

Gene expression changes in the retina after systemic administration of aldosterone

香川大学大学院医学系研究科 分子情報制御学専攻

小野 葵

Gene expression changes in the retina after systemic administration of aldosterone

Aoi Ono¹ · Kazuyuki Hirooka¹ · Yuki Nakano¹ · Eri Nitta¹ · Akira Nishiyama² · Akitaka Tsujikawa¹

Received: 1 May 2017 / Accepted: 2 April 2018 © Japanese Ophthalmological Society 2018

Abstract

Purpose Retinal ganglion cell (RGC) loss associated with thinning of the retinal nerve fiber layer without elevated intraocular pressure (IOP) occurs after the systemic administration of aldosterone. Since it is important to determine the mechanism of cell death independent of the IOP, we examined gene expression changes in the retina after the systemic administration of aldosterone.

Methods Following subcutaneous implantation of an osmotic minipump into the mid-scapular region of rats, we administered an 80 µg/kg/day dose of aldosterone. Differences in the gene expression in the retina between normal rats and aldosterone-treated rats were investigated using microarrays. Real-time PCR was used to confirm the differential expression.

Results Analysis of the microarray data sets revealed the upregulation of 24 genes and the downregulation of 24 genes of key apoptosis-specific genes. Real-time PCR revealed 4 genes (Cdkn1a, Tbox5, Pf4, Vdr) were upregulated while 12 genes (Acvr1c, Asns, Bard1, Card9, Crh, Fcgr1a, Inhba, Kcnh8, Lck, Phlda1, Ptprc, Sh3rf1) were downregulated.

Conclusions Significant increases and decreases were noted in several genes after the systemic administration of aldosterone. Further studies will need to be undertaken in order to definitively clarify the role of these genes in the eyes of animals with normal-tension glaucoma.

Keywords Aldosterone · Retinal ganglion cell · Microarray · Retina · Glaucoma

Introduction

In normal-tension glaucoma (NTG), patients exhibit glaucomatous cupping of the optic nerve head with visual field damage even though there is an absence of elevated intraocular pressure (IOP) [1, 2]. In most patients with all other types of glaucoma, however, the IOP is reported to be a risk factor [3–6]. Although reduction of IOP prevents disease progression in most patients with NTG [7], in some there is still disease progression in spite of the reduction in IOP [8]. It is suggested that factors other than an elevated IOP might be involved in the progression of glaucoma [9]. Therefore, detailed evaluation needs to be conducted of the

Aoi Ono aoiono@med.kagawa-u.ac.jp

² Department of Pharmacology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan new therapeutic approaches designed to treat this debilitating disease.

The systemic renin-angiotensin-aldosterone system (RAAS) plays an important role in both blood pressure and electrolyte homeostasis. Aldosterone, a steroid hormone, exerts its effects after it binds to a mineralocorticoid receptor (MR). Aldosterone causes an increase in reactive oxygen species (ROS) that subsequently activates NADPH oxidase and promotes inflammation [10, 11]. Compared to patients with essential hypertension, patients with primary aldosteronism have been shown to have a higher incidence of left ventricular hypertrophy [12], albuminuria [13], and stroke [14, 15]. Data from experimental animal studies demonstrate that aldosterone may play a role in mediating cardiovascular injury in the kidney and brain [14, 15]. Beneficial effects in the retina against ischemia-reperfusion injury are also reported after blockade of the angiotensin II type 1 receptor (AT1-R) and MR [16-18]. Moreover, within the retina there is considerable evidence that shows that all the components of the RAAS are expressed [19, 20]. In our previous experiments, we demonstrated that intravitreal injection of

¹ Department of Ophthalmology, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan

aldosterone reduced the number of RGCs [18], and more recently, we reported that, following the systemic administration of aldosterone there was a decrease in the number of RGCs without an elevation in the IOP and that, in addition, the administration of an MR blocker prevented RGC loss [20]. At the same time, the other cell layers appeared to be unaffected [18, 21].

At present the mechanism of cell death in this particular animal model remains unknown. The purpose of our current study was to investigate gene expression changes in the retina after the systemic administration of aldosterone.

Material and methods

Animals

Male Sprague-Dawley rats were obtained from Charles River Japan. The rats, which weighed 200 to 250 g, were permitted free access to standard rat food (Oriental Yeast Co., Ltd.) and tap water. All experiments were conducted in accordance with the approved animal care and standard guidelines for animal experimentation of the Kagawa University Faculty of Medicine. All the experiments adhered to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Approval at our ethics committee was not deemed necessary.

Experimental animals

Subcutaneous osmotic minipumps (Alzet model 2006, DURECT Corporation), which were implanted subcutaneously into the mid-scapular region of the rats, were used to administer an 80 μ g/kg/day dose of aldosterone (Sigma-Aldrich). At 7 days after the systemic administration with or without aldosterone, the rats were sacrificed by administering an overdose of pentobarbital sodium. After the eyes were enucleated, the retinae were carefully isolated.

