高等学校数学における「考え方」に関する考察Ⅱ

松岡大我・安西一夫* (大学院教育学研究科) (数学教育講座)*

760-8522 高松市幸町1-1 香川大学大学院 *760-8522 高松市幸町1-1 香川大学教育学部

On the Mathematical Thinking at the High School Level II

Taiga Matsuoka and Kazuo Anzai

Graduate School of Education, Kagawa University, 1-1, Saiwai-cho, Takamatsu 760-8522

*Faculty of Education, Kagawa University, 1-1, Saiwai-cho, Takamatsu 760-8522

要 旨 高等学校数学における方法に関係した11種類の考え方(帰納的な考え方・演繹的な考え方・類推的な考え方・統合的な考え方・分析的な考え方・発展的な考え方・一般化の考え方・抽象化の考え方・特殊化の考え方・単純化の考え方・記号化の考え方)について検討し、各科目、内容、単元に含まれている頻度について調査し考察する。

キーワード 数学的活動 数学的な考え方 算数・数学教育 高等学校 科学的思考

1. はじめに

天然資源が乏しい創造立国を目指す我が国で は、創造性を培う教育が望まれている。平成18 年12月22日に施行された新しい教育基本法に は、今日極めて重要と考えられている教育の目 的や理念に関して、その教育基本法の(教育の 目標) 第二条に「・・個人の価値を尊重して. その能力を伸ばし、創造性を培い、・・」等が 規定されている。また、香川大学教育学部附属 高松中学校の研究開発報告書「21世紀に求めら ... れる資質・能力の育成」9)において、前期中等 教育段階で育成する必要がある資質・能力を「相 互に理解し合う力」,「創造的に思考し、探究す る力」、「自ら見通しを持って設計する力」、「感 性豊かに、表現する力 | の4つに焦点化して研 究開発をし、その結果を述べている。これらの 資質・能力は従来から育成されている大切な資 質・能力である。

また、第15期中央教育審議会は平成8年「21 世紀を展望した我が国の教育の在り方につい て」の答申を行った。教育課程審議会はこの答 申を受け、知識を一方的に教え込むことになり がちだったこれまでの教育から、自ら学び自ら 考える教育への基調の転換を図り、子どもたち の個性を生かしながら、学び方や問題解決など の能力の育成を重視することなど、教育課程 の基準の改善に当たって基本的な考えを示し た。これらのねらいを達成するために平成11年 3月に新しい高等学校学習指導要領が告示され た。そこでは、多面的にものを見る力や論理的 に考える力などの創造性の基礎を培うことが求 められ、平成15年度から実施されている新学習 指導要領の数学科の目標には「数学的活動を通 して創造性の基礎を培う」という文言が加えら れた。「数学的活動」は、新たに用いられた言 葉であるが、数学的活動の趣旨は、これまでも 問題解決能力や考える力の育成などとして、算

数・数学の学習指導上大切にされてきたもので ある。数学的活動には内的な活動と外的な活動 が考えられるが (文部省⁵⁾ p.9), 高等学校数 学では主として内的な活動が中心になると考え られる。問題解決過程の内的な活動における数 学的な考え方は,大きく「内容に関係した考え 方」と「方法に関係した考え方」とに二分する ことが可能である。本稿では、後者の「方法に 関係した考え方」(以下、「考え方」という。) を取り上げ検討する。その「考え方」は、片桐20 (pp.128-190) の10種類の「考え方」(帰納的な 考え方・演繹的な考え方・類推的な考え方・統 合的な考え方・発展的な考え方・一般化の考え 方・抽象化の考え方・単純化の考え方・特殊化 の考え方・記号化の考え方)に基づき、分析的 な考え方の概念を加えた、松岡・安西4)による 11種類の「考え方」であり、学校種によらない ことを特徴としたものである。すなわち、学校 教育及び生涯学習の観点から必要とされる数学 的な考え方としてとらえている。

ここでは、高等学校数学における「考え方」について考察する。高等学校数学教科書(数学B・数学II・数学C)の各内容、単元に含まれているこれらの「考え方」の頻度について調査し、池内・安西1)の結果と合わせて分析する。調査の対象は、S社の数学教科書(数学B[平成15年2月10日検定済]、数学II[平成16年1月10日検定済]、数学C[平成15年3月10日検定済])であり、それぞれの教科書における「例」(本文の理解を助けるための具体例)、「例題」(基本的で解答のある問題および重要で代表的な問題)である。

2. 高等学校数学の教科書における「考 え方」の分析

高等学校数学のS社の教科書(数学B・数学 \mathbb{H} ・数学 \mathbb{C})の「例」及び「例題」に含まれている指導上適切と思われる11種類の「考え方」の頻度(解答例のない練習問題などを除く)について、科目別、単元別、内容別に調べた。また、1つの学習内容にいくつかの「考え方」が

