Local fields generated by 3-division points of elliptic curves

By Hirotada Naito
Department of Mathematics, Kagawa University, 1-1, Saiwai-cho, Takamatsu, Kagawa 760-8522
(Communicated by Shokichi Iyanaga, M. J. A., Nov. 12, 2002)

Abstract

We determine all the extensions generated by 3-division points of elliptic curves over the fields of p-adic numbers. As application, we construct $G L_{2}\left(\mathbf{F}_{3}\right)$-extensions over the field of rational numbers with given finitely many local conditions.

Key words: Elliptic curves; local fields; Galois theory.

1. Introduction. Let E be an elliptic curve defined over the field \mathbf{Q} of rational numbers. We denote by E_{l} the set of l-division points of E for a prime l. We put $K_{(l)}=\mathbf{Q}\left(E_{l}\right)$. We denote by $G_{(l)}=$ $\operatorname{Gal}\left(K_{(l)} / \mathbf{Q}\right)$ the Galois group of $K_{(l)}$ over \mathbf{Q}. We think that $G_{(l)}$ is a subgroup of the general linear group $G L_{2}\left(\mathbf{F}_{l}\right)$ of degree 2 over the finite field \mathbf{F}_{l} of l elements, because E_{l} is isomorphic to a vector space of dimension 2 over \mathbf{F}_{l}.

We know that the action of $\sigma \in G_{(l)} \subset G L_{2}\left(\mathbf{F}_{l}\right)$ on an l-th primitive root ζ_{l} of unity is determined by $\zeta_{l}^{\sigma}=\zeta_{l}^{\operatorname{det} \sigma}$. Thus we see that the fixed field of $G_{(l)} \cap S L_{2}\left(\mathbf{F}_{l}\right)$ is $\mathbf{Q}\left(\zeta_{l}\right)$, where $S L_{2}$ is the special linear group of degree 2 .

We denote by $L(s, E / \mathbf{Q})=\sum_{n=1}^{\infty} a_{n} n^{-s}$ the Hasse-Weil zeta function of E over \mathbf{Q}. We know that a_{p} mostly describes the decomposition law of a prime p of $K_{(l)} / \mathbf{Q}$ (cf. Shimura [9]).

For example in the case of $l=2$, Koike [3] proved that $a_{p} \equiv b_{p} \bmod 2$ for good primes $p \neq 2$, where $L\left(s, \rho, K_{(2)} / \mathbf{Q}\right)=\sum_{n=1}^{\infty} b_{n} n^{-s}$ is the Artin L function for the 2-dimensional irreducible representation ρ of $G L_{2}\left(\mathbf{F}_{2}\right)$. Naito [7] got a similar result in the case of $l=3$. In the case of $l=2, G L_{2}\left(\mathbf{F}_{2}\right)$ is isomorphic to the symmetric group \mathfrak{S}_{3} of degree 3 . Let K / \mathbf{Q} be a Galois extension whose Galois group is isomorphic to \mathfrak{S}_{3}. We can find a polynomial $f(X)$ of degree 3 with rational coefficients such that K is the decomposition field over \mathbf{Q} of $f(X)=0$. Let E be the elliptic curve defined by $y^{2}=f(x)$. We see $K=\mathbf{Q}\left(E_{2}\right)$. Therefore the theorem of Koike [3] is regarded as a decomposition law of primes of Galois extensions whose Galois groups are isomorphic to \mathfrak{S}_{3}. Next we consider the case of $l=3$. Let

[^0]K / \mathbf{Q} be a Galois extension whose Galois group is isomorphic to $G L_{2}\left(\mathbf{F}_{3}\right)$. When is there an elliptic curve E defined over \mathbf{Q} such that $K=\mathbf{Q}\left(E_{3}\right)$? We see that a necessary condition for existence of such an elliptic curve is that K contains a certain cubic root by considering the equation of x-coordinates of 3 -division points. Lario and Rio [4, 5] got some sufficient conditions.

