymous somatic

KYSE30 KYSE170 KYSE220 KYSE270

CP 8S GS CP SS GS CP S§ GS CP S5 GS

Phospho-p44/42
MAPK

Figure 4, Activation of the MAPK pathway in ESCC cell lines.
Phosphorylated MAPK and total MAPK levels were analyzed by Western
blotting in four ESCC cell lines (KYSE30, KYSE170, KYSE220, and
KYSE270) under conditions of cell proliferation (CP), serum-starvation
(SS), and growth-stimulation (GS). In KYSE30, KYSE220, and KYSE270
abundant levels of phosphorylated MAPK were observed even in SS
showing the MAPK pathway was constitutively activated. On the other
hand, in KYSE170, only trace amounts of phosphorylated MAPK were
observed in SS, showing the MAPK pathway was not activated.
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as passenger genes. (B) In the AKT/mTOR pathway, two ESCCs (4%)
had activating mutations of PIK3CA, two ESCCs (4%) had EGFR
amplification, and one ESCC (2 %) had a PTEN deletion. Only one ESCC
(2%) had heavy methylation of THEM4. (C) In the MAPK pathway, two
ESCCs (4%) had an amplification of EGFR, four (7%) had heavy
methylation of RASSF1, and two (4%) had point mutations of FLT3 and
KRAS.,

mutations of 10 different potential driver genes
(ARIDIA, CDKN2A, FBXW7, FLT3, KIT, KRAS, MET,
MLH1, PIK3CA, and TP53), (ii) that the number of
aberrantly methylated genes in ESCCs was smaller
than those in gastric and colon cancers, (ii) that
ESCCs had at least one genetic or epigenetic alteration
in the p53 pathway and cell cycle regulation with
high frequencies (77% and 47%, respectively), and
(iv) that 19 of the 57 ESCCs (33%) had heavy
methylation of one gene or more of negative
regulators in the WNT pathway. This is the first
report in which genetic and epigenetic alterations
were simultaneously analyzed in the same set of ESCC
samples.

Somatic mutations of six tumor-suppressor genes,
four oncogenes, and CNVs of 10 genes were identified
in this study. The most frequently mutated gene was
TP53 (70%), followed by CDKN2A (9%) and PIK3CA
(4%) in this study, and the frequencies are close to the
frequencies in the Catalogue of Somatic Mutations in
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Table 1. Associations Between Pathways and Clinicopathological Findings

Alterations in the WNT

Alterations in the p53 Alterations in cell cycle

pathway pathway regulation

Category Total number Absent Present P-value* Absent Present P-value* Absent Present P-value*
Gender

Male 51 33 18 11 40 25 26

Female 6 5 1 0.652 2 4 0.610 3 3 1.000
Age

<65 24 18 6 4 20 12 12

>65 33 20 13 0.394 9 24 0.524 16 17 1.000
Smoking

Yes 51 33 i8 10 4 24 27

No 6 5 i 0.652 3 3 0.125 4 2 0.423
Drinking

Yes 53 34 19 g 44 26 27

No 4 4 6] 0.290 4 0 0.002 2 2 1.000
Location

Upper 9 7 6 2 7 7 2

Middle 35 24 11 10 25 16 9

Lower 13 7 2 0.468 1 12 0.309 5 8 0.156
T

T 12 6 6 3 9 5 7

T2 8 6 2 1 7 6 2

T3 36 25 11 9 27 16 20

T4 1 1 o 0.498 0 1 0.823 1 0 0.288
N

NO 10 6 4 2 8 6 4

N1 47 32 15 0.717 11 36 1.000 22 25 0.504

M

MO 43 N 12 9 34 24 19

M1 14 7 7 0.192 4 10 0.715 4 10 0.123
Clinical stage

1A 8 5 3 2 6 5 3

]3] 16 11 5 3 13 9 7

It 19 15 4 4 15 10 9

IVA/B 14 7 7 0.372 4 10 0.926 4 10 0.340

*P-values were calculated by Fisher's exact test.
Bold value is statistic significant (smaller than 0.05).

genome-wide methylation profiles obtained here will
provide a valuable source for future data mining for
novel tumor-suppressor genes and diagnostic targets
in ESCCs.

