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Abstract:  
Effects of inertia on oscillations in ring networks of unidirectionally coupled sigmoidal 
neurons are studied. It is known that ring neural networks without inertia are bistable and the 
duration of transient oscillations increases exponentially with the number of neurons. In this 
paper, kinematical description of traveling waves in the oscillations in the networks is 
extended to networks with inertia. When inertia is below a critical value and the state of each 
neuron is over damped, properties of the networks are qualitatively the same as those without 
inertia. The duration of the transient oscillations then increases with inertia, and the 
increasing rate of the logarithm of the duration becomes more than double. When inertia 
exceeds a critical value and the state of each neuron becomes under damped, properties of the 
networks qualitatively change. The periodic solution is then stabilized through the pitchfork 
bifurcation as inertia increases. More bifurcations occur so that various periodic solutions are 
generated, and the stability of the periodic solutions changes alternately. Further, stable 
oscillations generated with inertia are observed in an experiment on an analog circuit.  
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1. Introduction  
 
  Ring networks of neurons are of wide interest in physiological and biological modeling [1 
and references therein] since they cause various spatiotemporal patterns, and they are used as 
models of central pattern generators in the nervous systems for instance [2]. The asymptotic 
properties of ring networks of unidirectionally coupled neurons with sigmoidal output 
functions are simple [3 - 6] although it is known that discretization [7] and delays [8 - 12] 
cause complicated behaviors. Their stable states are of three kinds depending on the gains of 
the output functions and couplings of neurons. When coupling gains are small, the origin, at 
which the states of all neurons are zero, is a globally stable state. When coupling gains 
exceed threshold values, the origin becomes unstable. Then they show stable oscillations 
generated through the Hopf bifurcations if the numbers of inhibitory couplings are odd, 
which are qualitatively the same as ring oscillators [13]. On the other hand, the networks 
become globally bistable through the pitchfork bifurcations if the numbers of inhibitory 
couplings are even. The bistable states of neurons are symmetric with respect to the origin, i.e. 
±xp. There are also periodic solutions showing oscillations in the states of neurons, but they 
are unstable and the networks reach one of the bistable states eventually.  
  Recently, however, it was shown that oscillations during transition to the steady states in 
the bistable networks last extremely long time in computer simulation [14 - 16] and 
experiments on an analog circuit [17]. It was then shown that the duration of the transient 
oscillations increases exponentially with the number of neurons [18, 19]. The periodic 
solutions and transient oscillations are traveling waves rotating in the network, in which 
neurons are divided in two blocks, and the signs of their states are positive in one block and 
negative in the other block. The boundaries of the blocks then propagate in the direction of 
couplings, e.g. (+, +, +, -, -, -, -, -) → (-, +, +, +, -, -, -, -) → (-, -, +, +, +, -, -, -) ···. The states 
of neurons change their signs when the boundaries pass so that they oscillate. In the periodic 
solutions, the numbers of neurons in two blocks are the same. Kinematics of the traveling 
boundaries has shown that the velocities of the boundaries increase as the numbers of neurons 
in the forward blocks decrease. The number of neurons in a block including a smaller number 
of neurons (the length of a smaller block) then decreases and finally the boundaries of the 
block collide and the block disappears. The oscillation then ceases and the network reaches 
one of the steady states. However, difference in the velocities of the boundaries is 
exponentially small with the numbers of neurons in the blocks so that the oscillations last 
exponentially long.  
  These exponential increases in the transient oscillations mean that, when the numbers of 
neurons are large, the networks never reach their asymptotically stable steady states in 
observation time and the transient oscillations are stable in practice. Such exponential 
dependence of transient time on system size has been found in a one-dimensional 
reaction-diffusion equation [20 - 23], in which the motion of fronts and kinks is extremely 
slow and transient patterns last exponentially long with the length of a domain. Further, it has 
been shown that the duration of various transient patterns in higher-dimensional 
reaction-diffusion systems shows exponential dependence on system size, which is called 
metastable dynamics [24, 25 and references therein]. Exponentially long transient states have 
also been found in complicated patterns including transient chaos in coupled map lattices [26], 
reaction-diffusion equations [27] and neural networks [28 - 30]. These metastable dynamics 
and exponential transients are of wide interest.  
  Diffusive couplings are generally used for connection and interaction between neurons. 
However, it is known that inertia has considerable effects on properties of coupled dynamical 
systems. It causes complicated response of coupled sigmoidal neurons. Two neurons coupled 
both resistively and inductively show chaotic response to external forces [10, 31], and 
two-neuron systems with one inertial term exhibit chaos [32]. Finite frequency response of 
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neurons due to conduction delays of signals also has effects equivalent to inertial couplings 
[10]. From viewpoints of artificial neural networks, it is well known that back propagation 
learning can be accelerated and escape from local minima is enabled by adding momentum 
terms [33]. In general, all physical components in electronic circuits contain some inherent 
inductance. Response of nerve membrane in the resting state shows the existence of 
phenomenological inductance in itself [34]. Dynamical neuron models such as the BVP 
(Bonhoeffer-van der Pol) model, which generate impulses and show spontaneous firing, 
contain inductance in their analog circuits [35, 36].  
  Further, collective synchronization in coupled oscillator systems with inertia has been 
extensively studied in various fields [37 - 39]. In the context of nervous systems, 
synchronized firing in populations of fireflies of a certain species was explained by adding 
frequency adaptation as well as phase, which leads to a system of the second-order 
differential equations [40]. Effects of inertia were also examined on phase resetting and 
desynchronization in spontaneous firing of neurons with a two-dimensional phase oscillator 
model [41], which was physiologically derived with interaction between axons and dendrites 
[42]. In addition, in the field of electronics engineering, it has been shown that nonlinear 
oscillators coupled with inductance exhibit various synchronization, bifurcation and chaotic 
patterns [43 - 45].  
  What inertia causes in periodic solutions and transient oscillations in the unidirectionally 
coupled bistable ring neural networks is thus of interest. As mentioned above, they are two 
traveling boundaries of two blocks of neurons rotating in the network. The velocity of each 
boundary depends on the number of neurons in the forward block. This dependence results 
from the relaxation process of the states of neurons. The state of each neuron approaches one 
of the steady states, and the approaching state changes as the boundary passes. The velocity 
of the boundary is large when the absolute value of the state of a neuron at the passage time 
of the boundary is small. In the absence of inertia, changes in the states of neurons are 
described with the first-order differential equations, and their approach to the steady states is 
monotonic and exponential. The monotonicity causes the instability of periodic solutions, and 
the exponentiality causes exponentially long transient oscillations. In the presence of inertia, 
however, changes in the states of neurons are described with the second-order differential 
equations, and their recovery process to the steady states can be under damped (damped 
oscillatory). This oscillatory relaxation of the states of neurons due to inertia is then expected 
to change the stability of periodic solutions. In this paper, we derive a kinematical equation of 
the traveling boundaries in the networks in the presence of inertia. Using the kinematics, we 
first show that the increasing rate of the duration of the transient oscillations with the number 
of neurons increases with inertia in an over damping mode. Next, it is shown that inertia 
causes the pitchfork bifurcations of periodic solutions and stabilizes oscillations in an under 
damping mode. Further, it is shown that successive bifurcations make asymmetric periodic 
solutions and periodic solutions of higher harmonics stable. These qualitative changes in the 
properties of the networks and the coexistence of oscillations of various patterns caused by 
inertia are of interest.  
  The rest of the paper is organized as follows. In Sect. 2, a model of the ring neural network 
with inertial terms is explained and its solutions of traveling wave type and spatiotemporal 
patterns of the states of neurons are shown with computer simulation. In Sect. 3, kinematical 
description of the traveling waves in the network is derived. In Sect. 4, it is shown that the 
duration of the transient oscillations increases and the periodic solutions are stabilized owing 
to inertia. Stable oscillations observed in an experiment on an analog circuit are shown in 
Sect. 5. Finally conclusion and future work are given in Sect. 6.  
 