含まれている場合があり、その場合はそれぞれの「考え方」の度数に加算した。なお、数学Bの第4章(統計とコンピュータ)と第5章(数値計算とコンピュータ)及び数学Cの第4章(統計処理)は、ここでは「考え方」の頻度に加算していない。

これらの教科書を調査した結果について、科目別、単元別、内容別に表したものが、資料の表1~表3である。各科目、単元及び内容の学習内容と対応させ「考え方」の頻度を表している。この資料より生徒達はどの単元の学習内容で、どの「考え方」にふれることができるのかということを把握することができる。また、「考え方」を育成するためのカリキュラムを検討するとき、その構成要素である教育内容、教材、配当時間数、指導形態などの検討において、この一覧表が基礎資料として活用できると考えられる。

数学B・数学Ⅲ・数学Cの科目別にみた特徴 として、いずれの科目にも演繹的な考え方及び 記号化の考え方が含まれている場面が多いこと がわかる。数学Bの内容は(「平面上のベクト ル」、「空間のベクトル」、「数列」)であり、数 学Ⅲの内容は(「関数 |. 「極限 |. 「微分法 |. 「 微分法の応用」,「積分法」)であり、数学Cの 内容は(「行列」、「式と曲線」、「確率と確率分 布」)である。「考え方」における数学B·数学Ⅲ・ 数学Cの特徴として、帰納的な考え方の指導の 場面は数学Bに多く見ることができる。帰納的 な考え方は, 事例を獲得すること, 得られた事 例から一般的な関係・性質・法則を見出すこと. その関係・性質・法則が普遍的であることを検 証することの3つの活動よりなる。高校数学で は、推測された関係・性質・法則が普遍的であ ることを検証する方法として、数学的帰納法を 用いることができる。この点において、小・中 学校における帰納的な考え方の指導と高等学校 での指導に違いがある。

表 4 は、数学 I・数学 A・数学 II・数学 B・数学 II・数学 C に含まれている「考え方」の頻度を表にしたものである。ただし、数学 I・数学 A・数学 II に含まれている「考え方」の頻度

は、池内・安西1)による。

図1~図6は、表4より、数学 I・数学A・数学 II・数学B・数学Ⅲ・数学Cに含まれている「考え方」の頻度を科目別にグラフに表したものである。

表5は、表4において頻度の少ない帰納的な考え方・統合的な考え方・分析的な考え方・発展的な考え方・一般化の考え方・抽象化の考え方・単純化の考え方・特殊化の考え方の8つの「考え方」を合わして***としたものである。表5において、[数学 I・数学 A・数学 II・数学 B・数学 II・数学 Cの教科書]と[4種類の「考え方」:演繹的な考え方、類推的な考え方、記号化の考え方、***]という2つの属性の関係について、カイ2乗検定を行ったところ、有意であった。(*:p<0.05)。

表6は、表5において、[数学 I・数学 A・ 数学Ⅱ・数学B・数学Ⅲ・数学Cの教科書のう ちの2科目]と[4種類の「考え方」:演繹的 な考え方, 類推的な考え方, 記号化の考え方, ***] という2つの属性の関係について、カ イ2乗検定を行った検定結果であり、*:p < 0.05は2科目における頻度の分布におけるカイ 2乗検定の検定結果が有意水準5%で有意であ ることを表している。15の検定結果のうち、お およそ2/3に相当する9の検定結果が有意で あった。11種類の「考え方」の科目別にみた分 布は似ているとはいえないが、いずれの科目も 帰納的な考え方・統合的な考え方・分析的な考 え方・発展的な考え方・一般化の考え方・抽象 化の考え方・単純化の考え方・特殊化の考え方 と比較して演繹的な考え方及び記号化の考え方 が含まれている場面が多いことがわかった。

数学Ⅰ・数学A・数学Ⅱ・数学B・数学Ⅲ・ 数学Cの全てを学んだ場合、表4より、「考え 方」が使われる場面(練習問題などを除く)が 最も多い演繹的な考え方は511であり、最も少 ない抽象化の考え方は3であり、大きな差があ ることが分かる。これらのことより、「考え方」 の種類により指導する機会に差があり生徒の 「考え方」の定着度は異なってくると考えられ る。「考え方」を育むためには、指導のあり方 を検討したり参考書等の補助教材を活用したり する必要がある。