Among the tumor-suppressive pathways, the p53
pathway was most frequently affected (44/57; 77%).
TP53 was inactivated by genetic alterations (40/57;
70%), and its downstream gene, MIR34B, was in-
activated by epigenetic alterations (6/57; 11%).
Regarding cell cycle regulation, CDKN2A was meth-
ylated or mutated with a relatively low frequency
(7/57; 6%), but deletions were frequently observed
{17/50; 30%). A cell cycle checkpoint gene, CHFR, was
methylated in a small fraction (4/57; 7%). In total, 27
ESCCs (4796) had deregulation of the cell cycle. Taken
together, the majority of ESCCs (50/57; 88%) had at
least one alteration of genes involved in the pS3
pathway or cell cycle regulation (Figure 5D), showing
that these pathways are deeply involved in ESCC
development.
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Regarding the mismatch repair, two ESCC had
genetic alterations of MLH1, whereas none of the 57
ESCCs had aberrant methylation of MLH1, showing
that mismatch repair is not frequently inactivated in
ESCCs. This was in contrast with previous studies that
reported the presence of aberrant methylation of
MLH1 in 6-62% of ESCCs by methylation-specific
PCR [17,37,53]. The study here employed quantita-
tive methylation analysis that excludes overestima-
tion of aberrant methylation and analysis of a critical
region for transcriptional silencing [12], and the
discrepancy with previous studies may be attributed
to these differences in the methods.

Among the three growth-promoting pathways,
genetic alterations were not frequent. However, the
WNT pathway was considered to be activated by
methylation of its negative regulators (SFRP1, SFRP2,
SFRP4, SFRP5, 50X17, and WIFI) in 19 ESCCs
(33%). The finding was in line with previous studies
that reported an association between aberrant
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Supplemental Files

Supplemental file 1: Table S1: Clinical features of the 57 ESCC cases.

Supplemental file 2: Table S2: List of 55 cancer-related genes.

Supplemental file 3: Table $3: Primers used for dideoxy sequencing.

Supplemental file 4: Table S4: List of 81 genes of cancer-related pathways.

Supplemental file 5: Table S5: List of the positions of CpG sites.

Supplemental file 6: Table S6: Variations identified in the 57 ESCCs.

Supplemental file 7: Table S7: Relative reading depth of the 28 genes to the reference in the
57 ESCCs.

Supplemental file 8: Figure SI  The number of genes for the three kinds of analyses.
Actotal of 81 genes were selected for analyses of the six cancer-related pathways. Among

the 81 genes, 25 genes were analyzed for base substitutions, 67 genes for methylation-

silencing, and 11 genes for both. Among the 25 genes, 14 genes were analyzed for CNAs,

and eight genes were analyzed for base substitutions, CNAs, and methylation-silencing.

Supplemental file 9: Figure S2 Detection of CNA by Ion PGM sequencer.

(A) Representative scattered plots of reading depth of the target regions between the ESCC
and noncancerous mucosae. The slope shows RRDR. Red squares denote the eight target
regions on EGFR. (B) Array-CGH data around the EGFR regions. Y-axis with boxes shows
genomic locations.  X-axis shows relative signal intensity (rSI) of the probes to the reference
DNA. A number in the chart indicates an average of signal intensity of the probes in the
target gene. (C) RRDR and rSI of EGFR and CDKN24 in three ESCCs (Round plots; RRDR,

Square plots; rSI).
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Table §1. Clinical features of the 57 ESCC cases