 
2. Ring neural networks with inertia  
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  We consider the following ring neural network model, in which effects of inertia are taken 
into account.  
 
  dxn/dt = yn  
 
  mdyn/dt = -yn - xn + f(xn-1)   (x0 = xN,  y0 = yN,  1 ≤ n ≤ N)  
 
      f(x) = tanh(gx)    (g > 1)        (1)  
 
where m corresponds to inertia, xn is the state of the nth neuron, f is a sigmoidal output 
function of each neuron and g is an output gain. A total of N neurons are unidirectionally 
coupled in series inertially as well as resistively, and the output f(xN) of the Nth neuron is fed 
back to the first neuron. Its analog circuit will be shown in Fig. 10 in Sect. 5. The model 
reduces to the original network of relaxation type [3 - 6] in the limit of m = 0 as  
 
  dxn/dt = - xn + f(xn-1)    (x0 = xN,  1 ≤ n ≤ N)       (2)  
 
  The origin (xn = 0, yn = 0, 1 ≤ n ≤ N) is the only stable state in Eq. (1) when |g| < 1. It 
becomes unstable and two stable steady states: xn = ±xp, yn = 0 (xp = f(xp) > 0, 1 ≤ n ≤ N) are 
generated through the pitchfork bifurcation at g = 1. Numerical calculation can show that, as 
the gain g increases further, an unstable periodic solution is generated through the Hopf 
bifurcation when the number of neuron is three or more (N ≥ 3). When the number of neurons 
are even (N = 2M), the unstable periodic solution satisfies the following symmetric condition.  
 
  xn = -xn+N/2,  yn = -yn+N/2   (1 ≤ n ≤ N/2)      (3)  
 
It can then be obtained in computer simulation under the initial condition that  
 
  xn(0) = 1  (1 ≤ n ≤ l0),   xn(0) = -1  (l0 < n ≤ N),   yn(0) = 0  (1 ≤ n ≤ N)   (4)  
 
with l0 = N/2 so that it satisfies Eq. (3).  
  Figure 1(a) shows a spatiotemporal pattern of the unstable periodic solution of Eq. (1) with 
N = 10, g = 10 and m = 0.2 under the initial condition Eq. (4) with l0 = N/2 = 5. A time series 
x1(t) of the state of the first neuron is shown in an upper panel. Black and white regions in a 
lower panel correspond to the states of neurons of positive and negative values respectively. 
The network is divided into two blocks of equal numbers N/2 of neurons (black and white 
regions) and the signs of the states of neurons are the same in each block. The two boundaries 
of the blocks rotate in the network in the direction of the couplings with the same velocities. 
The states of neurons change their signs as the boundaries pass so that they oscillate. Since 
this periodic solution is unstable, the network starting from two blocks of unequal numbers of 
neurons converges to one of the steady states ±xp. Figure 1(b) shows a spatiotemporal pattern 
of the transient states of neurons under the initial condition Eq. (4) with l0 = 4 in the network 
of N = 10. Then the velocities of the propagating boundaries slightly differ from each other. 
The number of neurons in a smaller block (l0 = 4) decreases and that in a larger block (l0 = 6) 
increases. The boundaries then collide and the blocks merge so that the oscillation ceases. 
These behaviors are qualitatively the same as those of the network without inertia (m = 0, Eq. 
(2)). The duration of the transient oscillations increases exponentially with the number of 
neurons since difference between the velocities of the two boundaries decreases exponentially 
with the number of neurons in the blocks [18].  
  Computer simulation, however, can show that the symmetric periodic solution become 
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stable as the value of inertia increases. Figure 1(c) shows a spatiotemporal pattern of the 
transient states of neurons under the initial condition Eq. (4) with l0 = 2 in the network of N = 
10 and large inertia m = 0.5. An initial pattern of unequal block lengths (l0 = 2 and N - l0 = 8) 
approaches a symmetric pattern (l = 5) of the symmetric periodic solution, which is stabilized 
with inertia. In the following sections, we consider the duration and stability of the traveling 
waves and oscillations in the ring neural networks with inertia.  
 
 
3. Kinematical description of traveling waves  
 
  In this section, we derive a kinematical model of the traveling boundaries of two blocks of 
neurons shown in Sect. 2. We replace f(x) with the following sign function, which 
corresponds to the limit of an output gain g → ∞.  
 
  sgn(x) = -1   (x ≤ 0)  
 
        = 1   (x > 0)         (5)  
 
The stable steady states of neurons are then given by xn = ± 1, yn = 0 (1 ≤ n ≤ N). Figure 2 
shows a schematic diagram of changes in the states of the n-1st and nth neurons (a) and a 
spatial pattern of the states of neurons (b). Let t1 be the time at which the state xn-1 of the n-1st 
neuron changes from negative to positive, and t2 be the time at which xn-1 changes from 
positive to negative. That is, the boundaries b1 and b2 of the blocks of neurons pass the n-1st 
neuron at t1 and t2 respectively. The input f(xn-1) to the nth neuron changes its sign at these 
times. We define the propagation time tp1 and tp2 of the boundaries at the nth neuron, i.e. time 
required for the propagation over one neuron, by  
 
  xn(t1 + tp1) = 0,   xn(t2 + tp2) = 0          (6)  
 
The velocities vb1 and vb2 of the boundaries per neuron correspond to the inverses of the 
propagation times. They depend only on the states xn and yn of the nth neuron at t1 and t2 
respectively.  
  Let vb2 (= 1/tp2) be considered. It is a function of xn(t2) and yn(t2). We can approximate xn(t2) 
and yn(t2) by functions of the interval tl = t2 - t1 between the passages of the boundaries. That 
is, we can approximate the states of the nth neuron at t1 by xn(t1) = -1 and yn(t1) = 0 since the 
states approach the steady states (-1, 0) exponentially and thus the effects of difference (xn(t1) 
- (-1) and yn(t1) - 0) on xn(t2) and yn(t2) at t2 are double exponentially small. The values of 
(xn(t2), yn(t2)) is then given by the solution (x+(tl), y+(tl)) at t = tl (= t2 - t1) of the differential 
equation for a single neuron with the steady state (x+, y+) = (1, 0)  
 
  dx+/dt = y+,  mdy+/dt = -y+ - x+ + 1,   x+(0) = -1,  y+(0) = 0      (7)  
 
