学位論文

Histomorphometry of ectopic mineralization using undecalcified frozen bone sections

香川大学大学院医学系研究科

機能構築医学専攻 組織化学部門

藤原龍史

1	Title
2	Histomorphometry of ectopic mineralization using undecalcified frozen bone sections
3	
4	Running title
5	Frozen section evaluating mineralization
6	
7	Authors
8	Ryuji Fujihara, MD, ^{1,2}
9	Yoichi Chiba, MD, PhD, ¹
10	Toshitaka Nakagawa, PhD, ³
11	Ryuta Murakami, MD, ¹
12	Koichi Matsumoto, MD, PhD, ¹
13	Machi Kawauchi, ¹
14	Takayuki Fujii, MD, ⁴
15	Ryuichi Shimono, MD, PhD, ⁴
16	Tetsuji Yamamoto, MD, PhD, ²
17	Masaki Ueno, MD, PhD, ¹
18	1: Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University,
19	Kagawa, Japan
20	2: Department of Orthopaedic Surgery, Faculty of Medicine, Kagawa University, Kagawa,
21	Japan
22	3: Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
23	4: Department of Pediatric Surgery, Faculty of Medicine, Kagawa University, Kagawa,
24	Japan
25	
26	Correspondence author
27	Masaki Ueno, MD, PhD
28	Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University,
29	1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
30	Tel.: +81-87-891-2115, FAX: +81-87-891-2116
31	Email: masaueno@med.kagawa-u.ac.jp

1 Abstract

 $\mathbf{2}$

3	Objective: To investigate the correlation between mineral formation and enhanced
4	expressions of some proteins using undecalcified frozen bone sections.
5	Summary of Background Data: Histological studies have revealed that some proteins,
6	such as BMP2, BMPR1A, and Connexin 43, are expressed in and around sites of ectopic
7	ossification. However, the relationship between the expressed proteins considered to be
8	associated with the ossification and mineral formation in vivo is not clear.
9	Methods: Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1)-mutant spinal
10	hyperostotic TWY mice and ICR mice as controls were euthanized after calcein labeling,
11	and undecalcified frozen sections were obtained from the middle thoracic spine.
12	Intervertebral disc areas were examined histologically and by measuring calcein-labeled
13	areas and areas showing immunoreactivity for BMP2, BMPR1A, and Connexin 43.
14	Results: Calcein-labeled areas, indicating mineralization in the ectopic mineralization sites,
15	were significantly larger in the mutant mice than in controls. The expression of Connexin
16	43 was elevated in the annulus fibrosus. Increases in the calcein-labeled areas was not

1	correlated with increases in the areas showing immunoreactivity for Connexin 43 in the
2	annulus fibrosus.
3	Conclusions: There was no statistical correlation between enhanced immunohistochemical
4	expression and elevated calcein-labeled areas. By applying the morphometrical analysis
5	method using undecalcified frozen sections to ENPP1-mutant mice, quantitative evaluation
6	of the mineralization and proteins expressed in the surrounding area in the same animal
7	became possible.
8	
9	
10	Key words: BMP2, BMPR1A, Connexin 43, ENPP1, histomorphometry, mineralization,
11	ossification of the posterior longitudinal ligament, undecalcified frozen section
12	

1 Research highlights

2	By applying the morphometrical method using undecalcified frozen sections, evaluation
3	of the mineralization and proteins in the same animal became possible. The correlation
4	between them was analyzed in vivo.
5	
6	
7	
8	
9	

1 Introduction

 $\mathbf{2}$

3	Since the ossification of the posterior longitudinal ligament (OPLL) in an autopsy case
4	was initially reported in 1960, many histological studies have been conducted to clarify the
5	pathogenesis (Tsuzuki, 2006). Some studies using decalcified paraffin-embedded sections
6	from human OPLL showed the specific localization of collagen subtypes and
7	immunoreactivity of bone morphogenetic protein (BMP)-2, BMP receptor (BMPR), and
8	Connexin 43 (Chen et al., 2016; Kawaguchi et al., 1992; Sato et al., 2007; Yasui, Ono,
9	Yamaura, Konomi, & Nagai, 1983; Yonemori et al., 1997). These proteins have been
10	considered to be factors involved in ectopic mineralization, but few papers have reported
11	the quantitative evaluation of immunohistochemical findings.
12	The use of animal models has facilitated analysis of the mineralization front in ectopic
13	ossification because labeling by fluorescent calcein injected in a few days before
14	euthanization makes it possible to evaluate new bone formation. A TWY mouse, with a
15	nonsense mutation in the ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1)
16	gene, was used to analyze ectopic mineralization (Okawa et al., 1998), because of
17	association between ENPP1 gene polymorphism and human OPLL (Koshizuka et al.,