We consider local cases in this note. Let K_{p} be a Galois extension over the field \mathbf{Q}_{p} of p-adic numbers for a prime p whose Galois group $\operatorname{Gal}\left(K_{p} / \mathbf{Q}_{p}\right)$ is isomorphic to a subgroup G of $G L_{2}\left(\mathbf{F}_{3}\right)$. From now on, we call such a Galois extension a G-extension, for simplicity. We determine all such K_{p} which contains ζ_{3} with $\zeta_{3}^{\sigma}=\zeta_{3}^{\text {det } \sigma}$ for $\sigma \in \operatorname{Gal}\left(K_{p} / \mathbf{Q}_{p}\right) \subset G L_{2}\left(\mathbf{F}_{3}\right)$. Recently Bayer and Rio [1] determined all such extensions over \mathbf{Q}_{2} without the condition $\zeta_{3}^{\sigma}=\zeta_{3}^{\operatorname{det} \sigma}$. They also computed irreducible equations and the discriminants of those fields.

Next we examine whether there exists an elliptic curve E such that $K_{p}=\mathbf{Q}_{p}\left(E_{3}\right)$. We get such curves satisfying some congruence conditions in possible cases. We get two examples K_{2} such that there exists no elliptic curve E over \mathbf{Q}_{2} satisfying $K_{2}=$ $\mathbf{Q}_{2}\left(E_{3}\right)$.

As application of these results, we can construct infinitely many $G L_{2}\left(\mathbf{F}_{3}\right)$-extensions over \mathbf{Q} satisfying decomposing conditions for given finitely many primes by using these results in local cases.
2. Results in local cases. We list all subgroups G of $G L_{2}\left(\mathbf{F}_{3}\right)$ up to conjugacy. The order of G is divisible by 3 in (1), ..., (4-2) and (5). That in other cases is not divisible by 3 . We remark that the order of $G L_{2}\left(\mathbf{F}_{3}\right)$ is $48=2^{4} \cdot 3$. We denote by C_{n} (resp. D_{n}) the cyclic group (resp. the dihedral group) of order n. In each case, we list all Galois extensions
K_{p} containing ζ_{3} whose Galois group $\operatorname{Gal}\left(K_{p} / \mathbf{Q}_{p}\right)$ is isomorphic to G satisfying $\zeta_{3}^{\sigma}=\zeta_{3}^{\operatorname{det} \sigma}$ for $\sigma \in$ $\operatorname{Gal}\left(K_{p} / \mathbf{Q}_{p}\right)$. At last we give elliptic curves E such that $K_{p}=\mathbf{Q}_{p}\left(E_{3}\right)$ in the possible cases. In only two extensions for $p=2$ in (6), there exists no such elliptic curve.

Let K / \mathbf{Q}_{p} be a Galois extension. We put F the maximal unramified extension in K / \mathbf{Q}_{p}. We see that F / \mathbf{Q}_{p} is a cyclic extension. We put $e=[K: F]$ and $f=\left[F: \mathbf{Q}_{p}\right]$. If K / \mathbf{Q}_{p} is tamely ramified, K / F is a cyclic extension and e divides $p^{f}-1$. Therefore it is easy to list all G-extensions in the cases of $p \neq 2,3$. We see by $\zeta_{3} \in K$ and $\zeta_{3}^{\sigma}=\zeta_{3}^{\operatorname{det} \sigma}$ that G is contained in $S L_{2}\left(\mathbf{F}_{3}\right)$ if and only if $p \equiv 1 \bmod 3$.

We define an elliptic curve E by the equation

$$
d y^{2}=4 x^{3}-g_{2} x-g_{3}, \quad\left(d, g_{2}, g_{3} \in \mathbf{Z}_{p}\right)
$$

where \mathbf{Z}_{p} is the ring of p-adic integers. The equation of x-coordinates of E_{3} is as follows:
$f(x)=x^{4}-\frac{g_{2}}{2} x^{2}-g_{3} x-\frac{g_{2}{ }^{2}}{48}$
$=\left(x^{2}-\sqrt{\frac{g_{2}-\Delta^{1 / 3}}{3}} x-\frac{2 \Delta^{1 / 3}+g_{2}}{12}-\frac{g_{3}}{2 \sqrt{\frac{g_{2}-\Delta^{1 / 3}}{3}}}\right)$
$\times\left(x^{2}+\sqrt{\frac{g_{2}-\Delta^{1 / 3}}{3}} x-\frac{2 \Delta^{1 / 3}+g_{2}}{12}+\frac{g_{3}}{2 \sqrt{\frac{g_{2}-\Delta^{1 / 3}}{3}}}\right)$
$=0$,
where $\Delta=g_{2}{ }^{3}-27 g_{3}{ }^{2}$.
Therefore x-coordinates of 3 -division points are independent on d. Moreover we see that $\Delta^{1 / 3}$ is contained in the field generated by all the x-coordinates of E_{3}.