The values of the propagation time tp2 is calculated as the zero-crossing time of the state x- of 
another single neuron with the steady state (x-, y-) = (-1, 0)  
 
  dx-/dt = y-,  mdy-/dt = -y- - x- - 1,   x-(0) = x+(tl),  y-(0) = y+(tl),  x-(tp2) = 0    (8)  
 
The propagation time tp2 and hence the velocity vb2 (= 1/tp2) of the boundary b2 are then 
expressed by a function of the interval tl (= t2 - t1) as  
 
  vb2 = 1/tp2 = vb2(xn(tp2), yn(tp2)) = vb2(x+(tl), y+(tl)) = vb2(tl)    (tl = t2 - t1)    (9)  
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  Let l be the number of neurons in the block of neurons of positive states (positive block) 
and N - l be that in the block of neurons of negative states (negative block) (Fig. 2(b)). We 
consider the number l of neurons to be the length of the block and a continuous variable. The 
interval tl = t2 - t1 is approximated with the length l of the positive block by  
 
  tl ≈ l/vb0 = tp0l     (tl = t2 - t1,  vb0 = 1/tp0)   
 
    dx-/dt = y-,  mdy-/dt = -y- - x- - 1,   x-(0) = 1,  y-(0) = 0,  x-(tp0) = 0     (10)  
 
where tp0 and vb0 correspond to the propagation time and velocity of the boundary 
respectively with the forward block of infinite length (l → ∞), in which the state of the nth 
neuron fully converges to the steady state (xn(t2), yn(t2)) = (1, 0) at t2. The velocity vb2 of the 
boundary b2 is then expressed by a function of the length l of the forward block by 
substituting tl = l/vb0 in Eq. (10) into vb2(tl) in Eq. (9). The velocity vb1 of the other boundary 
is also expressed by the same function of the length N - l of the other block in the same way. 
Hence the propagation times and velocities of the two boundaries are expressed by common 
functions tp and vb of the lengths of their forward blocks respectively as  
 
  tp1 = tp((N - l)/vb0),   tp2 = tp(l/vb0),    vb1 = vb(N - l),   vb2 = vb(l)     (11)  
 
We then obtain kinematical description of changes in the block lengths (the numbers of 
neurons in the blocks) as  
 
  dl/dt = vb1 - vb2 = vb(N - l) - vb(l)     
 
  d(N - l)/dt = vb2 - vb1 = vb(l) - vb(N - l)        (12)  
 
The steady states xn = -1 and 1 (yn = 0) of the network correspond to l(t) = 0 and N 
respectively. The symmetric periodic solution (Eq. (3)) corresponds to l(t) = N/2, which 
always exists irrespective of the form of vb(l). An initial block length is given by l(0) = l0 
when the initial condition Eq. (4) is used for computer simulation of Eq. (1).  
  When inertia does not exist (m = 0), the velocity vb(l) of the boundary with the forward 
block length l is derived from Eq. (2) in the same way as above [18] and is given by  
 
  v'b(l) = v'b0 + k'exp(-c'l)   (v'b0 = 1/log2,  k' = v'b0

2 = 1/(log2)2,  c' = 1/v'b0 = log2)  (13)  
 
The velocity v'b(l) then monotonically decreases with l and the periodic solution (l(t) = N/2) is 
unstable since  
 
  dl/dt < 0  (l < N - l, i.e. 0 < l < N/2),    dl/dt > 0  (l > N - l, i.e. N/2 < l < N)    (14)  
 
Further, the stability of the periodic solution is tractable by letting l’ = l - N/2 in Eq. (12)  
 
  dl’/dt = vb(N/2 - l’) - vb(N/2 + l’) = vl(l’; N, m, g)  
 
      vl(-l’; N, m, g) = -vl(l’; N, m, g)        (15)  
 
where vl becomes an odd function of l' by definition. The periodic solution l(t) = N/2 
corresponds to l’(t) = 0, and its stability depends on the sign of ∂vl(l’)/∂l’ at l’ = 0 as  
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  ∂vl(l’ = 0)/∂l’ > 0  (unstable)    
 
             < 0  (stable)         (16)  
 
When the value m of inertia increases, the velocity vb(l) can nonmonotonically changes with l 
since the approach of the states of neurons to the steady states becomes damped oscillatory 
(under damped). The periodic solution can then be stabilized through the pitchfork 
bifurcation at l’ = 0 since vl(l’) is an odd function [46]. A pair of unstable asymmetric periodic 
solutions is generated at the same time, which have two blocks of unequal lengths (the 
unequal numbers of neurons). Bifurcations and changes in the stability of the symmetric 
periodic solution due to inertia will be shown in Sect. 4.2.  
 
 
4. Effects of inertia on the duration and stability of oscillations  
 
  Intuitively, the zero-crossing time tp(tl = l/vb0) in Eq. (11) is small (large) when the initial 
state x+(tl) is close to the origin (far from the origin) and y+(tl) is negative (positive). The 
velocity vb(l) (= 1/tp(l)) of the boundary at the nth neuron is then large (small) when the state 
xn(t2) is close to the origin (far from the origin) and yn(t2) is negative (positive). When inertia 
is small (0 ≤ m ≤ 0.25), the characteristic equation of Eq. (7) has real negative roots 
(eigenvalues). The state x+(t) of the single neuron in Eq. (7) increases with t monotonically to 
unity, and y+(t) decreases monotonically to zero (over damping (0 ≤ m < 0.25) and critical 
damping (m = 0.25)). The velocity vb(l) of the boundary is then expected to decrease 
monotonically with the interval tl and hence with the length l of the forward block. The 
kinematical equation Eq. (12) of changes in the block length indicates that the symmetric 
periodic solution l(t) = N/2 is unstable owing to Eq. (14) as mentioned in Sect. 3. When 
inertia exceeds a critical value (m > 0.25), however, the characteristic roots of Eq. (7) become 
a complex conjugate pair so that the state x+ of the single neuron approaches 
nonmonotonically to the steady state x+ = 1 (under damping (damped oscillation)). It is then 
expected that the periodic solution is stabilized.  
  In this section, we show increases in the duration of transient oscillations due to inertia in 
an over damping mode in Sect. 4.1. The main result is given in Sect. 4.2, in which the 
stabilization of the periodic oscillations due to inertia in an under damping mode is shown. 
Further, bifurcations of periodic solutions of higher harmonics are shown with some 
examples in Sect. 4.3.  
 