Individual Tumor (clinical diagnosis) UICC 6th

Sample Age Gender  Smoking Drinking Location T N M cStage
MENOQ05 66 M Yes Yes Mi T3 Ni MO 111
MENOQO7 68 M Yes Yes Lt Tlh N1 MO IIB
MENQ00§ 61 M Yes Yes Lt T3 N1 MO 1l
MENO010 74 M Yes Yes Lt Tlh NI MO IIB
MENO012 68 M Yes Yes Lt Tlb NO Mib IVB
MENQ16 63 F Yes Yes Mt T3 N1 MO 111
MENQ18 63 M Yes Yes Mt T3 N1 Ml1b IVB
MENG20 56 M Yes Yes Mt T3 N1 MIlb IVB
MENOQ022 68 M Yes Yes Mt T1b N1 MO IIB
MENO023 6l M Yes Yes Lt T3 N1 MO 111
MEN030 49 M Yes Yes Mt T2 N1 MO IIB
MENO036 63 M Yes Yes Mt T3 N1 MO 11
MENO37 64 M Yes Yes Mt T2 NO MO ITA
MENQ41 65 M Yes Yes Mt T3 N1 MO 111
MENQ42 70 M Yes Yes Mt T3 N1 MO 111
MENOQ51 75 M Yes No Mt T3 N1 Mlb IVB
MEN053 77 M Yes Yes Mt T2 N MO 1A
MENO055 64 M Yes Yes Ce T3 NO MIb IVB
MENO058 58 M Yes Yes Mt T3 NO MO I1A
MENO039 67 M Yes Yes Lt T3 NG MO IIA
MENO064 66 M Yes Yes Ce T2 N1 MO 1IB
MENQ72 61 F Yes Yes Lt Tib N1 MO 1IB
MENOQ73 70 F No No Mt T3 N1 MO 11
MENQ)78 48 M No Yes Mi Tlb N1 MO IiB
MENO079 69 M Yes Yes Mt T3 NO MO ITA
MEN0Z0 67 M Yes Yes Lt T3 N1 MO Il
MENO031 66 M Yes Yes Mt Tlb N1 M1lb IVB
MENO0382 67 M Yes Yes Mt T3 N1 MO 111
MENO033 75 M Yes Yes Mt Tlh N1 MO 1B
MEN089 62 F Yes Yes Mt T3 N1 MO 111
MEN{(90 70 M Yes Yes Mt T3 N1 Mlb IVB
MEN093 58 M Yes Yes Mt T3 N1 MO 111
MEN(%4 60 M Yes Yes Mt T3 NO MO IIA
MEN(96 73 M Yes Yes Lt T3 N1 MO 111
MEN101 65 M Yes Yes Mt T3 N1 Mlb IVB
MEN104 57 M Yes Yes Ut T4 N1 MO 111
MEN112 68 F No Yes Mt T3 N1 MO 111
MEN113 69 M Yes Yes Ut T3 NO MO 1IA
MEN114 70 M Yes Yes Lt T3 N1 MO 111
MENi13 67 F Yes Yes Mt Tlb N1 MO IIB
MENI116 64 M Yes Yes Mt T2 N1 MO I1B
MEN122 69 M No No Ut T3 NO MO IIA
MENI126 69 M Yes Yes Mt T3 N1 MIlb IVB
MEN128 70 M Yes Yes Ut T2 N1 MO IIB
MEN130 74 M Yes Yes Ut T1b N1 MO I1B
MEN131 60 M No Yes Ut T2 N1 MO IIB
MENI134 79 M Yes Yes Lt T3 Ni MO 111
MEN140 75 M Yes Yes Ae T3 Ni Mla IVA
MENI152 55 M Yes Yes Mt T3 N1 Mlb IVB
MEN160 64 M Yes Yes Mt T2 N1 MO IIB
MEN169 79 M Yes Yes Ut T3 N1 MO 111
MEN176 54 M Yes Yes Lt T3 N1 Mlb IVB
MEN138 56 M Yes Yes Mt T3 N1 - Mlb IVB
MEN192 67 M No No Mt Tlb N1 MO 11B
MEN204 65 M Yes Yes Mt TIb N1 MO 1IB
MEN208 61 M Yes Yes Mt T3 N1 MIlb IVB
MEN211 55 M Yes Yes Mt T3 N1 MO 111




Table S2. List of 55 cancer-related genes.

Gene Base substitution CNA  Pathway

ABLI v
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APC v v
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Table 86, Variations identificd in the 57 ESCCs.