Now we describe data. We use α and β as p-adic units in this section.
(1) $G=G L_{2}\left(\mathbf{F}_{3}\right)$. We see that this case occurs in only $p=2$ by considering a ramification. Weil [10] proved that there exist three Galois extensions M / \mathbf{Q}_{2} whose Galois groups are isomorphic to the symmetric group \mathfrak{S}_{4} of degree 4 , which is isomorphic to $G L_{2}\left(\mathbf{F}_{3}\right) /\{ \pm 1\}$. Such fields are

$$
\begin{aligned}
& M_{1}=\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}, \sqrt{3(1+\sqrt[3]{2})}\right) \\
& M_{2}=\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2},{\left.\sqrt{1+\sqrt[3]{2}^{2}}\right)}^{2}\right)
\end{aligned}
$$

and

$$
M_{3}=\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}, \sqrt{3\left(3+{\sqrt[3]{2}+\sqrt[3]{2}^{2}}^{2}\right.}\right)
$$

M_{1} and M_{2} have four quadratic extensions K whose Galois group over \mathbf{Q}_{2} are isomorphic to $G L_{2}\left(\mathbf{F}_{3}\right)$ respectively. But M_{3} has no such extension. Furthermore he gave elliptic curves E satisfying $K=$ $\mathbf{Q}_{2}\left(E_{3}\right)$. We give another elliptic curves in this note. We see that M_{1} is generated by the x-coordinates of 3 -division points of the elliptic curve with $g_{2}=2 \alpha$ $(\alpha \equiv 3 \bmod 4)$ and $g_{3}=2 \beta$, and M_{2} is similarly generated with $g_{2}=2^{2} \alpha(\alpha \equiv 3 \bmod 4)$ and $g_{3}=$ $2^{2} \beta$. We can construct four K by taking d as $d \equiv$ $1,3 \bmod 2^{3}$ and $d \equiv 2,6 \bmod 2^{4}$, respectively.
(2) $G=S L_{2}\left(\mathbf{F}_{3}\right)$. It must be $p \equiv 1 \bmod 3$. But we see that this case occurs in the case of $p=2$ by considering a ramification. So it never occurs.
(3) $G=B=\left\{\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right) \in G L_{2}\left(\mathbf{F}_{3}\right)\right\} . \quad B$ is isomorphic to the dihedral group D_{12} of order 12. It must be $p \not \equiv 1 \bmod 3$. In $p \neq 2,3, K=\mathbf{Q}_{p}\left(\zeta_{3}, \sqrt[6]{p}\right)$ is the only one D_{12}-extension. We get an elliptic curve E by putting $g_{2}=p^{2} \alpha, g_{3}=p \beta$ and $d \not \equiv$ $0 \bmod p$ satisfying $K=\mathbf{Q}_{p}\left(E_{3}\right)$. We remark that a D_{12}-extension is the compositum of an \mathfrak{S}_{3}-extension and a quadratic extension. Hence we simultaneously deal the case of $p=2,3$ in (4-1).

$$
G=\left\{\left(\begin{array}{cc}
* & * \tag{4-1}\\
0 & 1
\end{array}\right) \in G L_{2}\left(\mathbf{F}_{3}\right)\right\} \quad \text { or }
$$

$\left\{\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right) \in G L_{2}\left(\mathbf{F}_{3}\right)\right\}$. Both of them are isomorphic to \mathfrak{S}_{3}. It must be $p \not \equiv 1 \bmod 3$. In $p \neq 2,3$, $K=\mathbf{Q}_{p}\left(\zeta_{3}, \sqrt[3]{p}\right)$ is the only one \mathfrak{S}_{3}-extension. We get an elliptic curve E satisfying $K=\mathbf{Q}_{p}\left(E_{3}\right)$ by putting $g_{2}=p^{3} \alpha, g_{3}=p^{2} \beta$ and $d \not \equiv 0 \bmod p$, where $-\beta \bmod p$ is a quadratic residue. If $d \bmod p$ is a quadratic residue, the Galois group of $\mathbf{Q}_{p}\left(E_{3}\right) / \mathbf{Q}_{p}$ is $\left\{\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)\right\}$. Otherwise it is $\left\{\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)\right\}$.