3. おわりに

本稿では、高等学校数学における「考え方」 の特徴及び、高等学校数学教科書(数学Ⅰ・数 学A・数学Ⅱ・数学B・数学Ⅲ・数学C) にお ける11種類の「考え方」の頻度について検討し た。その結果、高等学校数学における「考え方」 についての考察では、育みたい「考え方」にお いて、小学校・中学校と指導上特に異なる点 を, 帰納的な考え方, 統合的な考え方及び抽象 化の考え方等に見ることができた(池内・安西 1) p.3)。また. 高等学校数学教科書(数学 I・ 数学A·数学Ⅱ·数学B·数学Ⅲ·数学C)の「例」 及び「例題」に含まれている指導上適切と思わ れる11種類の「考え方」の科目別にみた分布は 似ているとはいえないが、これらの研究をもと に今後は、それぞれの「考え方」の良さを理解 させ、問題解決過程において「考え方」を意識 させる方途を開発すること. 発問の工夫などを 検討すること、補助教材を開発することなどが 課題である。問題解決能力に関わる数学的な見 方・考え方の評価等についても研究を深めてい きたい。

参考文献

- 1) 池内康貴,安西一夫:高等学校における「考え 方」に関する考察,香川大学教育実践総合研究, 第12号,pp.1-7,2006
- 2) 片桐重男」: 数学的な考え方の具体化,明治図書,1988
- 3) 片桐重男₂: 問題解決過程と発問分析, 明治図書, 1988.
- 4) 松岡沙知,安西一夫:数学的見方・考え方に関する考察,香川大学教育実践総合研究,第9号,pp.37-46,2004
- 5) 文部科学省: 高等学校学習指導要領解説, 数学編, 理数編. 1999
- 6) 山田真也,安西一夫:中学校数学における考え 方に関する考察,香川大学教育実践総合研究, 第11号,pp.39-50,2005

- 7) L. C. Larson: Problem Solving Through Problems, Springer - Verlag New York Inc, 1983
- 8) G.Polya: How to Solve It, Princeton University Press, 1945
- 9) 研究開発報告書:21世紀に求められる資質・能
- 力の育成,香川大学教育学部附属高松中学校, 2001
- 10) 教科書: 数学 I (2004), 数学 A (2004), 数学 II (2004), 数学 B (2004), 数学 II (2005), 数 学 C (2005), S 株式会社

資 料

	帰納的	演繹的	類推的	統合的	分析的	発展的	般化	抽象化	単純化	特殊化	記号化	計
平面上のベクトルとその演算(A)	0	18	0	0	3	0	0	2	0	0	3	26
ベクトルと平面図形(A)	0	9	0	0	1	0	1	0	0	0	8	19
空間のベクトル(B)	0	14	1	1	0	0	2	1	0	0	8	27
数列とその和(C)	2	19	3	1	1	2	2	0	1	0	2	33
数学的帰納法(C)	5	4	1	0	0	1	0	0	0	0	3	14
合計	7	64	5	2	5	3	5	3	1	0	24	119
割合 (%)	5.9	54	4.2	1.7	4.2	2.5	4.2	2.5	0.8	0	20	100

表 1. 高等学校数学教科書(数学B(練習問題などを除く))における「考え方」の単元別(内容 A: 平面上のベクトル, B:空間のベクトル, C:数列)の表

関数(D)	0	11	2	1	0	0	3	0	0	0	1	18
数列の極限(E)	0	13	1	1	1	4	0	0	4	0	4	28
関数の極限 (E)	0	10	4	2	2	2	1	0	1	0	4	26
微分法(F)	2	17	3	1	5	3	3	0	2	0	1	37
導関数の応用(G)	0	16	0	0	1	0	0	0	0	1	14	32
速度と近似式 (G)	0	7	0	0	0	0	0	0	0	0	1	8
不定積分(H)	0	11	0	1	0	2	0	0	3	0	0	17
定積分(H)	0	13	0	0	0	2	0	0	1	1	5	22
積分法の応用(H)	0	10	0	0	0	1	0	0	0	0	9	20
発展 (H)	0	4	0	0	0	1	0	0	0	0	0	5
合計	2	112	10	6	9	15	7	0	11	2	39	213
割合 (%)	0.9	53	4.7	2.8	4.2	7	3.3	0	5.2	0.9	18	100

表2. 高等学校数学教科書(数学III(練習問題などを除く))における「考え方」の単元別(内容 D: 関数, E:極限, F:微分法, G:微分法の応用, H:積分法)の表

	帰納的	演繹的	類推的	統合的	分析的	発展的	一般化	抽象化	単純化	特殊化	記号化	計
行列の計算(Ⅰ)	0	17	2	0	0	0	1	0	1	0	0	21
行列の応用(I.)	1	19	3	0	0	0	0	0	0	0	4	27
2次曲線(J)	0	9	2	0	0	0	0	0	0	0	10	21
媒介変数表示と極座標(J.)	0	10	0	0	0	1	0	0	0	0	9	20
確率の計算(K)	0	10	0	0	0	0	0	0	0	0	3	13
確率分布 (K)	1	10	0	2	0	0	2	0	0	0	4	19
合計	2	75	7	2	0	1	3	0	1	0	30	121
割合 (%)	1.7	62	5.8	1.7	0	0.8	2.5	0	0.8	0	25	100