Histological examination

For the histological examination, rats were anesthetized by intraperitoneal injection of pentobarbital sodium (50 mg/kg) at 6 weeks after the systemic administration of aldosterone and then perfused intracardially with phosphate-buffered saline (PBS), followed by perfusion with 4% paraformaldehyde in PBS. Subsequently, the anterior segments, including the lens, were removed. The posterior eyecups were then embedded in paraffin, and thin sections (5- μ m thickness) were cut using a microtome. Each of the sections was carefully cut to include the full length from the superior to inferior along the vertical meridian through the optic nerve head. Each eye was then mounted on a silane-coated glass slide and stained with hematoxylin and eosin (HE). A microscopic image (Olympus BX-51, Olympus Inc.) of each section within 0.5 to 1 mm superior of the optic disc was scanned.

Microarray analysis

The microarray analysis examined a total of 7 controls and 7 treatment eyes. Each sample consisted of the retinal fraction from 7 eyes. The RNeasy mini Kit protocol (OIA-GEN, GmBH) was used for the extraction of the total RNA. RNA sample integrity was verified through the use of a UV adsorption measurement and bioanalyzer. After using the Low Input Quick Amp Labeling Kit (Agilent Technologies) to amplify, label and purify the total RNA, the qualified total RNA was then further purified by the RNeasy mini spin column (QIAGEN). Subsequently, the qualified total RNA was further purified by Low Input Quick Amp Labeling Kit. Next, the array was washed by Agilent's Gene Expression Wash Buffer kit (Agilent Technologies). In the final step, the array slides were scanned by an Agilent Technologies Microarray Scanner (Agilent Technologies). Using the Agilent Feature Extraction 10.7.3.1, the same spot was quantified on each slide. Normalization of the raw data was performed as follows: importation of the scanned data to the GeneSpring GX 7.3.1, after which the data was processed and normalized to the 75 percentile.

Real-time PCR

Real-time PCR using a LightCycler FastStart DNA Master SYBR Green I kit and an ABI Prism 7000 Sequence Detection System (Applied Biosystems) were used to analyze the mRNA expression of GAPDH, and up- or downregulated genes in microarray analysis, as previously described [22, 23]. Briefly, after denaturation of the cDNA at 95°C for 30 s, it was then amplified by PCR for 45 cycles (95°C for 15 s followed by 60°C for 40 s). Table 1 lists the oligonucleotide primer sequences. After normalization of the GAPDH expression, all the data were expressed asrelative differences.

In situ hybridization

We investigated gene expression site of Cdkn1a, Vdr and Pf4 by in situ hybridization. In situ hybridization was performed using ViewRNATM ISH Tissue Assay (Affymetrix) following the manufacturer's protocol. Tissues were fixed for 24 hours at 4°C with paraformaldehyde solution (4% paraformaldehyde in phosphate buffer saline). FFPE tissues were sectioned at 4 micron and mounted on silane coated slides (Muto pure chemical co, ltd). Each of the sections was carefully cut to include the full length from the superior to inferior along the vertical meridian through the optic

παιτιοι 3 μειδοιται τομγ

Gene expression changes in the retina after systemic administration of aldosterone