 
4.1 Increases in the duration of transient oscillations in over damping  
 
  Let 0 < m < 0.25 and then the state x+ of the single neuron in Eq. (7) is over damped. It is 
expected that the symmetric periodic solution (l(t) = N/2) of Eq, (1) is unstable because of Eq. 
(14) since x+ increases monotonically to unity as mentioned above. When the initial condition 
Eq. (4) with l0 ≠ N/2 is used, the traveling waves and oscillations are transient and the 
network approaches one of the steady states (xn = ±xp, yn = 0 and l = 0, N). We here consider 
the duration of these transient oscillations.  
  Let two real negative characteristic roots of Eq. (7) be λ-- < λ+ < 0. Changes in the state 
(x+(tl), y+(tl)) of the neuron around the steady state (1, 0) are dominated by the characteristic 
root λ+ of smaller absolute value. To obtain an explicit expression for the velocity vb(l) of the 
boundary with the forward block length l ((Eq. (11)), we approximate the solution (x+(tl), 
y+(tl)) of Eq. (7) by the term of λ+ as  
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  x+(tb) ≈ -A+exp(-|λ+|tl) + 1,   y+(tb) ≈ -λ+A+exp(-|λ+|tl)    
 
    A+ = [λ--(x+(0) + 1) + y+(0)]/(λ-+ - λ--) = 2λ--/(λ-+ - λ--) = [1 + (1 - 4m)1/2]/(1 - 4m)1/2   
 
    λ± = [-1 ± (1 - 4m)1/2]/(2m)   (double signs in the same order)    (17)  
 
The solution x-(t) of Eq. (8) is also approximated by the term of λ+ as  
 
  x-(t) ≈ A+’exp(-|λ+|t) - 1 = [λ--(x-(0) + 1) + y-(0)]/(λ-+ - λ--)exp(-|λ+|t) - 1   
 
      ≈ λ--(x-(0) +1)/(λ-+ - λ--)·exp(-|λ+|t) - 1          (18)  
 
Using (x+(tl), y+(tl)) in Eq. (17) for (x-(0), y-(0)) in Eq. (18), we obtain the propagation time 
tp(tl) and velocity vb(l) of the boundary by solving x-(tp(tl)) = 0 in Eq. (18) as  
 
  tp(tl) ≈ {log(A+) + log[1 - exp(-|λ+|tl)]}/|λ+| ≈ tp0 - exp(-|λ+|tl)/|λ+|   
 
  vb(l) ≈ vb0[1 + exp(-|λ+|tl)/log(A+)] ≈ vb0[1 + exp(-|λ+|tp0l)/log(A+)]   
 
     tp0 = log(A+)/|λ+|,  vb0 = 1/tp0 = |λ+|/log(A+)     (tl = tp0l = l/vb0)     (19)  
 
where tp0 and vb0 are the propagation time and velocity of the boundary respectively with 
infinite forward block length (tl, l → ∞), which correspond to those in Eq. (10). Substituting 
vb(l) in Eq. (19) into Eq. (12), we obtain an explicit form of the kinematical equation of 
changes in the block length as  
 
  dl/dt = k{exp[-c(N - l)] - exp(-cl)}  
 
    k = vb0/log(A+) = |λ+|/[log(A+)]2,  c = |λ+|tp0 = log(A+)         (20)  
 
When m = 0, the values of the parameters are: k = k' = 1/(log2)2 and c = c' = log2 in Eq. (13).  
  Figure 3 shows the velocity vb(l) of the boundary against the length l of the forward block 
when m = 0.1. Plotted are the velocity of the boundary in the periodic solutions obtained with 
computer simulation of Eq. (1) (solid circles), vb(l) in Eq. (11) derived through Eqs. (7 - 10) 
in Sect. 3 (a solid line), and vb(l) in Eq. (19) (a dashed line). The computer simulation of Eq. 
(1) was done using the Euler method with a time step 0.001 and N = 2l (2 ≤ l ≤ 15) under the 
initial condition Eq. (4) (l0 = l) so that the unstable periodic solutions were obtained. The 
average velocities were calculated with 1000 rotations of the traveling boundaries in the 
network from t = 1000.0, at which the states of neurons fully converge to those of the 
periodic solutions. Values of vb(l) in Eq. (11) were given by vb2(tl) in Eq. (9) with tl = tp0l, in 
which tp2(tl) (= 1/vb2(tl)) were numerically calculated with Eqs. (7, 8), and tp0 was numerically 
calculated with Eq. (10). The velocity v'b(l) in Eq. (13) in the absence of inertia (m = 0) is also 
plotted with a dotted line. The velocity vb(l) for m = 0.1 decreases monotonically in the same 
manner as that in the absence of inertia. Both Eq. (19) and Eq. (9) agree with the simulation 
results of Eq. (1) except for small l (= 2).  
  Let an initial condition on Eq. (1) be Eq. (4) with 0 < l0 < N/2. The length l of the positive 
block then decreases to zero owing to Eq. (14) and the network converges to the negative 
steady state (xn = -xp, yn = 0). The duration T of the transient oscillations of initial block 
length l0 is given by the zero-crossing time of Eq. (20) with  
 
  l(0) = l0,   l(T) = 0           (21)  
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The duration T of the oscillations is then obtained in the same manner in the absence of 
inertia (m = 0) [18] as  
 
  T = 1/(ck)·exp(cN/2){arctanh[exp(c(l0 - N/2))] - arctanh[exp(-cN/2)]}       (22)  
 
Letting N → ∞ in Eq. (20) so that dl/dt = -kexp(-cl), a simple form of the duration is derived  
 
  T = [exp(cl0) - 1)]/(ck)            (23a)  
 
   = tp0[exp(|λ+|tp0l0) - 1]           (23b)  
 
   = log(A+)/|λ+|·[exp(log(A+)l0) - 1]            (23c)  
 
The duration thus increases exponentially as an initial block length l0 increases in the same 
manner as that in the absence of inertia. (In the absence of inertia, it has been shown that Eq. 
(23) agrees with Eq. (22) when N = 40, and both agree with simulation results of Eq. (2) for l0 
≥ 5 [18].) In the presence of inertia, the increasing rate of the duration with l0 depends on the 
coefficient c (= |λ+|tp0 = log(A+)) in the exponential in Eq. (23). It can be shown that |λ+| in Eq. 
(17) increases from unity to two when m increases from 0 to 0.25, while tp0 obtained with 
numerical calculation of Eq. (10) hardly changes. Further, the logarithm of A+ in Eq. (17) 
monotonically increases from log2 at m = 0 as well, which diverges to infinity at m = 0.25. It 
is then expected that the logarithm of the duration of the transient oscillations increases about 
double from m = 0 to 0.25.  
  Figure 4 shows a semi-log plot of the duration T of the transient oscillations against m (0 ≤ 
m ≤ 0.25) for N = 30 and l0 = 10. Plotted are the results of computer simulation of Eq. (1) 
under the initial condition Eq. (4) (solid circles), Eq. (23b) with |λ+| in Eq. (17) and tp0 
numerically calculated with Eq. (10) (a solid line), and Eq. (23c) with |λ+| and A+ in Eq. (17) 
(a dashed line). The value of the simulation result at m = 0.25 reaches more than double the 
value at m = 0 as expected, and Eq. (23b) agrees with the simulation results. Equation (23c) 
(a dashed line) agrees with the simulation results for m not close to 0.25 (0 ≤ m ≤ 0.2), while 
it tends to infinity as m → 0.25 with log(A+).  
  Further, the duration of the transient oscillations with initial block length l0 corresponds to 
the relaxation time Tu of the unstable periodic solution in the network of N = 2l0. Numerical 
calculation can show that the periodic solution has the only positive characteristic exponent μ 
(the logarithm of the eigenvalue of the Poincare map), which means that it is 
one-dimensionally unstable. The relaxation time Tu is then evaluated with μ as  
 