1	2002). The mutant mouse was discovered during brother-sister mating of ICR mouse
2	(Hosoda, Yoshimura, & Higaki, 1981) and showed elevated bone formation compared with
3	the control ICR mouse in resin-embedded sections (Okawa, Goto, & Moriya, 1999; Tanno,
4	1992). However, useful immunohistochemical findings could not be obtained from the
5	resin-embedded sections.
6	From the above, it remains to be clarified whether some index values of mineral
7	formation in the mineralization front are related to immunohistochemically expressed
8	proteins. Only by conducting experiments using undecalcified frozen bone sections
9	(Kawamoto, 2003) obtained from the ENPP1-mutant spinal hyperostotic mice,
10	quantification of mineral formation at the ectopic mineralization and immunohistochemical
11	expression of some involved proteins in the same animal became possible. The present
12	study aimed: (1) to verify the findings obtained from undecalcified frozen bone sections by
13	comparing with previous reports, (2) to quantify both parameters of immunoreactivity for
14	some proteins and mineral formation, and (3) to analyze the correlation between
15	immunohistochemical findings and mineral formation. By applying the method using
16	undecalcified frozen sections, the role of expressed proteins could be analyzed in relation to
17	mineral formation in vivo.

 $\mathbf{2}$

3 Materials and Methods

4

5 Experimental animals

6	Eight-week-old male ICR (Jcl:ICR) mice and TWY (TWY/Jic-ttw) mice were
7	purchased from CLEA Japan, Inc. (Tokyo, Japan). They were kept under controlled
8	conditions with a 12-h light/dark cycle at 22–26°C, and maintained on commercial food
9	(MF, Oriental Yeast Corp., Ltd., Japan) and tap water ad libitum. All experimental
10	procedures complied with the guidelines for the care and use of animals established by
11	Kagawa University and the National Institute of Health Guide for the Care and Use of
12	Laboratory Animals. The experimental protocols were approved by the Kagawa University
13	Animal Care and Use Committee.
14	
15	Experimental protocol

At 15 weeks of age, five ICR mice and five TWY mice were euthanized, with calcein
(20 mg/kg, IP; Dojindo Laboratory, Kumamoto, Japan) intraperitoneally administered 8 and

1	1 day before death. Mice were anesthetized intraperitoneally with an overdose of sodium
2	pentobarbital, and perfused transcardially with phosphate-buffered saline (PBS) and then
3	with a fixative containing 10% buffered formalin. After formalin fixation for one day at
4	4°C, the thoracic spine was removed from mice and embedded in super cryoembedding
5	medium (SECTION-LAB Co., Ltd., Hiroshima, Japan) with hexane on dry ice. Frozen
6	sections were cut at -25°C on a cryostat (LEICA CM1950, Leica Microsystems, Tokyo,
7	Japan) with a tungsten-carbide blade. Supported with adhesive films (Cryofilm type 2C (9),
8	SECTION-LAB Co., Ltd., Hiroshima, Japan), 8-µm-thick sections were obtained. Sagittal
9	sections around the median plane including the nucleus pulposus and gray matter of the
10	spinal cord were obtained. Freeze-dried sections that had been placed in a cryochamber
11	maintained at -25°C for 1 h were used to analyze mineralization. For histological
12	examination, frozen sections were thawed at room temperature for 30 sec and put in 99%
13	ethanol for 30 sec before staining.

15 Histological procedure

Hematoxylin & eosin (HE) staining was performed according to the previous report
(Kawamoto & Kawamoto, 2014). In brief, the sections were stained with Hematoxylin for 1

1	minute. After washing the sections in running water, the sections were stained with eosin
2	for approximately 10 sec and rinsed with 99% ethanol. Then we dropped mounting medium
3	(SCMM-R2, SECTION-LAB Co., Ltd., Hiroshima, Japan) on the sections, and fixed them
4	under ultraviolet light.
5	Modified von Kossa staining was performed using a calcium stain kit according to the
6	attached instructions (ScyTek, Utah, USA). In brief, we incubated the sections in 5% silver
7	nitrate solution for 10 min under ultraviolet light. After rinsing the sections in 3 changes of
8	distilled water, the sections were incubated in 5% sodium thiosulfate solution for 2 min.
9	The nucleus was stained with nuclear fast red solution for 5 min. After rinsing the sections
10	in distilled water, the sections were preserved by mounting medium as described above.
11	For azan staining, we treated the sections with mordanting solution (10% potassium
12	dichromate, 10% trichloroacetic acid) for 10 min. We incubated the sections in azocarmine
13	G solution (0.15 g azocarmine G, 150 ml distilled water, 1.5 ml acetate) for 30 min. After
14	differentiation in anilin alcohol (0.15 ml anilin blue, 150 ml 95% ethanol) for several
15	seconds followed by rinse in acetic alcohol, the sections were incubated in 5%