Table 1 Primers for real time

PCR

Gene Sequence (5'-3') Position Size of production (bp) Bcl3 Forward: CTGACAGCGGCCTCAAGAAC 1021-1040 92 Reverse: AGAGGCCTTTCCCCTTAGGA 1112-1093 Fcgr2b Forward: CTGTCGTCCATGTGCTCTCA 107-126 108 Reverse: GTTTCACCACAGCCTTCGGA 214-195 Htatip2 Forward: ATGGCGGACAAGGAAACACT 12-31 78 Reverse: GGCGCCCAAAATAAAGACGG 89-70 Tbx5 Forward: TATIGTACCCGCAGACGACC 335-354 94 Reverse: ATAAAGGCGACCCGGCATAG 428-409 Forward: TGTTGGAGTGTGTCGGGAAG Acvr1 776-795 149 Reverse: ATGCCTCAGCATAACCGTGT 924-905 Alox15 Forward: GCCATCCAGCTTGAACTTCC 952-971 87 Reverse: GGCTAGGAGCCAGTCCATTG 1038-1019 Birc3 32-51 82 Reverse: CCTACGGAACTTTGCTGACCA 113-93 C-C motif Forward: AGCCAACTCTCACTGAAGCC 34-53 84 Reverse: AACTGTGAACAACAGGCCCA 117-96 C7 Forward: CCCAAGCATGAAGGCAACAAG 134-154 113 Reverse: AAGGGCCATAGGAGTCCCAC 246-227 Cdkn1a Forward: TCCGCTCGGATTGTAAACCTC 1766-1786 84 Reverse: GCACCAGCTTTGGGATAGGG 1849-1830 Cdkn2c Forward: TCTGCGAGACGGATGGAAAG 443-462 71 Reverse: ACAGTGGTGACTTGAGGCAG 513-494 Fos11 Forward: CCACACTCCTGGCTTTGTGA 1034-1053 113 Reverse: TGGTTTGGGGGCATGGGTATG 1146-1127 Illrn Forward: GATGGAAATCTGCAGGGGACC 4-24 110 Reverse: GCATCTTGCAGGGTCTTTTCC 113-93 Lgals7 Forward: ATCCTCTAACGTGCGCTCAG 350-369 116 Reverse: ACGATCTGACGAAACCCCAC 465-446 Mael Forward: GGCATGACCAAGCAACTGTG 648-667 140 Reverse: TTCTGATGCCCGCTCCATAC 787-768 Forward: TICCTCCTCCTCCTCCGAC Msxl 1194-1213 123 Reverse: TTTGCATCCCCAGTTTCCA 1316-1297 Forward: GGAAGGACTATCCAGCTGCC Myc 1525-1544 84 Reverse: TGGAGCATITGCGGTTGTTG 1608-1589 Pf4 Forward: TGATCAAAGCAGGACCCCAC 191-210 94 Reverse: TACAGAGGTACTTGCCGGTC 284-265 Snca Forward: CAGCAGTCGCTCAGAAGACA 388-407 102 Reverse: GTGGGTACCCTTCTTCACCC 489-470 Terc Forward: GTICTIIIGTICTCCGCCCG 70 32-51 Reverse: GCTGCAGGTCTGAACTTICC 101-82 Txnip Forward: CAAGTCTCCAGCCTCAAGGG 1517-1536 76 Reverse: TTCCGACATTCACCCAGCAA 1592-1573 Tnfrsf8 Forward: TGGGTCAGTGACAGATTCCAG 1122-1142 146 Reverse: TGGGAGCAAAAGAGTTCCCAG 1267-1247 Vegfa Forward: ATTCAACGGACTCATCAGCCA 96-116 136 Reverse: CCGTTGGCACGATTTAAGAGG 231-211 Vdr Forward: TGATCCAGAAACTGGCCGAC 1230-1249 86 Reverse: GCTATTCTCGGGCTGGAAGG 1315-1296 Adamts14 Forward: GACCCTGAGGCGAATTCCTG 83-102 88

D Springer

миши з регзини сору

Gene	Sequence (5'-3')	Position	Size of productio (bp)
	Reverse: TAGGAATCTTGGCGCAAGCC	170-151	
Bard 1	Forward: TGAACACCACCGGCTATCAC	1446-1465	145
	Reverse: TCTGTGTAATCCACTGGCCG	1590-1571	
Cd3 g	Forward: TGGAGTTCGCCAGTCAAGAG	473-492	75
•	Reverse: TCCTTGAGGGGCTGGTAGAC	547-528	
Fcgrla	Forward: GCTATTTGCCACACCAGTGC	573-592	71
	Reverse: TCAGGATGACCAGACTCCCC	643-624	
Gimap5	Forward: TGTGTTCTGGCGGATGTTCA	26-45	127
	Reverse: ACTCGCAGAGCTGTAAACCC	152-133	
Ndufaf4	Forward: CTGTACCGGTGGGTICTTGG	1361-1380	121
	Reverse: GCCTGGCCTITTGCCATITA	1481-1462	
Sh3rf1	Forward: TACTCGCCTCTACACCGTCA	1229-1248	124
	Reverse: GGCCGTAAATGTGCGATCTG	1352-1333	
Acvrlc	Forward: TACCTGCCAAACCGAAGGAG	260-279	140
	Reverse: CGGTCTTGGTCACGTTGTTG	399-380	
Asns	Forward: AAACCTGGAAAACTTCGGCG	71-90	119
	Reverse: TGCCACACATGCTACAGGAG	189-170	
Bdnf	Forward: CTICGGTTGCATGAAGGCTG	108-127	135
	Reverse: GTCAGACCTCTCGAACCTGC	242-223	
Cdhl	Forward: GCCCAGGAAATACACCCCTC	3792-3811	75
	Reverse: ACTCAGGTCCAAATCAGCCG	3866-3847	
Casp7	Forward: AGGCCCTCTTCAAGTGCTTC	285-304	84
-	Reverse: GCAGATCCTGCATCTTIGCG	368-349	
Card9	Forward: GGATGAGAACTACGACCTGGC	649-669	142
	Reverse: CACCTIGCAGTCATCCTCTGC	790-770	
C5ar1	Forward: TCTACTTGGCCGTGTTCCTG	174-193	89
	Reverse: GGCGTTGACAGTACGTTTGG	262-243	
C6	Forward: TCAGATGCTTACCAGACAGAACC	2053-2075	150
	Reverse: TGGGACAGGTCAGCTCAATG	2202-2183	
Crh	Forward: GCAACCTCAGCCGATICTGA	325-344	77
	Reverse: CAGCGGGACTTCTGTTGAGG	401-382	
Cryaa	Forward: GGCTCCTGCCTGACTCATIG	7-26	71
	Reverse: CTGGATGGTGACGTCCATGT	77-58	
Inhba	Forward: CCCAGTGTCTAGCAGCATCC	833-852	71
	Reverse: CACAAGCAATCCGCACATCC	903-884	
Phldal	Forward: GAACCGTCCCAACCTAGTGG	623-642	116
	Reverse: TATACTTGCCCTTGCGCTCC	740-721	
Kcnh8	Forward: GTACTACGGCAACAACACGC	1267-1286	128
	Reverse: TCTCTGCATCCGTGTTAGCG	1394-1375	
Ptprc	Forward: TIGCTCCCATCCGATAAGAC	44-64	108
-	Reverse: AGCTGAAGGCCAGAAGTTTGA	151-131	
Ripk3	Forward: AGTCAGGGGAATCAAGCCTTA	126-146	125
	Reverse: CCTCTTGTTGGGTCTGGATG	250-231	
Lck	Forward: CGATCTGGTCCGCCATTACA	617-636	89
	Reverse: ATGGTTTCTGGGGGCTICTGG	705-686	
ERbb3	Forward: CTGGGAGAATGCTIGGCAGA	1606-1625	111
	Reverse: TTCCCGGCTGTAGTTTCGAC	1716-1697	