  Tu = tp(l0/vb0)NNu = tp(l0/vb0)Nlog(1/z0)/μ ~ tp0N/μ    (z0exp(μNu) = 1)    (24)  
 
where Nu is the number of oscillations in the states of neurons (the number of rotations of 
boundaries) in the transient state, and z0 is an initial disturbance. The values of Tu (~ tp0N/μ) 
in the last line in Eq. (24) are also plotted in Fig. 4 (a dotted line). The values of μ were 
numerically calculated with the Poincare map of the periodic solutions of Eq. (1) with N = 20 
(l0 = 10), and the values of tp0 were calculated with Eq. (10). The relaxation time Tu increases 
with m in the same manner as the simulation results. This agreement also supports the 
validity of the kinematical description of the traveling boundaries.  
 
 
4.2 Stabilization of periodic oscillations in under damping  
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  When inertia exceeds the critical value (m > 0.25), the state x+ of the single neuron in Eq. 
(7) becomes under damped and its approach to the steady state becomes oscillatory. The 
characteristic equation of Eq. (7) has a complex conjugate pair of characteristic roots: λ± = [-1 
± i(4m - 1)1/2]/(2m). It is then expected that the approach of the velocity vb(l) of the boundary 
of the block to vb0 with l becomes oscillatory. Figure 5 shows the velocity vb(l) of the 
boundary against the length l of the forward block at m = 0.3 (a) and m = 1.0 (b). Lower 
panels are magnifications about vb0 (= vb(l → ∞)). Plotted are the averages of vb(l0) (l = l0) in 
1000 rotations of the boundary in the symmetric periodic solution obtained with computer 
simulation of Eq. (1) with N = 2l0 under the initial condition Eq. (4) (solid circles) and vb(l) in 
Eq. (11) (solid lines). Here and in Figs. (6 - 8), values of vb(l) in Eq. (11) were numerically 
calculated with Eqs. (7 - 10) as mentioned in the explanation of Fig. 3. It can be seen that the 
velocity vb(l) once drops below vb0 and then increases to vb0 as l increases when m = 0.3 (a). 
More oscillations in vb(l) can be seen with further magnification. The simulation results of Eq. 
(1) in the lower panel are slightly smaller than vb(l) in Eq. (11), which is ascribed to 
difference in the output functions of neurons. The results of computer simulation using the 
sign function (Eq. (5)) for f(gx) in Eq. (1) are plotted with open circles, and vb(l) in Eq. (11) 
agree with them. The approach of vb(l) to vb0 in a form of damped oscillation is clear when m 
= 1.0 (b). It should be noted that, when the periodic solutions are stable, they can be obtained 
with computer simulation even though the number N of neurons is odd by using the initial 
condition Eq. (4) with xN/2(0) = 0. It should also be noted that vb(l) can be well fitted in a form 
of Aexp(-|Reλ±|l/vb0)cos(|Imλ±|l/vb0 + θ) + vb0 (l = vb0t) using the characteristic roots λ± of Eq. 
(7) for not so small l.  
  As mentioned in Sect. 3, the symmetric periodic solution (l(t) = N/2 in Eq. (12) and l’(t) = 
0 in Eq. (15)) can be stabilized through the pitchfork bifurcation at l’ = 0 when vb(l) and vl(l’; 
N, m, g) become nonmonotonic as m increases [46]. At the same time a pair of unstable 
asymmetric periodic solutions is generated, which are traveling waves with two blocks of 
unequal lengths. The bifurcation occurs when the length at the minimal point in the graph of 
vb(l) decreases to N/2 as m increases so that dvb(l = N/2)/dl = 0 and ∂vl(l’ = 0)/∂l’ = 0. The 
period To of the damped oscillation in Eq. (7) is 2π/|Imλ±| = 4mπ/(4m - 1)1/2, which quickly 
decreases as m increases over 0.25. The length at the minimal of vb(l) decreases along with 
the spatial period To/tp0 of the damped oscillation. Hence the length at the mininal also 
decreases quickly with m since the propagation time tp0 changes only slightly with m as 
mentioned in Sect. 4.1. When the slope of the graph of vb(l) becomes positive at l = N/2 (dvb(l 
= N/2)/dl > 0) and hence ∂vl(l’ = 0)/∂l’ < 0, the symmetric periodic solution is stabilized. 
Figure 6 shows vl(l’; N, m, g) in Eq. (15) obtained with numerically calculated vb(l) in Eq. 
(11). The number of neurons is N = 10, and m = 0.1 (a solid line), m = 0.3 (a dashed line) and 
m = 1.0 (a dotted line). The graph for m = 0.1 increases monotonically with m and the slope at 
l’ = 0 is positive (∂vl(l’ = 0)/∂l’ > 0). Hence the symmetric periodic solution (l(t) = N/2 = 5) is 
still unstable. However, there are two zero-crossing points on both sides of l’ = 0 in the graph 
for m = 0.3 with the negative slope at l’ = 0 (∂vl(l’ = 0)/∂l’ < 0). The symmetric periodic 
solution is then stabilized when m = 0.3 and a pair of unstable asymmetric periodic solutions 
with unequal block lengths (lu and N - lu, lu ≈ 3.1) is generated. Further, the pitchfork 
bifurcation occurs again as m increases, and there are five zero-crossing points in the graph of 
m = 1.0 so that the symmetric periodic solution becomes unstable again (∂vl(l’ = 0)/∂l’ > 0). A 
pair of stable asymmetric periodic solutions of block lengths (ls and N - ls, ls ≈ 3.7) is also 
generated.  
  Figure 7(a) shows a bifurcation diagram of the periodic solutions l(t) = l with m in the 