16 phosphotungstic acid for 30 min. Following the incubation with anilin blue/orange G

1	solution (0.5 g anilin blue, 2 g orange G, 200 ml distilled water, 8 ml acetate) for 30 min,
2	the sections were rinsed in 99% ethanol for 5 min.
3	For alcian blue staining, we treated sections with 3% acetate for 3 min. The sections
4	were incubated in alcian blue solution (1 g alcian blue 8GX, 100 ml 3% acetate) for 10 min,
5	followed by rinse in 3% acetate for 3 min. After rinsing the sections in distilled water, the
6	nucleus was stained with nuclear fast red solution for 3 min.
7	
8	Immunohistochemical procedure
9	For immunohistochemical examination, the sections were treated with 0.3% H ₂ O ₂ for
10	10 min, blocked with normal horse serum for 30 min, and incubated in the presence of the
11	primary antibody (Bridgewater et al., 2013; Fujishiro, Kaneko, Kawashima, Ishida, &
12	Kawano, 2014; Gu et al., 2014; Hwang et al., 2016; Tu et al., 2016; Xia et al., 2017; Yeom
13	et al., 2013) (Table 1) at 4°C over night. To reduce the non-specific reactions, we diluted
14	secondary antibody twice times with normal horse serum (ImmPRESS HRP REAGENT
15	KIT, Vector Laboratories, Burlingame, USA), and the sections were incubated in the diluted
16	solution for 30 min. The color was developed with 3,3'-diaminobenzidine

1	tetrahydrochloride and hydrogen peroxide (Nichirei) at RT for 10 min. The sections were
2	counterstained with hematoxylin for several seconds.
3	
4	Qualitative analysis of extracellular matrix
5	Each vertebra of the middle thoracic spine was imaged using a microscope (Olympus
6	BX51, Tokyo, Japan) with a 4x objective lens. The histological architecture of the spine
7	was evaluated by HE staining. Mineral apposition was evaluated by modified von Kossa
8	staining. Collagen fibers were evaluated by azan staining and immunostaining of collagen
9	subtypes, while the deposition of acid mucopolysaccharides was evaluated with alcian blue
10	staining.
11	
12	Quantitative analysis of immunohistochemistry
13	Each vertebra of the middle thoracic spine was imaged using a microscope (Olympus
14	BX51, Tokyo, Japan) with a 20x objective lens. The stained areas obtained with
15	immunohistochemical techniques were measured semi-automatically with WinROOF2015
16	(Mitani Corporation, Tokyo, Japan). We measured annulus fibrosus area as follows: the
17	region of interest (ROI) of the annulus fibrosus area was determined at intervertebral disc

1	area except for ectopic mineralization and nucleus pulposus. The proportion of the stained
2	area (%) was obtained by dividing the stained area by the area of ROI. The mean value of
3	each vertebra was used for statistical analysis.

5 Evaluation of mineralization

6	Each vertebra in the middle thoracic spine was imaged using a fluorescence phase-
7	contrast microscope (BZ-X710, Keyence, Osaka, Japan) with a 4x objective lens. A
8	fluorescence image using 1/200-second exposure with a GFP filter (Keyence) and a phase-
9	contrast image using 1/7,500-second exposure were obtained. The ROI for the quantitative
10	evaluation of the fluorescence and phase-contrast images was determined in the ectopic
11	mineralization area. The fluorescence area was measured semi-automatically with graphic
12	software (WinROOF2015, Mitani Corporation) (Andreassen & Oxlund, 2003). The
13	proportion of the calcein-labeled area (%) was obtained by dividing the fluorescence area
14	by the area of ROI.
15	The dynamic parameters were measured manually using WinROOF2015 (Mitani
16	Corporation). The single-labeled surface (sLS), double-labeled surface (dLS), and label
17	thickness were measured at the periosteal surface. The mineralizing surface (Ps.MS/BS)

1	was calculated by dividing the total extent of dLS plus half the extent of sLS by the
2	periosteal perimeter. The mineral apposition rate (Ps.MAR) was calculated by dividing the
3	label thickness by the labelling interval. The bone formation rate (Ps.BFR/BS) was
4	calculated as the product of the mineralizing surface and mineral apposition rate (Mashiba
5	et al., 2000). The nomenclature and symbols were used according to the recommendations
6	of the Histomorphometry Nomenclature Committee of the American Society for Bone and
7	Mineral Research (Dempster et al., 2013). The mean value of each vertebra was used for
8	statistical analysis.
9	
10	Statistical analysis
11	Values are shown as the mean \pm SD. Differences between the groups were analyzed
12	using the Mann-Whitney test. Spearman's rank correlation analysis was performed to
13	assess the relationship between mineralization and immunohistochemical parameters. SPSS
14	statistics 22 (IBM Corp., Armonk, NY, USA) was used for statistical analyses. Differences
15	were considered significant at $p < 0.05$.
16	