.

Table 1 (continued)

nerve head. Rat Cdkn1a-gene-specific probe (Accession No. NM_080782.3), Rat Pf4-gene-specific probe (Accession No. NM_001007729.1) and Rat Vdr-gene-specific probe (Accession No. NM_017058.1) were designed and synthesized by Affymetrix. A no-probe sample was utilized as a negative control. Nuclei were stained for 5 min with Hoechst 33342 (Sigma-Aldrich) and samples were Dako Ultramount (Dako). Hybridized target mRNAs were visualized using fluorescent microscopy (BZ-X700, KEYENCE) and observed in 4 points in each slides, 1 mm (central) and 4 mm (peripheral) away from the optic disc.

Statistical analysis

All data were analyzed using Wilcoxon signed-rank test, with the data then presented as the mean \pm SD. Statistical analyses were performed using SPSS version 19.0 (SPSS Inc., Chicago, IL). A P value of less than 0.05 was considered statistically significant.

Results

Histological examination of RGC loss

Aldosteron-treated rats showed a neuronal loss in the ganglion cell layer (Fig. 1).

Microarray analysis of gene expression

After systemic administration of aldosterone, we used microarray analysis to determine the gene expression changes in the retina. The changes in the level of expression of the genes (upregulated or downregulated by > 2.0-fold versus baseline) were then compared between the naïve rats

Fig. 1 Light micrographs of the retina of an eye treated with 80 µg/ kg/day aldosterone for 2 weeks and a normal control eye. Scale bar, 50 um

(baseline: day 0) and the rats on day 7 after the systemic administration. The gene expression changes' observed in the retina at 1 week after systemic administration of aldosterone are summarized in Table 2, with 24 genes found to be either up- or downregulated in each cluster.

Ratio of RNA expression

Table 3 shows the ratio of RNA expression of protein specific RGC and other retinal neurons based on the microarray analysis. There was no significant change in either gene.

mRNA levels after systemic administration of aldosterone

Real-time PCR technique was used to measure the mRNA levels of the 48 genes that had been detected by

Table 2	Results	of	microarray	assay

Up regulation	Ratio	Down regulation	Ratio
Acvrl	2.028	Acvrlc	0.384
Alox15	11.059	Adamis14	0.489
Birc3	13.423	Asns	0.224
Bc13	9.804	Bardl	0.386
C7	2.454	Bdnf	0.364
C-C motif	7.972	Card9	0.199
Cdknla	3.071	C5ar1	0.168
Cdkn2c	2.031	C6	0.424
Fcgr2b	3.092	Casp7	0.385
Fosl 1	13.808	Cd3 g	0.443
Htaitp2	6.056	Cdhl	0.273
Illrn	2.527	Crh	0.374
Tnfrsf8	17.7	Cryaa	0.473
Txnip	3.764	Erbb3	0.298
Vegfa	2.315	Fcgrla	0.482
Vdr	2.003	Gimap5	0.372
Lgals7	2.973	Inhba	0.488
Mael	5.791	Kcnh8	0.12
M sx 1	2.034	Lck	0.206
Мус	2.234	Ndufaf4	0.141
Pf4	2.545	Phldal	0.444
Snca	48.514	Ptprc	0.466
Tbx5	14.656	Ripk3	0.443
Тегс	2.766	Sh3rf1	0.048