Sample name  Gene Chror:usom Region Coverage Frequency(%) Coding region change Amino acid change Type Zygosity
MEN007 P53 chrl? 7577120 2988 31.8 c.8318G>T pA273Leu SNV Heterozypous
MEN00S TPs3 chrl? 75738271 360 30.3 c.578A>C p.His193Pro SNV Heterozygous
MEN010 TP53 chrl? 7577538 614 37.6 ¢.743G>A p.Arg248Gln SNV Heterozygous
MEN010 Kir chr4 55593461 191 42.4 ¢.1618G>C p.Vals40Leu SNV Heterozygous
MENOQ12 TP53 chrl? 7578263 862 18.9 c.586C>T p.Argl96* SNV Heterozygous
MENDI18 TP53 chrl? 7577573 1036 66.3 c.708C>A p-Tyr236* SNV Heterozygous
MEN020 TPs3 chrl? 7577098 1883 27.1 c.840A>T p.Arg2808er SNV Heterozygous
MEN(22 TPs3 chrl? 7578438~7578439 474 69.4 c.491 492insAA p.Lys164fs Insertion Heterozygous
MEN022 MLH! chr3 37067242 687 78.0 ¢.1153C>T p.Arg385Cys SNV Heterozygous
MEN022  PIK3CA chr3 178936082 923 35.4 c.1624G>A p.Glu542Lys SNV Heterozygous
MEN023 TPs3 chrl? 7578150 695 56.4 ¢.659A>G p.Tyr220Cys SNV Heterozypous
MEN030 TP33 chri? 7579358 79 64.6 ¢329G>T p.Argl10Leu SNV Heterozygous
MEND36 TP33 chrl? 7577121 2169 30.3 c317C>T pArg273Cys SNV Helerozygous
MEN037 TP33 chrl7 7577046 2556 69.5 ¢.892G>T p.Glu298* SNV Heterozygous
MEN041 P53 chrl? 7577127 2308 34.4 c.Bl11G>A p.Glu271Lys SNV Heterozygous
MEND41 TFP33 chrl? 7578412 624 31.7 c.518T>A p.Vall73Glu SNV Heterozyzous
MEN042 TP$3 chrt? 7577121 2202 13.6 ¢c817C>T p.Arg273Cys SNV Heterozygous
MEN042 TP33 chrl? 7577124 1907 18.2 c.314G>A p.Val272Met SNV Heterozygous
MERND42 KIT chrd 55593461 175 41.1 c.l618G>C p-Val540Leu SNV Heterozyzous
MENOS1  CDKN24 chrd 21971159 17¢ 37.6 €.242G>C p.Arg81Pro SNV Heterozygous
MENO053 P53 chrl? 7579358 118 39.0 ¢.329G>T p.Argl10Len SNV Heterozygous
MENO055 KR4S chrl2 25373562 3482 284 c.436G>A p.Alal46Thr SNV Heterozygous
MENO055 TP33 chrl? 7577546..7577547 378 63.2 ©.734_735delGC p.Gly24513 Deletion Heterozygous
MENO055 FBXW? chrd 153259008 64 65.6 ¢.807delG p-Met2691s Deletion Heterozygous
MENQ55  CDKN2A chrd 21971170721971171 616 67.0 ¢.230 231insCCTGC pAlaTI Insertion Heterozygous
MEN059 P53 chrl? 7578443 262 41.3 cA8TT>A p-Tyrl63Asn SNV Heterozygous
MEN072 P53 chrl? 7578190 372 79.0 ¢.659A>G p.Tyvi220Cys SNV Heterozygous
MENO079 TR53 chrl7 7577579 297 47.5 ¢ 702C>A p.Tyr234* SNV Heterozypous
MEN080 TR53 chrl? 7577124 395 23.0 ¢.814G>A p.Val272Met SNV Heterozygous
MENO080 TP33 chel? 7578264°7578265 210 30.0 c.584 585insT pllel95fs Insertion Heterozygous
MEN080 CDKN24 chr9 21971186 98 52.0 ¢.215C>T p.Pro72Leu SNV Heterozygous
MEN082 TP33 chrl7 7578445 305 25.2 c485T>G p.llel 628er SNV Heterozygous
MEN089  PIK3C4 chr3 178936082 685 22.5 ¢.1624G>A p.Glu542Lys SNV Heterozygous
MEN090 TP53 chrl? 7577538 534 19.9 ¢, M43G>A p.Arg248Gin SNV Heterozygous
MEN090  CDKN24 chid 21974742 201 358 .85C>G pArE29Gly SNV Heterozygous
MENQ90  CDKN24 ched 21974744 201 35.8 ¢.83T>C p.Val28Ala SNV Heterozygous