1 Results

 $\mathbf{2}$

3	The body weight before euthanasia was 43.2 g \pm 2.9 for ICR mice and 32.1 g \pm 3.9 g
4	for TWY mice. The difference between them was significant (p=0.009 Mann-Whitney test).
5	

6 Qualitative analysis of extracellular matrix

7	HE staining and modified von Kossa staining showed mineral apposition at the annulus
8	fibrosus in TWY mice but not in ICR mice (Fig. 1 A, B, E, F). Alcian blue staining revealed
9	deposition of acid mucopolysaccharides in the intervertebral disc area, and distribution of
10	mucopolysaccharides exhibited an unclear boundary between the ectopic mineralization
11	and annulus fibrosus (Fig. 1 C, G). Through azan staining, the annulus fibrosus was stained
12	blue, while ectopic mineralization showed focal staining with a purple color (Fig. 1 D, H).
13	In contrast with the negative control for immunohistochemistry (Fig. 2 A, B, I, J), collagen
14	type I was immunohistochemically expressed in the outer layer of the annulus fibrosus
15	(Fig. 2 C, K), while collagen type II was immunohistochemically expressed in endplates
16	(Fig. 2 D, L). Immunoreactivity of collagen type II was observed in ectopic mineralization
17	of TWY mice, while that of collagen type I and negative control was scarce (Fig. 2 J-L).

 $\mathbf{2}$

Quantitative analysis of immunohistochemistry

3	Immunoreactivity of BMP2, BMPR1A, and Connexin 43 was observed in ectopic
4	mineralization of TWY mice (Fig. 2 M-O), however that of normal rabbit IgG was also
5	observed in ectopic mineralization (Fig. 2 J). By contrast, immunoreactivity of Connexin
6	43 was observed at annulus fibrosus of ICR and TWY mice (Fig. 2 G, O) without that of
7	normal rabbit IgG at annulus fibrosus. Connexin 43 immunohistochemical expression was
8	significantly enhanced in the annulus fibrosus of TWY mice, compared with that in the area
9	of ICR mice (p=0.009 Mann-Whitney test) (Table 2). There was no immunoreactivity of
10	BMP2 and BMPR1A at annulus fibrosus.
11	
12	Evaluation of mineralization
13	The calcein-labeled area in the ectopic mineralization was significantly larger in TWY
14	mice than in ICR mice, and dynamic parameters at the periosteal surface were higher in
15	TWY mice than in ICR mice (Table 2).
16	

17 Correlation between mineralization and immunohistochemistry

1	There were no associations between any parameters of mineralization and
2	immunohistochemically stained area with Connexin 43.
3	
4	
5	Discussion
6	
7	First, we verify the validity of the findings obtained from undecalcified frozen bone
8	sections by comparing them with published observations (Hong et al., 2012). In the present
9	study, the rate of periosteal mineralization was significantly higher in the TWY mouse,
10	consistent with the previous findings obtained from resin-embedded sections (Okawa et al.,
11	1999). Next, we investigated the immunohistochemical distribution of collagen subtypes, to
12	verify the immunohistochemical findings. Collagen type I was mainly expressed in the
13	outer layer of the annulus fibrosus, and collagen type II was expressed in the endplate and
14	annulus fibrosus (Fig. 1). The areas expressing these proteins were similar to the published
15	findings obtained from decalcified paraffin sections in ICR and TWY mice (Furusawa,
16	Baba, Imura, & Fukuda, 1996; Hirakawa et al., 2004). These findings indicate that it is

1	effective to evaluate the mineralization and immunohistochemical expression of some
2	proteins using undecalcified frozen bone sections.
3	The relationships between mineralization and the extracellular matrix have been
4	reported in human OPLL and in the TWY mouse. In human OPLL, the ossified area shows
5	collagen type I expression, while the calcified cartilaginous layer shows collagen type II
6	expression and toluidine blue staining (Sato et al., 2007). In the TWY mouse, ectopic
7	ossification expressed collagen type I, while protruding cartilaginous tissue expressed
8	collagen type II (Furusawa et al., 1996). In this study, several staining patterns revealed
9	ectopic mineralization accompanied by the deposition of mucopolysaccharides, collagen
10	type I, and collagen type II. At present, it remains to be fully clarified whether the
11	pathogenesis of the ENPP1 mutant mouse actually reflects that of human OPLL, because
12	the mutant mouse exhibited ectopic mineralization at many sites beyond the posterior
13	longitudinal ligament (Hosoda et al., 1981). However, the findings suggest that ectopic
14	ossification begins in the calcified cartilaginous tissues.
15	It was reported that BMP2, BMPR1A, and Connexin 43 were expressed in and around
16	sites of ectopic ossification in decalcified paraffin sections (Chen et al., 2016; Kawaguchi
17	et al., 1992; Sato et al., 2007; Tu et al., 2016; Yonemori et al., 1997). An in vitro experiment