Table 3 Ratio of RNA

Gene	Ratio
Pax6	1.189
Thy1	1.051
Rho	1.024

the microarray. Although the microarray analysis showed there was upregulation of Acvrl, Alox15, Cdkn2c, II1rn, Snca, Terc and Vegfa, RT-PCR showed that these genes were downregulated. When compared to the normal retina, there were 4 genes (Cdknla, Pf4, Tbx5, and Vdr) (Table 4) that exhibited upregulated mRNA levels after the systemic administration of aldosterone, while 12 gene expressions exhibited downregulated levels (Acvrlc, Asns, Bard1, Card9, Crh, Fcgrla, Inhba, Kcnh8, Lck, Phlda1, Ptprc, and Sh3rf1) (Table 5).

Expression of mRNA in the retina

Expression of Cdknla, Vdr and Pf4 was examined using in situ hybridization (Fig. 2). Cdknla was widely observed in the retina. In particular, strong Cdknla expression was observed in the ganglion cell layer (GCL). Vdr and Pf4 expression were observed in the outer plexiform layer (OPL) and in the outer nuclear layer (ONL). In addition, weak expression of Vdr was observed in the inner plexiform layer (IPL) and in the inner nuclear layer (INL).

Table 4 Results of real time PCR for upregulated genes

Gene	Control (n=10) Mean±SD	Aldosterone ($n = 10$) Mean \pm SD	P-value
Acvrl	0.732+0.089	0.598 + 0.059	0.028*
Alox15	0.755 ± 0.260	0.486 ± 0.363	0.028*
Bcl3	0.779±0.121	0.963±0.449	0.386
Birc3	0.609±0.074	0.655 ± 0.113	0.284
C7	1.237±0.276	1.046±0.125	0.169
C-C motif	0.936 ± 0.208	0.896±0.179	0.959
Cdkn1a	0.958 ± 0.183	1.661 ±0.474	0.012*
Cdkn2c	0.790±0.161	0.603 ± 0.082	0.028*
Fcgr2b	1.098±0.190	1.141 ±0.266	0.575
Fosll	0.740±0.231	0.728±0.143	0.721
Htatip2	0.452±0.089	0.497 ± 0.227	0.959
Illrn	3.615±1.765	1.473±0.900	0.005*
Lgals7	1.409±0.693	0.948±0.130	0.092
Mael	0.551 ± 0.343	0.552 ± 0.119	0.799
Msxl	0.586±0.185	0.662±0.278	0.386
Мус	0.794±0.104	0.756±0.161	0.444
Pf4	0.589±0.108	0.990 ± 0.247	0.005*
Snca	1.052±0.097	0.751 ±0.066	0.005*
Tbx5	0.688 <u>+</u> 0.363	0.862 ± 0.080	0.005*
Terc	1.073±0.050	0.871±0.165	0.004*
Tnfrsf8	0.624±0.318	0.869±0.247	0.070
Txnip	0.788±0.098	0.682±0.351	0.382
Vegfa	0.988±0.127	0.646±0.097	< 0.001*
Vdr	0.950 ± 0.183	1.130 ± 0.193	0.046*

SD standard deviation, *P<0.05, Wilcoxon signed-rank test

Table 5	Results of real time PCR fo	r downregulated genes
---------	-----------------------------	-----------------------

		0 0	
Gene	Control (n=10) Mean±SD	Aldosterone $(n=10)$ Mean±SD	P-value
Acvrlc	2.591 ±4.875	0.653±0.162	0.005*
Adamtsl4	0.810±0.177	1.012 ±0.263	0.092
Asns	0.925±0.159	0.201 ±0.043	0.005*
Bard1	0.625 ± 0.157	0.469 ± 0.058	0.028*
Bdnf	1.004±0.098	1.006 ± 0.124	0.959
Card9	0.862 ± 0.112	0.771 ±0.038	0.012*
C5ar1	0.872 ± 0.160	0.973 ± 0.270	0.114
C6	0.461 ±0.182	0.611±0.217	0.114
Casp7	0.887±0.037	0.869±0.187	0.444
Cd3 g	0.481 ±0.129	0.389 ± 0.152	0.241
Cdhl	0.512 ± 0.244	0.464±0.070	0.878
Crh	2.482 ± 3.993	0.784±0.102	0.005*
Cryaa	0.521 ±0.295	0.498 ± 0.214	0.721
Erbb3	0.528 ± 0.369	0.350 ± 0.181	0.284
Fcgrla	0.520 ± 0.201	0.323±0.095	0.005*
Gimap5	0.588±0.289	0.504 ± 0.060	0.444
In h b a	0.749±0.131	0.644±0.045	0.007*
Kcnh8	0.794±0.205	0.504±0.084	0.005*
Lck	0.785±0.168	0.636±0.094	0.028*
Ndufaf4	0.572 ± 0.273	0.432±0.057	0.114
Phlda1	0.956±0.218	0.644±0.198	0.037*
Ptprc	0.794±0.164	0.494 ±0.103	0.007*
Ripk3	0.621 ±0.174	0.793±0.367	0.241
Sh3rfl	0.788 ± 0.257	0.575±0.104	0.012*