network of N = 10. Plotted are the sums 2/2/
1

Lx
L

n
n −∑

=

 of the states of neurons in the 

periodic solutions of Eq. (1) calculated numerically (solid lines) in an upper half region (l ≥ 
N/2 = 5), which are equivalent to the lengths of two blocks in the periodic solutions. Plotted 
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also are the lengths l at which ∂vl(l’)/∂l’ = 0 (l’ = l - N/2) in Eq. (15) (small dots) in a lower 
half region (l < 5). They are plotted separately for visibility since the bifurcations are always 
symmetric with respect to l = N/2. Both bifurcation diagrams agree with each other except for 
m ≈ 0.57 (the second bifurcation point). The symmetric periodic solution (l(t) = N/2) becomes 
stable and a pair of unstable branches bifurcates at m ≈ 0.27 through the subcritical pitchfork 
bifurcation. The two bifurcated branches correspond to a pair of asymmetric periodic 
solutions with blocks of unequal lengths, in which the length of a positive block is smaller (l 
< N/2) or larger (l > N/2). The steady states (l(t) = 0, N) are still stable, and the unstable 
asymmetric periodic solutions are the separatrices of the steady states and the symmetric 
periodic solution. It can be seen that the initial length l0 = 2 (N = 10) at m = 0.5 in Fig. 1(c), 
the point of which is denoted with a solid circle, lies in the basin of the symmetric periodic 
solution so that l approaches N/2. Further, the second pitchfork bifurcation occurs at m ≈ 0.57 
so that the symmetric periodic solution becomes unstable again and a pair of stable 
asymmetric periodic solutions is generated. Small difference at m ≈ 0.57 between the graphs 
obtained with Eq. (15) in the upper half region and Eq. (1) in the lower half region is ascribed 
to the fact that changes in the characteristic roots λ± of Eq. (7) and hence vb(l) with m become 
small when m is large, i.e. vb(l)/dm → 0 as m → ∞. Difference due to approximation with the 
kinematical model is then manifested. In fact, it can be shown that they slightly differ in the 
flat regions of the bifurcated branches also.  
  The cascade of bifurcations occurs when the number N of neurons is large. Figure 7(b) 
shows a bifurcation diagram of the periodic solutions in the network of N = 30, in which the 
bifurcations of the symmetric periodic solution occur five times as m increases. Plotted are 
only the lengths l at which ∂vl(l’)/∂l’ = 0 (l’ = l - N/2) in Eq. (15) (small dots). It is difficult to 
trace the bifurcations of the periodic solutions of Eq. (1) numerically for such large N since 
the absolute values of the characteristic exponents μ of the periodic solutions decrease to zero 
exponentially with N, so that the convergence of calculation is too slow. A total of thirteen 
solutions then coexist when the value m of inertia exceeds the fifth bifurcation point (m > 
0.46), in which seven are stable, namely the symmetric periodic solution, two pairs of 
asymmetric periodic solutions and a pair of steady states. The numbers of bifurcations and 
generated branches depend on the spatial period To/tp0 of the damped oscillation in Eq. (7) 
and vb(l). The period To (= 4mπ/(4m - 1)1/2) of the damped oscillation takes the minimum 
value 2π at m = 0.5 and then increases in proportion about to m1/2, while the propagation time 
tp0 also increases with m. Numerical calculation can show that the spatial period T/tp0 takes 
the minimum value (≈ 5.55) at m ≈ 2.0 and then increases only slightly with m, e.g. To/tp0 ≈ 
5.7 at m = 10.0. No more branches thus bifurcate even though m increases over two.  
  The bifurcations of the periodic solution also occur as the number N of neurons increases 
in vl(l’; N, m, g) in Eq. (15). Figure 8 shows a bifurcation diagram of the symmetric periodic 
solution l(t) = N/2 in the (m, N) plane. Small dots denote the bifurcation points at which 
∂vl(l’)/∂l’ = 0 at l’ = 0 (l’ = l - N/2) in Eq. (15), which were calculated by changing N for each 
m and obtained formally even for non-integer N. Solid and open circles on the lines of N = 2i 
(2 ≤ i ≤ 10) denote the bifurcation points of the symmetric periodic solution of Eq. (1) 
calculated numerically using the Poincare map, at which the characteristic exponent μ of it 
crosses zero from positive to negative (open circles) and from negative to positive (solid 
circles) as m increases so that the stability changes. The symmetric period solution is unstable 
and stable in the regions denoted with “+” and “-“, respectively. The bifurcation points of Eq. 
(15) agree with those of the periodic solution of Eq. (1) for N ≤ 20. The characteristic 
exponent of the periodic solution for larger N is difficult to calculate numerically as 
mentioned above. Finally, it should be noted that it can be shown that the bifurcations of the 
periodic solution also occur with g in vl(l’; N, m, g) in Eq. (15), but they can not be treated 
with the kinematical model since the sign function (Eq. (5)) is used in its derivation.  
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4.3 Bifurcations of periodic solutions of higher harmonics  
 
  We restricted ourselves to the bifurcations of the periodic solution with two blocks of 
neurons in Sect. 4.2. It is known, however, that there are not more than (N - 2)/4 unstable 
periodic solutions in the network with m = 0 in Eq. (2) when an output gain g is large, which 
are generated through the successive Hopf bifurcations at the origin [15]. These multiple 
periodic solutions are traveling waves of higher harmonics, in which the numbers of blocks 
are 2kb (2 ≤ kb ≤ (N - 2)/4) and the numbers of neurons in the blocks are nb = N/(2kb) (N/4 ≥ 
nb > 2). These periodic solutions have 2kb - 1 positive real characteristic exponents and are 
(2kb - 1)-dimensionally unstable. Numerical calculation can show that they also exist in the 
networks with inertia. They can then be stabilized as inertia increases through the pitchfork 
bifurcation in the same manner as that shown in Sect. 4.2.  
  Figure 9(a) shows a spatiotemporal pattern of the states of neurons approaching a stable 
periodic solution with four blocks of equal lengths in Eq. (1) with N = 10 and m = 1.0, which 
was obtained with computer simulation under the initial condition that (x1(0), …, x10(0)) = (1, 
1, -1, -1, -1, 1, 1, -1, -1, -1) and yn(0) = 0 (1 ≤ n ≤ 10). As the number N of neurons increases, 
more periodic solutions of higher harmonics coexist and they are also stabilized. Further, 
stable asymmetric periodic solutions of higher harmonics are generated from them through 
the pitchfork bifurcations of the second, fourth times and so on. The networks of large 
numbers of neurons show stable oscillations of various patterns. Figure 9(b) and (c) show 
spatiotemporal patterns of two and three cycle asymmetric stable periodic oscillations 
respectively obtained with computer simulation of Eq. (1) under random initial conditions in 
the network of N = 30 and m = 1.0. Intuitively, periodic solutions with even numbers 2kb (≤ 
(N - 2)/4) of blocks of lengths li (1 ≤ i ≤ 2kb) are stable when  
 

  Llkilllvvlv
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ibibkbib =≤≤>== ∑

=

2

1
2 ),21(0d/)(d,)(        (25)  

 
Since regions in which the block lengths are stable (dvb(l)/dl > 0) exist in every cycle of the 
damped oscillation in vb(l) (0 ≤ l ≤ N), the number nl of the stable lengths increases in 
proportion to the number N of neurons. The number of stable periodic solutions thus 
increases exponentially with the number of neurons since it increases in a form of the nlth 
power of 2.  
  Further, numerical calculation can show that pairs of characteristic exponents of the 
periodic solutions of higher harmonics of Eq. (1) become complex conjugates in the presence 
of inertia. The Neimark-Sacker bifurcations then occur and unstable aperiodic solutions are 
generated as m increases before the higher harmonics are stabilized through the pitchfork 
bifurcations. The kinematical description of changes in the block length can be extended to 
the traveling wave of higher harmonics with 2kb blocks, which is a (2kb - 1)-dimensional 
system of first-order differential equations for 2kb - 1 block lengths. In this kinematical model 
of the lengths of the traveling blocks of neurons, the Hopf bifurcations occur and unstable 
periodic solutions are generated. It is then expected that the lengths of the blocks oscillate 
periodically in the aperiodic solutions, though they can not be obtained in computer 
simulation of Eq. (1) owing to their instability.  
 