1	reported that expressions of BMP2, BMPR, and Connexin 43 were induced by mechanical
2	stress on OPLL-derived cells (Tanno, Furukawa, Ueyama, Harata, & Motomura, 2003;
3	Yang et al., 2011). However, it remains unclear where these factors are expressed in TWY
4	mice or how they are correlated with mineralization. In this study, using undecalcified
5	frozen sections, the immunoreactivity of BMP2, BMPR1A, and Connexin 43 were
6	observed ectopic mineralized areas, while that of Connexin 43 expression was enhanced in
7	the annulus fibrosus of TWY mice. However, there were no correlations between any
8	parameters of mineralization and immunohistochemically stained area. These findings
9	suggest that immunoreactivity of these substances may be involved in the pathogenesis of
10	ectopic mineralization, however, there was discrepancy between enhanced
11	immunoreactivity of Connexin 43 and elevated mineralization. There are several
12	explanations for this discrepancy. First, ectopic mineralization may require multiple
13	pathological steps such as hyperplasia, metaplasia, neovascularization (Uchida et al., 2012),
14	before mineralization. Expression of Connexin 43 in annulus fibrosus may not be directly
15	involved in mineralization. Second, immunohistochemical findings in ectopic
16	mineralization site was not evaluated in relation to mineralization in this study because the
17	ectopic mineralization was stained with normal rabbit IgG. Although undecalcified frozen

1	sections may preserve the antigenicity, non-specific reactions for mineralized tissue were
2	reported (Carter, Sloan, & Aaron, 1994). If the complete negative control is achieved by
3	histological procedures, such as pretreatment of the section by EDTA (Carter et al., 1994),
4	direct comparison between parameters of the immunohistochemistry and mineralization in
5	ectopic mineralization site become possible. Finally, quantification of
6	immunohistochemical findings has no guarantee of accurate amount of expressed proteins.
7	This is the first paper to report semi-quantitative results of ectopic mineralization and
8	analysis of whether the association between mineralization and immunohistochemical
9	findings is significant. However, there are some limitations. First, immunohistochemical
10	findings were not confirmed using other methods, such as in situ hybridization.
11	Immunoreactivity of several proteins at ectopic mineralization site was hard to conclude
12	that these proteins were expressed there. Second, histological site-specific quantification
13	was semi-quantitatively performed in only one sagittal section near the median plane, and
14	not multiple planes. Third, the evaluation of the calcein-labeled area was performed in the
15	ectopic mineralization sites. However, the boundary of the ectopic mineralization was not
16	clear in freeze-dried sections. The application of an improved mineral staining method,
17	which can minimize the elution of water-soluble calcein, would generate better images of

1 the ectopic mineralization front. Further investigation is required.

2	In summary, a morphometrical method for analysis of the mineralization front and
3	immunohistochemically expressed proteins in the same animal was established using
4	undecalcified frozen bone sections. Enhanced immunoreactivity for Connexin 43 was not
5	correlated with elevated mineralization in hyperostotic mice, indicating the multiple
6	pathological steps before the development of ectopic mineral formation. Application of the
7	method using undecalcified frozen bone sections would make it possible to analyze the
8	pathophysiology of ectopic mineralization in more detail.
9	
10	
11	Acknowledgements
12	
13	This study was supported by a Budget from the Ministry of Education, Culture, Sports,
14	Science and Technology of Japan.
15	The authors wish to express their appreciation to Ms. K. Yasutomi for editorial
16	assistance, and to Ms. M. Higashihara and Ms. Y. Agawa for technical support.
17	

References

2	
3	Andreassen, T. T., & Oxlund, H. (2003). Local anabolic effects of growth hormone on
4	intact bone and healing fractures in rats. Calcified Tissue International, 73(3), 258-
5	264. https://doi.org/10.1007/s00223-002-2074-6
6	Bridgewater, L. C., Mayo, J. L., Evanson, B. G., Whitt, M. E., Dean, S. A., Yates, J. D.,
7	Hancock, C. R. (2013). A novel bone morphogenetic protein 2 mutant mouse,
8	nBmp2NLS(tm), displays impaired intracellular Ca2+ handling in skeletal muscle.
9	Biomed Res Int, 2013, 125492. https://doi.org/10.1155/2013/125492
10	Carter, D. H., Sloan, P., & Aaron, J. E. (1994). The cryomicrotomy of rat dental tissues: a
11	technique for histological and immunohistochemical analysis. The Histochemical
12	Journal, 26(2), 103–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7512083
13	Chen, D., Liu, Y., Yang, H., Chen, D., Zhang, X., Fermandes, J. C., & Chen, Y. (2016).
14	Connexin 43 promotes ossification of the posterior longitudinal ligament through
15	activation of the ERK1/2 and p38 MAPK pathways. Cell and Tissue Research, 363(3),
16	765-773. https://doi.org/10.1007/s00441-015-2277-6
17	Dempster, D. W., Compston, J. E., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche,