SD standard deviation, P < 0.05, Wilcoxon signed-rank test

Discussion

The current study showed that apoptosis was associated with the systemic administration of aldosterone, with 4 genes exhibiting upregulation and 12 genes showing downregulation. Since our previous study demonstrated there was a significant decrease in RGCs at 2 weeks after the continual administration of aldosterone [21], the present study investigated the changes in the gene expression in the retina at 1 week after administration, at a point prior to the death of the RGCs.

In our previous work, we showed that the local aldosterone/MR system that exists in the retina can be modulated by the RAAS both dependently and independently [18]. Moreover, we also demonstrated that there was an increase in the expression of AT1-R at 12 hours after reperfusion [16, 17] and that the ROS production after 12 hours of ischemi areperfusion was mediated via the NADPH oxidase pathway [17]. Thus, these results suggest that the ROS production via the local RAAS might be responsible for the retinal ischemic in jury. Furthermore, our findings also suggested that the RGC death observed in aldosterone-treated rats might have

Fig. 2 Expression of Cdkn1a, Vdr or Pf4 in the retina. Fluorescent micrographs of in situ hybridization. Cdkn1a, (a) central and (d) peripheral retina. Vdr, (b) central and (e) peripheral retina. Pf4, (c) central and (f) peripheral retina. Micrographs of the central and peripheral areas were taken approximately 1 and 4 mm away from the optic nerve head. Scale bar, 50 μ m. Arrow head shows ganglion cell layer (GCL)

been induced by aldosterone in a ROS-dependent manner via a NADPH oxidase pathway. Based on these findings, we further explored the relationship between 15 genes and the NADPH oxidase pathway. Our results indicate that Cdknl a, Pf4 and Vdr are associated with cell death via a NADPH oxidase pathway. However, RT-PCR showed that Acvrl, Alox15, Cdkn2c, IIIrn, Snca, Terc and Vegfa were downregulated while microarray analysis indicated that these genes were upregulated. Since microarray is a global gene analysis, false positive genes are sometimes observed. Another possible explanation of this discrepancy is that it is impossible to deny a cross reaction. Based on these findings, we decided not to further pursue the analysis of these 6 genes.

Platelet factor 4 (Pf4) activated monocytes are responsible for a long-lasting release of ROS that can selectively induce apoptosis in the endothelial cells [24]. This causes programmed cell death in endothelial cells, as inhibitors of the NADPH oxidase effectively blocked Pf4-induced monocyte oxidative burst and protected endothelial cells from undergoing apoptosis [24]. There are a number of soluble factors released by endothelial cells that can regulate vascular tone and blood flow, including nitric oxide [25, 26]. Previous studies in animals and humans show that the inhibition of nitric oxide synthase reduces the blood flow [27, 28]. If there is an upregulation of Pf4, it is expected to reduce the blood flow. Thus, although in our current study we did not investigate the blood flow in the aldosterone-treated rats, these previous findings suggest that a reduced blood flow could have contributed to the RGC death in our animals. In fact, other studies that examined the retina and optic nerve head of glaucoma patients report finding reduced blood flow in these subjects [29, 30].

One of the important cyclin-dependent kinase inhibitors that induce cell cycle arrest is the cyclin-dependent kinase inhibitor 1A (CDKN1A), which is also referred to as p21. Since this kinase inhibitor can inhibit cell proliferation, it was initially thought that it could be used as a tumor suppressor [31, 32]. After damage to a cell, p53 will directly bind to the CDKN1A locus. Subsequently, it then activates the transcription of CDKN1A, PANDA and LincRNA-p21. p21 is able to mediate gene silencing by recruiting hnRPK, which then promotes apoptosis. Previous studies have examined p53 and demonstrate its ability to promote apoptosis. This is accomplished by transcriptionally activating or by repressing the expression of a panel of pro- and anti-apoptotic proteins [33]. Shi et al. [34] examined aldosteroneinduced mesangial cell apoptosis and report that it caused the apoptosis via p53 both in vitro and in vivo.

Several studies report that depending upon the cell type and context, both the vitamin D receptor (VDR) and p53-signaling can regulate a variety of cellular functions involved in the development of cancer, including proliferation, differentiation, apoptosis and cell survival [35–37]. In addition, activators of the VDR have been shown to exhibit suppressant effects on the RAAS [38]. For example, activation of the VDR and the administration of losartan to block Ang II result in the inhibition of ROS generation [39]. However, none of the previous findings can explain why we found there was an upregulation of Vdr after the systemic administration of aldosterone.