MENQ93 TP53 chrl7 7574003 940 41.8 c.1024C>T p A4 SNV Heterozygous
MEN094 TP53 chrl? 7578271 547 17.0 c.578A>T p.His193Leu SNV Heterozygous
MEN096 P53 chrl7 7577547 661 3t.8 c.734G>A :p.Gly245Asp SNV Heterozygous
MENI101 TP33 chrl? 7578190 212 387 c.659A>G p-Tyr220Cys SNV Heterozygous
MEN104 TP33 chrl? 7578235 521 225 c.614A>G p-Tyr205Cys SNV Heterozygous
MEN104 MET chr7? 116339673 682 15.8 €.535G>A p.Alal79Thr SNV Heterozygous
MEN112 P53 chrl? 7577094 2227 28.5 c.844C>T pATE282Tp SNV Heterozygous
MEN112 TP53 chrl? 7578239 475 328 c.610G>T p.Glu204* SNV Hetergzygous
MENI113 TR53 chrl? 7577130 1109 50.8 ¢.808T>A p.Phe2701le SNV Heterozypous
MENI113 P53 chel? 7577577 637 34.7 ¢.704delA p.Asn235f Deletion Heterozygous
MEN115 TP33 chrl?7 7578190 541 67.5 c.659A>G p-Tyr220Cys SNV Heterozypgous
MEN116 TP33 chrl? 7577558 689 50,2 ©.723delC p.Ser2difs Deletion Heterozygous
MENI126 P53 chrl7 7578479 297 87.9 c451C>T p.Prol518er SNV Heterozypous
MEN128 TP53 chrl? 7577538 1052 54.6 ¢.743G>A p.Arg248GIn SNV Heterozygous
MENI130 TP33 chrl?7 7578406 266 25.6 ¢.524G>A p.Argl75His SNV Helerozygous
MENI31 TP33 chrl? 7578413 346 63.3 c.517G>T p-Vall73Leu SNV Heterozypous
MEN134 TP33 chrl7 7578478 148 77.0 c452C>G p.ProlS1Arg SNV Heterozygous
MENI160 TP53 chri? 7579355 262 40.8 c.332T>A p.Leul11Gln SNV Heterozygous
MEN169  ARIDIA chrl 27088742 113 61.9 ¢.2351G>A p.Gly784Asp SNV Heterozygous
MEN169 TP33 chrl? 1577076..7577077 704 69.6 ¢.861 862delGA p.Glu287§ Deletion Heterpzygous
MEN169  CDKN24 chrg 21970984 216 59.7 c374A>G p-Aspl25Gly SNV Heterozypous
MENI169  CDKN2A chrd 21970987 215 60.5 c.371G>A p.Argl24His SNV Heterozygous
MENI169  CDKN24 chrd 21970990 183 56.8 c.368A>G p.-His123Gly SNV Heterozygous
MEN169  CDKN2A4 chrg 21970991 183 56.8 €.367C>G p-His123Gly SNV Heterozygous
MEN176 TP53 chrl? 7578529 744 I3 ¢401T>C p-Phel348er SNV Heterozygous
MEN192 FLT3 chri3 28592610 417 237 €.2535G>C p-ArpB458er SNV Heterozygous
MENZ04 TP53 chrl? 7578437 157 67.5 c493C>T p.Glnl65* SNV Heterozygous
MEN208 TP53 chrl7 7578394 169 81.7 C.536A>T p.His179Leu SNV Heterozygous
KYSE30 HRAS chrll 533874 719 70.1 c.182A>T p.Gln61Leu SNV Heterozygous
KYSE3() TP53 chrl? 7579358 332 24,1 ¢329G>T p-Argll0Len SNV Heterpzygous
KYSE30 ASXLI chr20 31022641 904 322 ¢.2126C>T p.Ala709Val SNV Heterozygous
KYSE30 CDKN2A chr9 21971000 117 99.1 ¢.358G>T p-Glui20* SNV Homozygous
KYSES0 TPS3 chtl? 7579386 334 100.0 ¢.301A>T p.Lysl0l* SNV Homozygous
KYSE170 TP53 chrl? 7577094 740 20.3 c44RC>G p.ATg150Gly SNV Heterozygous
KYSE180 HRAS chrll 534289 278 104 c.34G>A p.Glyl128er SNV Heterozygous
KYSE180 TP53 chrl? 7578265 759 99.9 c.188T>C p-lle63Thr SNV Homozygous
KYSE220 TP53 chrl? 7577539 563 98.0 ¢.346C>T p-Argl16Tm SNV Homozygous
KYSE220 CDKN24 chi? 21971153 179 98.3 ¢.205G>T p.Glu6o* SNV Homozygous
KYSE270 EGFR chr? 55259524 1407 26.7 c.2582T>A p.Leu861Gln SNV Heterozygous