 
5. Circuit experiment  
 
  Figure 10 shows an analog circuit of the ring neural network with inertia (Eq. (1)). 
Voltages Vn at capacitors C and nonlinear amplifiers of gain g correspond to the states xn and 
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output functions f(x) of neurons respectively. A total of N elements are connected in series 
with resistances R and inductors L and the output f(xN) of the Nth element is fed back to the 
first element. The sigmoidal function f(x) is replaced with the step function of the inverter 
TC4049: Vout = 0V for Vin > 2.5V, Vout = 5V for Vin < 2.5V with the supply voltage 5V. Note 
that this network of inhibitory (negative) couplings is equivalent to that of excitatory 
(positive) couplings under changes in the signs of the states of even neurons when the total 
number N of neurons is even. The circuit equation is given by  
 
  LCdVn

2/dt2 + CRdVn/dt + V + Vout(Vn-1) = 0   (V0 = VN,  1 ≤ n ≤ N)      (26)  
 
Inertia takes a form m = L/(R2C) when time is rescaled with a time constant RC (t ← t/(RC)). 
The values of parameters were: L = 100mH, R = 1kΩ, C = 0.1μF, and DC resistance of the 
inductor is 65Ω max. The value of inertia was then about unity (m ≈ 1.0) and the time 
constant was 0.1ms. A circuit with thirty elements (N = 30) was made. Stable oscillations 
were easily obtained by adding periodic signals of appropriate frequency to one element or 
even with switching noise. Figure 11(a) shows observed time series of the voltage V1 at the 
first element, in which asymmetric one cycle pattern (a solid line) and two cycle patterns (a 
dashed line) are plotted. The periods of the oscillations are about 4.2ms and the velocity vb0 
of the traveling boundary per neuron is 30/(4.2/0.1) ≈ 0.71 per time constant. This agrees 
about with vb0 (≈ 0.77) in Fig. 5(b).  
  The reason for using not buffers but inverters is that circuits with buffers (TC4050) had not 
shown expected stable oscillations when the number of elements increases (e.g. N > 15) in a 
preliminary experiment. It is due probably to asymmetry in high, threshold and low voltage 
values of the buffer IC, which makes the output functions of neurons asymmetric. In fact, it 
has been shown that small offset voltages in operational amplifiers in analog circuits of the 
ring neural networks without inertia degrade exponential increases in the duration of transient 
oscillations [18]. Average asymmetry in the output functions of neurons due to variations in 
the elements causes constant velocities in the kinematical equation of the traveling 
boundaries of the blocks [47]. These constant velocities can overtake changes in the 
velocities due to inertia so that the velocities of two boundaries are never the same and the 
networks remain globally bistable. By using inverters the asymmetry is about canceled out on 
average and the constant velocities are reduced.  
  It is known that the occurrence of multiple modes of oscillations happens in ring oscillators, 
which consist of odd numbers of inverters and show stable oscillations [13]. In the ring neural 
network of ring oscillator type, in which couplings are negative and the number of neurons is 
odd, there is one inconsistency in the states of neurons, i.e. the same signs of the states of two 
successive neurons as (+, -, +, +, -, +, -). The inconsistency rotates in the direction of 
couplings so that the states of neurons change their signs when the inconsistency passes them. 
They then oscillate once when the inconsistency rotates twice in the network, which is like 
the Möbius band. More than one inconsistencies of odd numbers can exist and rotate in the 
network, which correspond to oscillations of higher harmonics. The kinematics of the 
traveling waves in the ring neural networks without inertia (Eq. (2)) shows that these higher 
harmonics are unstable [18]. However, they may be stabilized owing to effective/equivalent 
series inductance in actual circuits of ring oscillators, in which usually inverters are directly 
connected without any passive elements. Figure 11(b) shows time series of the voltage V1 
observed in the analog circuit with an odd number of elements (N = 29). The circuit shows 
stable oscillations of ring oscillator type. In addition to an oscillation of fundamental 
frequency (a solid line), in which one inconsistency is rotating in the network, an asymmetric 
oscillation of higher harmonics is observed (a dashed line), in which three inconsistencies are 
stably rotating.  
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6. Conclusion and future work  
 
  It was shown that inertia (inductive couplings) changes properties of bistable ring neural 
networks qualitatively. It is known that the networks without inertia show transient 
oscillations, in which neurons divided in even blocks with the signs of their states, and the 
boundaries of the blocks rotate in the networks. These traveling waves are unstable and 
eventually the boundaries collide so that the oscillations cease. Difference between the 
velocities of the boundaries decreases exponentially with the numbers of neurons in the 
blocks, however, so that the transient oscillations last exponentially long. The kinematical 
model of the traveling boundaries between two blocks of neurons was generalized in the 
presence of inertia. The recovery process of each neuron becomes from over damped 
(monotonic) to under damped (oscillatory) as inertia increases. In an over damping mode, 
difference between the velocities of two boundaries becomes small as inertia increases up to 
critical damping since the convergence of the state of a single neuron to its steady state 
becomes fast. The convergence of the network to one of the steady states then becomes slow 
and the increasing rate of the logarithm of the duration of the transient oscillations becomes 
more than twice as large as that without inertia. Thus inertia enforces exponential increases in 
transient time with system size. In an under damping mode, the velocities of the boundaries 
change nonmonotonically with the number of neurons in the forward blocks. The symmetric 
periodic solution, which is the traveling wave with two blocks of the same numbers of 
neurons, is then stabilized through the pitchfork bifurcation as inertia increases. A succession 
of the pitchfork bifurcations occur as inertia increases further, so that the symmetric and 
asymmetric periodic solutions and the steady states coexist in the networks with large inertia. 
Further, the bifurcations and stabilization of the periodic solutions of higher harmonics also 
occur and oscillations of various patterns coexist in the networks of large numbers of 
neurons.  
  As mentioned in Sect. 4.3, not only periodic oscillations but also aperiodic oscillations can 
be generated through the Neimark-Sacker bifurcations as inertia increases. It is probable that 
the networks show chaotic behaviors in the presence of external forces or interaction between 
networks. The structure of global bifurcations and basins of attractors in the high-dimensional 
spaces of the networks are of interest. (The dimension is equal to twice the number of 
neurons.) Kinematical description of the traveling waves in the networks might be useful for 
studies on them. Further, it is known that spatial variations and spatiotemporal noise in the 
ring neural networks without inertia degrade exponential increases in the duration of the 
oscillations as mentioned in Sect. 5. In fact, stable oscillations had been hard to observe in 
circuits with positive couplings owing to asymmetry in a buffer IC. Effects of variations and 
noise on the bifurcations of periodic solutions and the stability of oscillations in the networks 
with inertia are also of interest.  
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Figure captions  
 