Since our results indicate that Cdkn1a, Pf4 and Vdr were associated with cell death via a NADPH oxidase pathway, we investigated gene expression of Cdkn1a, Pf4 and Vdr using in site hybridization. Cdkn1a, but not Vdr or Pf4, signals were observed in GCL. This finding suggests that Cdkn1a may be associated with RGC death via a NADPH oxidase pathway.

MR is expressed in RGCs and in cells of the INL in the normal retina [19, 40]. So far, it is not clear why systemic administration of aldosterone causes only RGC loss, and not a loss of INL cells. Therefore, further investigation is needed to reveal why aldosterone causes only RGC loss.

The findings of our current study suggest there might be two possible mechanisms associated with the RGC death that occurs after systemic administration of aldosterone. First, it is possible that ocular blood abnormalities due to the upregulation of PF4 could be involved in the death of the RGCs. Second, increases in the level of ROS might induce p53 activation as an upstream signal, thereby triggering the apoptosis. Further investigations are needed to clarify the mechanisms of RGC death after the systemic administration of aldosterone. We are currently performing additional studies designed to investigate the retinal blood flow after the systemic administration of aldosterone.

In conclusion, the systemic administration of aldosterone can lead to significant increases and decreases in various genes. Further functional studies on the effects of these genes are needed in order to definitively clarify the molecular mechanisms in the animal NTG model.

Acknowledgements This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (26462689).

Conflicts of interest A. Ono, None; K. Hirooka, None; Y. Nakano, None; E. Nitta, None; A. Nishiyama, None; A. Tsujikawa, Grant (Alcon, AMO Japan, Bayer, HOYA, Kowa, Novartis, Pfizer, Santen, Senju), Lecture fees (Alcon, AMO Japan, Bayer, Chugai, Kowa, Nidek, Novartis, Pfizer, Santen, Sanwa Kagaku, Senju).

References

- Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24:621–64.
- Quigley HA. Open-angle glaucoma. N Engl J Med. 1993;328:1097-106.
- Cartwright MJ, Anderson DR. Correlation of asymmetric damage with asymmetric intraocular pressure in normal-tension glaucoma (low-tension glaucoma). Arch Ophthalmol. 1988;106:898–900.
- Crichton A, Drance SM, Douglas GR, Schulzer M. Unequal intraocular pressure and its relation to asymmetric visual field defects in low-tension glaucoma. Ophthalmology. 1989;96:1312-4.
- Abedin S, Simmons RJ, Grant WM. Progressive low-tension glaucoma: treatment to stop glaucomatous cupping and field loss when these progress despite normal intraocular pressure. Ophthalmology. 1982;89:1–6.
- de Jong N, Greve EL, Hoyng PF, Geijssen HC. Results of a filtering procedure in low tension glaucoma. Int Ophthalmol. 1989;13:131-8.
- Oie S, Ishida K, Yamamoto T. Impact of intraocular pressure reduction on visual field progression in normal-tension glaucoma followed up over 15 years. Jpn J Ophthalmol. 2017. https://doi. org/10.1007/s10384-017-0519-8.
- Tezel G, Siegmund KD, Trinkaus K, Trinkaus K, Wax MB, Kass MA, et al. Clinical factors associated with progression of glaucomatous optic disc damage in treated patients. Arch Ophthalmol. 2001;119:813-8.
- Flammer J, Haefliger IO, Orgul S, Resink T. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma. 1999;8:212–9.
- Takebayashi K, Matsumoto S, Aso Y, Inukai T. Aldosterone blockade attenuates urinary monocyte chemoattractant

protein-1 and oxidative stress in patients with type 2 diabetes complicated by diabetic nephropathy. J Clin Endocrinol Metab. 2006;91:2214-7.

- Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgkl. Hypertension. 2007;49:355-64.
- Rossi GP, Sachetto A, Visentin P, Canali C, Graniero GR, Palatini P, et al. Changes in left ventricular anatomy and function in hypertension and primary aldosteronism. Hypertension. 1996;27:1039-45.
- Halimi J-M, Mimran A. Albuminuria in untreated patients with primary aldosteronism or essential hypertension. J Hypertens. 1995;13:1801-2.
- 14. Takeda R, Matsubara T, Miyamori I, Hatakeyama H, Morise T. Vascular complications in patients with aldosterone producing adenoma in Japan: comparative study with essential hypertension. The Research Committee of Disorders of Adrenal Hormons in Japan. J Endocrinol Invest. 1995;18:370-3.
- Nishimura M, Uzu T, Fujii T, Kuroda S, Nakamura S, Inenega T, et al. Cardiovascular complications in patients with primary aldosteronism. Am J Kidney Dis. 1999;33:261–6.
- Fukuda K, Hirooka K, Mizote M, Nakamura T, Itano T, Shiraga F. Neuroprotection against retinal ischemia-reperfusion injury by blocking the angiotensin II type 1 receptor. Invest Ophthalmol Vis Sci. 2010;51:3629-38.
- Fujita T, Hirooka K, Nakamura T, Itano T, Nishiyama A, Nagai Y, et al. Neuroprotective effects of angiotensin II type 1 receptor (AT1-R) blocker via modulating ATI-R signaling and decreased extracellular glutamate levels. Invest Ophthalmol Vis Sci. 2012;53:4099-110.
- Liu Y, Hirooka K, Nishiyama A, Lei B, Nakamura T, Itano T, et al. Activation of the aldosterone/mineralocorticoid receptor system and protective effects of mineralocorticoid receptor antagonism in retinal ischemia-reperfusion injury. Exp Eye Res. 2012;96:116-23.
- Wilkinson-BerkaJL, Tan G, Jaworski K, Miller AG. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circ Res. 2009;104:124–33.
- Wilkinson-Berka JL, Agrotis A, Deliyanti D. The retinal reninangiotensin system: role of angiotensin II and aldosterone. Peptides. 2012;36:142-50.
- Nitta E, Hirooka K, Tenkumo K, Fujita T, Nishiyama A, Nakamura T, et al. Aldosterone: a mediator of retinal ganglion cell death and the potential role in the pathogenesis in normal-tension glaucoma. Cell Death Dis. 2013;4:e711.
- Rafiq K, Nakano D, Ihara G, Hitomo H, Fujisawa Y, Ohashi N, et al. Effects of mineralocorticoid receptor blockade on glucocorticoid-induced renal injury in adrenalectomized rats. J Hypertens. 2011;29:290-8.
- Rafiq K, Noma T, Fujisawa Y, Jshihara Y, Arai Y, Nabi AH, et al. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation. Circulation. 2012;125:1402–13.
- Woller G, Brandt E, Mittelstädt J, Rybakowski C, Petersen F. Platelet factor 4/CXCL4-stimulated human monocytes induce apoptosis in endothelial cells by the release of oxygen radicals. J Leukoc Biol. 2008;83:936-45.
- Cohen RA, Vanhoutte PM. Endothelium-dependent hyperpolarization: beyond nitric oxide and cyclic GMP. Circulation. 1995;92:3337-49.
- Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265-9.

Gene expression changes in the retina after systemic administration of aldosterone

- Luksch A, Polak K, Beier C. Effects of systemic NO synthase inhibition on choroidal and optic nerve head blood flow in healthy subjects. Invest Ophthalmol Vis Sci. 2000;41:3080-4.
- Okuno T, Oku H, Suguyama T, Yang Y, Ikeda T. Evidence that nitric oxide is involved in autoregulation in optic nerve head of rabbits. Invest Ophthalmol Vis Sci. 2002;43:784–9.
- Yamazaki Y, Drance S. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol. 1997;124:287-95.
- Wang Y, Fawzi A, Varma R, Sadun AA, Zhang X, Tan O, et al. Pilot study of optical coherence tomography measurement of ret inal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci. 2011;52:840-5.
- Lehmann K, Tschuor C, Rickenbacher A, Jang JH, Oberkofler CE, Tschopp O, et al. Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration. Gastroenterology. 2012;143:1609–19.
- Willenbring H, Sharma AD, Vogel A, Lee AY, Rothfuss A, Wang Z, et al. Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis. Cancer Cell. 2008;14:59-67.
- Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. P53 and mitochondrial function in neurons. Biochim et Biophys Acta. 2014;1842:1186-97.

- Shi H, Zhang A, He Y, Yang M, Gan W. Effect of p53 on aldosterone-induced mesangial cell apoptosis in vivo and in vitro. Mol Med Rep. 2016;13:5102-8.
- 35. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13:962–72.
- Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413-31.
- Mason RS, Reichrath J. Sunlight vitamin D and skin cancer. Anticancer Agents Med Chem. 2013;13:83–97.
- Husain K, Ferder L, Mizobuchi M, Finch J, Slatopolsky E. Combination therapy with paricalcitol and enalapril ameliorates cardiac oxidative in jury in uremic rats. Am J Nephrol. 2009;29:465–72.
- Rehman S, Chandel N, Salhan D, Rai P, Sharma B, Singh T, et al. Ethanol and vitamin D receptor in T cell apoptosis. J Neuroimmune Pharmacol. 2013;8:251-61.
- 40. Zhao M, Valamanesh F, Celerier I, Savoldelli M, Jonet L, Jeanny JC, et al. The neuroretina is a novel mineralocorticoid target: aldosterone up-regulates ion and water channels in Müller glial cells. FASEB J. 2010;24:3405-15.