1	H., Parfitt, A. M. (2013). Standardized nomenclature, symbols, and units for bone
2	histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry
3	Nomenclature Committee. Journal of Bone and Mineral Research, 28(1), 2–17.
4	https://doi.org/10.1002/jbmr.1805
5	Fujishiro, A., Kaneko, H., Kawashima, T., Ishida, M., & Kawano, T. (2014). In vivo
6	neuronal action potential recordings via three-dimensional microscale needle-electrode
7	arrays. Scientific Reports, 4, 1–9. https://doi.org/10.1038/srep04868
8	Furusawa, N., Baba, H., Imura, S., & Fukuda, M. (1996). Characteristics and mechanism of
9	the ossification of posterior longitudinal ligament in the tip-toe walking Yoshimura
10	(twy) mouse. European Journal of Histochemistry, 40(3), 199–210.
11	Gu, S., Wu, W., Liu, C., Yang, L., Sun, C., Ye, W., Chen, Y. (2014). BMPRIA
12	mediated signaling is essential for temporomandibular joint development in mice.
13	PLoS ONE, 9(8), e101000. https://doi.org/10.1371/journal.pone.0101000
14	Hirakawa, H., Kusumi, T., Nitobe, T., Ueyama, K., Tanaka, M., Kudo, H., Harata, S.
15	(2004). An immunohistochemical evaluation of extracellular matrix components in the
16	spinal posterior longitudinal ligament and intervertebral disc of the tiptoe walking
17	mouse. Journal of Orthopaedic Science, 9(6), 591–597.

1	https://doi.org/10.1007/s00776-004-0823-2
2	Hong, SH., Jiang, X., Chen, L., Josh, P., Shin, DG., & Rowe, D. (2012). Computer-
3	automated static, dynamic and cellular bone histomorphometry. Journal of Tissue
4	Science & Engineering, Suppl 1(1), 4. https://doi.org/10.4172/2157-7552.S1-004
5	Hosoda, Y., Yoshimura, Y., & Higaki, S. (1981). A new breed of mouse showing multiple
6	osteochondral lesionstwy mouse. Ryumachi. [Rheumatism], 21 Suppl, 157-64.
7	Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7344126
8	Hwang, P. Y., Jing, L., Chen, J., Lim, FL., Tang, R., Choi, H., Setton, L. A. (2016). N-
9	cadherin is key to expression of the nucleus pulposus cell phenotype under selective
10	substrate culture conditions. Scientific Reports, 6(1), 28038.
11	https://doi.org/10.1038/srep28038
12	Kawaguchi, H., Kurokawa, T., Hoshino, Y., Kawahara, H., Ogata, E., & Matsumoto, T.
13	(1992). Immunohistochemical demonstration of bone morphogenetic protein-2 and
14	transforming growth factor-beta in the ossification of the posterior longitudinal
15	ligament of the cervical spine. Spine, 17(3 Suppl), S33-6. Retrieved from
16	http://www.ncbi.nlm.nih.gov/pubmed/1566182
17	Kawamoto, T. (2003). Use of a new adhesive film for the preparation of multi-purpose

https://doi.org/10.1007/s00776-004-0823-2

1	fresh-frozen sections from hard tissues, whole-animals, insects and plants. Archives of
2	Histology and Cytology. https://doi.org/10.1679/aohc.66.123
3	Kawamoto, T., & Kawamoto, K. (2014). Preparation of thin frozen sections from nonfixed
4	and undecalcified hard tissues using Kawamot's film method (2012). Methods in
5	Molecular Biology (Clifton, N.J.), 1130, 149–164. https://doi.org/10.1007/978-1-
6	62703-989-5_11
7	Koshizuka, Y., Kawaguchi, H., Ogata, N., Ikeda, T., Mabuchi, A., Seichi, A., Ikegawa,
8	S. (2002). Nucleotide pyrophosphatase gene polymorphism associated with
9	ossification of the posterior longitudinal ligament of the spine. Journal of Bone and
10	Mineral Research, 17(1), 138-44. https://doi.org/10.1359/jbmr.2002.17.1.138
11	Mashiba, T., Hirano, T., Turner, C. H., Forwood, M. R., Johnston, C. C., & Burr, D. B.
12	(2000). Suppressed bone turnover by bisphosphonates increases microdamage
13	accumulation and reduces some biomechanical properties in dog rib. Journal of Bone
14	and Mineral Research, 15(4), 613-620. https://doi.org/10.1359/jbmr.2000.15.4.613
15	Okawa, A., Goto, S., & Moriya, H. (1999). Calcitonin simultaneously regulates both
16	periosteal hyperostosis and trabecular osteopenia in the spinal hyperostotic mouse
17	(twy/twy) in vivo. Calcified Tissue International, 64(3), 239-247.