In $p=3$, there exist four \mathfrak{S}_{3}-extensions K containing ζ_{3}. They are $K=\mathbf{Q}_{3}\left(\zeta_{3}, \sqrt[3]{2}\right)$, $\mathbf{Q}_{3}\left(\zeta_{3}, \sqrt[3]{3}\right), \quad \mathbf{Q}_{3}\left(\zeta_{3}, \sqrt[3]{6}\right)$ and $\mathbf{Q}_{3}\left(\zeta_{3}, \sqrt[3]{12}\right)$. Each \mathfrak{S}_{3}-extension over \mathbf{Q}_{3} is extended to only one $D_{12^{-}}$ extension. By putting $g_{2}=3^{3} \alpha$ and $g_{3} \equiv 2 \bmod 3^{2}$, we get a $\left\{\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)\right\}$-extension (resp. $\left\{\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)\right\}$ extension, D_{12}-extension), if $d \equiv 1 \bmod 3($ resp. $d \equiv$ $-1 \bmod 3, d \equiv 3 \bmod 3^{2}$). These extensions contain $\mathbf{Q}_{3}\left(\zeta_{3}, \sqrt[3]{2}\right)$. By putting $g_{2}=3^{4} \alpha$ and $g_{3}=3 \beta$,
we get a $\left\{\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)\right\}$-extension (resp. $\left\{\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)\right\}$ extension, D_{12}-extension), if $d \equiv 0 \bmod 3, d \not \equiv$ $0 \bmod 3^{2}$ and $-3 \beta / d \equiv 1 \bmod 3($ resp. $d \equiv 0 \bmod 3$, $d \not \equiv 0 \bmod 3^{2}$ and $-3 \beta / d \equiv-1 \bmod 3, d \equiv$ $-\beta \bmod 3)$. We see that these extensions contain $\mathbf{Q}_{3}\left(\zeta_{3}, \sqrt[3]{3}\right)\left(\right.$ resp. $\left.\mathbf{Q}_{3}\left(\zeta_{3}, \sqrt[3]{6}\right), \mathbf{Q}_{3}\left(\zeta_{3}, \sqrt[3]{12}\right)\right)$ if $\beta \equiv$ $1 \bmod 3^{2}\left(\right.$ resp. $\left.\beta \equiv 2 \bmod 3^{2}, \beta \equiv 4 \bmod 3^{2}\right)$.

In $p=2, \mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}\right)$ is the only one \mathfrak{S}_{3}-extension. Then all D_{12}-extensions are $\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}, \sqrt{-1}\right)$, $\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}, \sqrt{2}\right)$ and $\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}, \sqrt{-2}\right)$. We put $g_{2}=$ $2^{4} \alpha$ and $g_{3}=2 \beta$. We see that $\mathbf{Q}_{2}\left(E_{3}\right)$ is a D_{12}-extension $\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}, \sqrt{-1}\right)$ (resp. a $\left\{\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)\right\}$ extension, $\left\{\left(\begin{array}{ll}* & * \\ 0 & 1\end{array}\right)\right\}$-extension) for $d \equiv 2 \beta \bmod 2^{4}$ (resp. $d \equiv-2 \beta \bmod 2^{4}, d \equiv 6 \beta \bmod 2^{4}$). We see $\mathbf{Q}_{2}\left(E_{3}\right)=\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}, \sqrt{2}\right)\left(\right.$ resp. $\left.\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt[3]{2}, \sqrt{-2}\right)\right)$ for $d \equiv-\beta \bmod 2^{3}\left(\right.$ resp. $\left.d \equiv \beta \bmod 2^{3}\right)$.
(4-2) $\quad G=\left\langle\left(\begin{array}{cc}-1 & -1 \\ 0 & -1\end{array}\right)\right\rangle$. It is isomorphic to C_{6}.
(5) $\quad G=\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$. It is isomorphic to C_{3}.