表3. 高等学校数学教科書(数学C(練習問題などを除く))における「考え方」の単元別(内容 I: 行列, J:式と曲線, K:確率と確率分布)の表

	帰納的	演繹的	類推的	統合的	分析的	発展的	一般化	抽象化	単純化	特殊化	記号化	計
数学 I	0	83	10	0	2	2	1	0	5	1	30	134
数学A	1	65	5	0	2	2	0	0	2	2	16	95
数学Ⅱ	1	112	9	0	3	1	0	0	7	3	13	149
数学B	7	64	5	2	5	3	5	3	1	0	24	119
数学Ⅲ	2	112	10	6	9	15	7	0	11	2	39	213
数学C	2	75	7	2	0	1	3	0	1	0	30	121
合計	13	511	46	10	21	24	16	3	27	8	152	831
割合 (%)	1.6	61.5	5.5	1.2	2.5	2.9	1.9	0.4	3.3	1.0	18.3	100

表 4. 高等学校数学教科書(数学 I・数学 A・数学 II・数学 B・数学 II・数学 C (練習問題などを除く)) における「考え方」の科目別の表

	演繹的	類 推 的	記号化	***	合計
数学 I	83	10	30	11	134
数学A	65	5	16	9	95
数学Ⅱ	112	9	13	15	149
数学B	64	5	24	26	119
数学Ⅲ	112	10	39	52	213
数学C	75	7	30	9	121
計	511	46	152	122	831

表5. 表4において、***は、帰納的な考え方・統合的な考え方・分析的な考え方・発展的な考え方・ 一般化の考え方・抽象化の考え方・単純化の考え方・特殊化の考え方の8つの「考え方」の 数を合わせたもの

	数学 I	数学A	数学Ⅱ	数学B	数学Ⅲ	数学C
数学 I			*:p<0.05	*:p<0.05	*:p<0.05	
数学A					10.39	
数学Ⅱ	*:p<0.05			17.31	22.89	*:p<0.05
数学B	*:p<0.05		*:p<0.05			*:p<0.05
数学Ⅲ	*:p<0.05	*:p<0.05	*:p<0.05			*:p<0.05
数学C			*:p<0.05	*:p<0.05	*:p<0.05	

表 6. 表 5 の 2 科目間のカイ 2 乗検定による検定結果であり、「 * : p<0.05」は、有意水準 5 %で有意であることを表している

図1~図6は、表4より、高等学校数学教科書に含まれている11種類の「考え方」のグラフである。ただし、a,b,c,d,e,f,g,h,i,j,kは、それぞれ、a:帰納的な考え方、b:演繹的な考え方、c:類推的な考え方、d:統合的な考え方、e:分析的な考え方、f:発展的な考え方、g:一般化の考え方、h:抽象化の考え方、i:単純化の考え方、j:特殊化の考え方、k:記号化の「考え方」を表す。

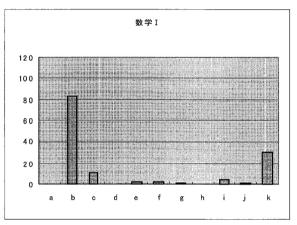


図1. 高等学校数学教科書(数学 I)

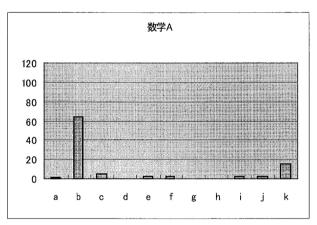


図2. 高等学校数学教科書(数学A)

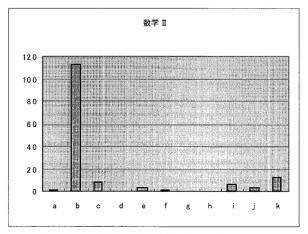


図3. 高等学校数学教科書(数学Ⅱ)

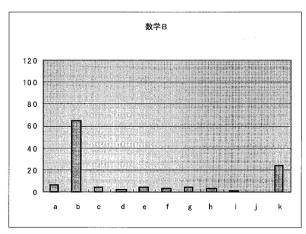


図4. 高等学校数学教科書(数学B)



図5. 高等学校数学教科書(数学Ⅲ)

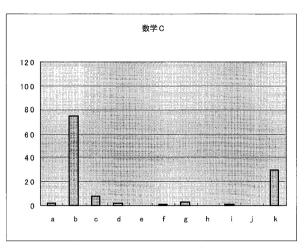


図6. 高等学校数学教科書(数学C)