Fig. 1.  Spatiotemporal patterns of the states of neurons in Eq. (1) with N = 10 and g = 10. 
Upper panels: time series x1(t) of the state of the first neuron. Lower panels: the states of 
neurons (positive: black, negative: white). Periodic oscillation with m = 0.2 and l0 = N/2 = 5 
(a), transient oscillation with m = 0.2 and l0 = 4 (b) and persistent oscillation with m = 0.5 and 
l0 = 2 (c).  
 
Fig. 2.  Schematic diagram of changes in the states of the n-1st and nth neurons (a) and a 
spatial pattern of the states of neurons (b).  
 
Fig. 3.  Velocity vb(l) of the boundary vs the length l of the forward block (m = 0.1). 
Computer simulation of Eq. (1) (solid circles), Eq. (11) (a solid line), and Eq. (19) (a dashed 
line). Eq. (13) for m = 0 is also plotted with a dotted line.  
 
Fig. 4.  Semi-log plot of the duration T of transient oscillations vs m (0 ≤ m ≤ 0.25) for N = 
20 and l0 = 10. Computer simulation of Eq. (1) under Eq. (4) (solid circles), Eq. (23b) with 
|λ+| in Eq. (17) and tp0 in Eq. (10) (a solid line), Eq. (23c) with |λ+| and A+ in Eq. (17) (a 
dashed line), and the relaxation time Tu in Eq. (24) of the periodic solution of Eq. (1) with N 
= 20 (l0 = 10) (a dotted line).  
 
Fig. 5.  Velocity vb(l) of the boundary vs the length l of the forward block with m = 0.3 (a) 
and m = 1.0 (b). Averages of vb(l0) in 1000 rotations in computer simulation of Eq. (1) with N 
= 2l0 (solid circles) and vb(l) in Eq. (11) (solid lines).  
 
Fig. 6.  vl(l’; N, m, g) in Eq. (15) with N = 10 for m = 0.1 (a solid line), m = 0.3 (a dashed 
line) and m = 1.0 (a dotted line).  
 
Fig. 7.  Bifurcation diagram of the periodic solution l with m in the network of N = 10 (a) 

and N = 30 (b). Sums 2/2/
1

Lx
L

n
n −∑

=

 in the periodic solutions of Eq. (1) (solid lines) in an 

upper half region (l ≥ N/2 = 5) in (a) and lengths l at which ∂vl(l’)/∂l’ = 0 (l’ = l - N/2) in Eq. 
(15) (small dots) in a lower half region (l < 5) in (a) and in (b).  
 
Fig. 8.  Bifurcation diagram of the symmetric periodic solution l(t) = N/2 in the (m, N) plane. 
Bifurcation points at which ∂vl(l’)/∂l’ = 0 in Eq. (15) (small dots) and the bifurcation points of 
the periodic solutions of Eq. (1) (open and solid circles).  
 
Fig. 9.  Spatiotemporal patterns of the periodic solutions of Eq. (1) with m = 1.0 and N = 10 
(a), N = 30 (b) (c).  
 
Fig. 10.  Analog circuit of the ring neural network with inertia.  
 
Fig. 11.  Time series of the voltage V1 in the analog circuit with N = 30 (a) and N = 29 (ring 
oscillator type) (b).  
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Fig. 1.  Spatiotemporal patterns of the states of neurons in Eq. (1) with N = 10 and g = 10. 
Upper panels: time series x1(t) of the state of the first neuron. Lower panels: the states of 
neurons (positive: black, negative: white). Periodic oscillation with m = 0.2 and l0 = N/2 = 5 
(a), transient oscillation with m = 0.2 and l0 = 4 (b) and persistent oscillation with m = 0.5 and 
l0 = 2 (c).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Schematic diagram of changes in the states of the n-1st and nth neurons (a) and a 
spatial pattern of the states of neurons (b).  
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Fig. 3.  Velocity vb(l) of the boundary vs the length l of the forward block (m = 0.1). 
Computer simulation of Eq. (1) (solid circles), Eq. (11) (a solid line), and Eq. (19) (a dashed 
line). Eq. (13) for m = 0 is also plotted with a dotted line.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Semi-log plot of the duration T of transient oscillations vs m (0 ≤ m ≤ 0.25) for N = 
20 and l0 = 10. Computer simulation of Eq. (1) under Eq. (4) (solid circles), Eq. (23b) with 
|λ+| in Eq. (17) and tp0 in Eq. (10) (a solid line), Eq. (23c) with |λ+| and A+ in Eq. (17) (a 
dashed line), and the relaxation time Tu in Eq. (24) of the periodic solution of Eq. (1) with N 
= 20 (l0 = 10) (a dotted line).  
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Fig. 5.  Velocity vb(l) of the boundary vs the length l of the forward block with m = 0.3 (a) 
and m = 1.0 (b). Averages of vb(l0) in 1000 rotations in computer simulation of Eq. (1) with N 
= 2l0 (solid circles) and vb(l) in Eq. (11) (solid lines).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  vl(l’; N, m, g) in Eq. (15) with N = 10 for m = 0.1 (a solid line), m = 0.3 (a dashed 
line) and m = 1.0 (a dotted line).  
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Fig. 7.  Bifurcation diagram of the periodic solution l with m in the network of N = 10 (a) 

and N = 30 (b). Sums 2/2/
1

Lx
L

n
n −∑

=

 in the periodic solutions of Eq. (1) (solid lines) in an 

upper half region (l ≥ N/2 = 5) in (a) and lengths l at which ∂vl(l’)/∂l’ = 0 (l’ = l - N/2) in Eq. 
(15) (small dots) in a lower half region (l < 5) in (a) and in (b).  
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Fig. 8.  Bifurcation diagram of the symmetric periodic solution l(t) = N/2 in the (m, N) plane. 
Bifurcation points at which ∂vl(l’)/∂l’ = 0 in Eq. (15) (small dots) and the bifurcation points of 
the periodic solutions of Eq. (1) (open and solid circles).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Spatiotemporal patterns of the periodic solutions of Eq. (1) with m = 1.0 and N = 10 
(a), N = 30 (b) (c).  
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Fig. 10.  Analog circuit of the ring neural network with inertia.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11.  Time series of the voltage V1 in the analog circuit with N = 30 (a) and N = 29 (ring 
oscillator type) (b).  
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