https://doi.org/10.1007/s002239900610

2	Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y., & Ikegawa, S. (1998).
3	Mutation in Npps in a mouse model of ossification of the posterior longitudinal
4	ligament of the spine. Nature Genetics, 19(3), 271–273. https://doi.org/10.1038/956
5	Sato, R., Uchida, K., Kobayashi, S., Yayama, T., Kokubo, Y., Nakajima, H., Baba, H.
6	(2007). Ossification of the posterior longitudinal ligament of the cervical spine:
7	histopathological findings around the calcification and ossification front. Journal of
8	Neurosurgery. Spine, 7, 174–183. https://doi.org/10.3171/SPI-07/08/174
9	Tanno, M., Furukawa, K. I., Ueyama, K., Harata, S., & Motomura, S. (2003). Uniaxial
10	cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic
11	proteins of spinal ligament cells derived from patients with ossification of the
12	posterior longitudinal ligaments. Bone, 33(4), 475-484.
13	https://doi.org/10.1016/S8756-3282(03)00204-7
14	Tanno, T. (1992). [Experimental study on the spinal lesions in hyperostotic mouse
15	(twy/twy): special reference to the pathogenesis of the ossification of the spinal
16	ligaments and to the action of ethane-1-hydroxy-1, 1-diphosphonate (EHDP)]. Nihon
17	Seikeigeka Gakkai Zasshi, 66(10), 1073–83. Retrieved from

1	http://www.ncbi.nlm.nih.gov/pubmed/1460378
2	Tsuzuki, N. (2006). Review of histopathological studies on OPLL of the cervical spine,
3	with insights into the mechanism. In K. Yonenobu, K. Nakamura, & Y. Toyama
4	(Eds.), Ossification of the posterior longitudinal ligament (2nd edi, pp. 41-47).
5	Tokyo: Springer.
6	Tu, B., Liu, S., Liu, G., Li, Z., Sun, Y., & Fan, C. (2016). Inhibition of connexin 43
7	prevents trauma-induced heterotopic ossification. Scientific Reports, 6(1), 37184.
8	https://doi.org/10.1038/srep37184
9	Uchida, K., Yayama, T., Sugita, D., Nakajima, H., Guerrero, A. R., Watanabe, S., Baba,
10	H. (2012). Initiation and progression of ossification of the posterior longitudinal
11	ligament of the cervical spine in the hereditary spinal hyperostotic mouse (twy/twy).
12	European Spine Journal, 21(1), 149–155. https://doi.org/10.1007/s00586-011-1971-7
13	Xia, C., Chen, P., Mei, S., Ning, L., Lei, C., Wang, J., Fan, S. (2017). Photo-crosslinked
14	HAMA hydrogel with cordycepin encapsulated chitosan microspheres for
15	osteoarthritis treatment. Oncotarget, 8(2), 2835-2849.
16	https://doi.org/10.18632/oncotarget.13748
17	Yang, H., Lu, X., Chen, D., Yuan, W., Yang, L., Chen, Y., & He, H. (2011). Mechanical

1	strain induces Cx43 expression in spinal ligament fibroblasts derived from patients
2	presenting ossification of the posterior longitudinal ligament. European Spine Journal,
3	20(9), 1459–1465. https://doi.org/10.1007/s00586-011-1767-9
4	Yasui, N., Ono, K., Yamaura, I., Konomi, H., & Nagai, Y. (1983). Immunohistochemical
5	localization of types I, II, and III collagens in the ossified posterior longitudinal
6	ligament of the human cervical spine. Calcified Tissue International, 35(2), 159–163.
7	Yeom, M., Kim, SH., Lee, B., Zhang, X., Lee, H., Hahm, DH., Lee, H. (2013).
8	Effects of laser acupuncture on longitudinal bone growth in adolescent rats. Evidence-
9	Based Complementary and Alternative Medicine, 2013, 424587.
10	https://doi.org/10.1155/2013/424587
11	Yonemori, K., Imamura, T., Ishidou, Y., Okano, T., Matsunaga, S., Yoshida, H., Sakou,
12	T. (1997). Bone morphogenetic protein receptors and activin receptors are highly
13	expressed in ossified ligament tissues of patients with ossification of the posterior
14	longitudinal ligament. The American Journal of Pathology, 150(4), 1335–47.
15	Retrieved from
16	http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1858169&tool=pmcentrez
17	&rendertype=abstract

1 Tables

$\mathbf{2}$

Antibody Source Host Concentration Specificity Growth plate^a BMP2 Novus Rabbit $10 \ \mu g/ml$ Skeletal muscle^b Biologicals (NBP1-19751SS) BMPR1A Abcam Rabbit $20 \ \mu g/ml$ Articular cartilage^c (ab38560) 5 µg/ml Connexin 43 Rabbit Heterotopic Abcam ossification^d (ab11370) Collagen I Abcam Rabbit 20 µg/ml Annulus fibrosus^e (ab34710) Articular cartilage^f Collagen II Abcam Rabbit $5 \mu g/ml$ (ab116242) Normal IgG **R&D** Systems Rabbit $20 \ \mu g/ml$ Negative control^g (AB-105-C)

Table 1. Summary of primary antibodies used in this study

Please refer to papers written by ^aYeom et al. (2013), ^bBridgewater et al. (2013), ^cGu et al. (2014), ^dTu et al. (2016), ^eHwang et al. (2016), ^fXia et al. (2017), ^gFujishiro et al. (2014).

Table 2. Quantitative analysis of immunohistochemistry and mineralization

	ICR (n=5)	TWY (n=5)
Immunohistochemistry		
Connexin 43		
annulus fibrosus (%)	1.5 ± 0.6	$6.7 \pm 5.2^{*}$
Mineralization		
calcein-labeled area (%)	0.0 ± 0.0	$8.7\pm4.9*$
Ps.MAR (µm/day)	0.1 ± 0.2	$0.6 \pm 0.5*$
Ps.MS/BS (%)	0.03 ± 0.03	$0.3\pm0.09\text{*}$
Ps.BFR/BS (µm ³ /µm ² /day)	0.01 ± 0.02	$0.2 \pm 0.2*$

Values are expressed as mean \pm SD.

*: P < 0.05 vs. ICR. Mann-Whitney test

 $\mathbf{2}$

3

4

1 Figure legends

 $\mathbf{2}$

3 Fig. 1

4	Representative histochemical images of the extracellular matrix obtained from serial
5	sections. Hematoxylin and eosin (HE) staining (A,E), modified von Kossa staining (B,F),
6	alcian blue staining (C,G), and azan staining (D,H) in ICR (A-D) and TWY mice (E-H).
7	There is no ectopic mineralization in ICR mice (A-D), while TWY mice exhibit ectopic
8	mineralization in the intervertebral disc area (E-H: arrowhead). The ectopic mineralization
9	is stained clearly by HE staining (E: arrowhead) and modified von Kossa staining (F:
10	arrowhead). Alcian blue staining shows an unclear boundary between the ectopic
11	mineralization and annulus fibrosus (G: long arrow). Collagen fibers are focally stained in
12	the ectopic mineralization (H: short arrow). Scale bars show 500 µm.
13	
14	Fig. 2
15	Representative immunohistochemical images and a fluorescence image of the
16	mineralization front obtained from serial sections. Immunohistochemistry of normal rabbit
17	IgG incubated for 30 min (A,I), for over-night (B,J), Collagen type I (C,K), Collagen type

1	II (D,L), BMP2 (E,M), BMPR1A (F,N), Connexin 43 (G,O), and a fluorescence image of
2	the mineralization front (H,P) of ICR (A~H) and TWY (I~P) mice. Although the ectopic
3	mineralization and the nucleus pulposus are not stained with normal rabbit IgG incubated
4	for 30 min (A,I), they are positively stained if incubated for over-night (B,J: long arrow).
5	Immunoreactivity of collagen type I is observed at outer layer of the annulus fibrosus,
6	cortical or cancellous bone (C,K), while immunoreactivity of collagen type II is observed at
7	endplates in addition to above (D,L). Although immunoreactivity of collagen type I,
8	collagen type II, BMP2, BMPR1A, and Connexin 43 is observed at the ectopic
9	mineralization site (K-O: black arrowhead), its intensity is the same as that of normal rabbit
10	IgG (J: long arrow). Immunoreactivity of BMP2 is observed at spinal cord (E,M: short
11	arrow). Immunoreactivity of Connexin 43 is observed at annulus fibrosus (G,O: thick
12	arrow). Diffuse fluorescence due to calcein labeling between growth plates (P: white
13	arrowhead) is considered to reflect ectopic mineralization in the TWY mice. Scale bars
14	show 500 μm.