These two cases occur in $p \equiv 1 \bmod 3$. There are four C_{3}-extensions. They are $\mathbf{Q}_{p}(\sqrt[3]{\delta}), \mathbf{Q}_{p}(\sqrt[3]{p})$, $\mathbf{Q}_{p}(\sqrt[3]{\delta p})$ and $\mathbf{Q}_{p}\left(\sqrt[3]{\delta^{2} p}\right)$, where δ is a p-adic unit such that $\delta \bmod p$ is not a cubic residue. Each $C_{6}{ }^{-}$ extension is the compositum of a C_{3}-extension and a quadratic extension. There are three quadratic extensions, $\mathbf{Q}_{p}(\sqrt{\gamma}), \mathbf{Q}_{p}(\sqrt{p})$ and $\mathbf{Q}_{p}(\sqrt{\gamma p})$, where γ is a p-adic unit such that $\gamma \bmod p$ is not a quadratic residue. We put $g_{2}=p \alpha$ and $g_{3}=\beta$, where $\beta \bmod p$ is not a cubic residue. We see that $\mathbf{Q}_{p}(\sqrt[3]{\delta})$ coincides with the field generated by x-coordinates of E_{3}. We see that $\mathbf{Q}_{p}\left(E_{3}\right)$ is a C_{3}-extension $\mathbf{Q}_{p}(\sqrt[3]{\delta})$, if $-\beta / d \bmod p$ is a quadratic residue. We also see that $\mathbf{Q}_{p}\left(E_{3}\right)$ is a C_{6}-extension containing $\mathbf{Q}_{p}(\sqrt{\gamma})$ (resp. $\left.\mathbf{Q}_{p}(\sqrt{p}), \mathbf{Q}_{p}(\sqrt{\gamma p})\right)$, if $-\beta / d \bmod p$ is not a quadratic residue $\left(\right.$ resp. $-\beta / d \equiv p \bmod p^{2},-\beta / d \equiv \gamma p \bmod$ p^{2}). We put $g_{2}=p^{3} \alpha$ and $g_{3}=p^{2} \beta$. We see that the extension generated by x-coordinates of E_{3} is $\mathbf{Q}_{p}(\sqrt[3]{p})\left(\right.$ resp. $\left.\mathbf{Q}_{p}(\sqrt[3]{\delta p}), \mathbf{Q}_{p}\left(\sqrt[3]{\delta^{2} p}\right)\right)$, for $\beta \equiv 1 \bmod$ $p\left(\right.$ resp. $\left.\beta \equiv \delta \bmod p, \beta \equiv \delta^{2} \bmod p\right)$. If $-\beta / d \bmod p$ is a quadratic residue, $\mathbf{Q}_{p}\left(E_{3}\right)$ is a C_{3}-extension. If $-\beta / d \bmod p$ is not a quadratic residue, $\mathbf{Q}_{p}\left(E_{3}\right)$ is a C_{6}-extension containing $\mathbf{Q}_{p}(\sqrt{\gamma})$. If $-d / \beta \equiv$ $p \bmod p^{2}\left(\right.$ resp. $\left.-d / \beta \equiv p \gamma \bmod p^{2}\right), \mathbf{Q}_{p}\left(E_{3}\right)$ is a C_{6}-extension containing $\mathbf{Q}_{p}(\sqrt{p})\left(\right.$ resp. $\left.\mathbf{Q}_{p}(\sqrt{\gamma p})\right)$.
(6) $G=\left\langle a=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right), b=\left(\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right)\right\rangle$ with $a^{8}=b^{2}=1, b^{-1} a b=a^{3}$. It is isomorphic to the semi-dihedral group $S D_{16}$ of order 16 . We see that this case occurs in only $p=2$ by considering a ramification. Let K be an $S D_{16}$-extension. Let M be the $\left\langle a^{4}\right\rangle$-fixed subfield of K / \mathbf{Q}_{p}. We see that M is a D_{8}-extension over \mathbf{Q}_{2}. Naito [6] determined all such extensions. By the action of the Galois group on ζ_{3}, K must be a cyclic extension of degree 8 over a quadratic field other than $\mathbf{Q}_{2}\left(\zeta_{3}\right)$. We see that M is a cyclic extension over k. We see $k=\mathbf{Q}_{2}(\sqrt{-1})$ or $\mathbf{Q}_{2}(\sqrt{-5})$ by Naito [6].

By local class field theory and computation of $k^{\times} /\left(k^{\times}\right)^{8}$, where $k=\mathbf{Q}_{2}(\sqrt{-1})$ or $\mathbf{Q}_{2}(\sqrt{-5})$, we can determine all D_{8}-extensions M which have quadratic extensions K which are cyclic of degree 8 over $\mathbf{Q}_{2}(\sqrt{-1})\left(\right.$ resp. $\left.\mathbf{Q}_{2}(\sqrt{-5})\right)$ such that $\operatorname{Gal}\left(K / \mathbf{Q}_{2}\right) \cong$ $S D_{16}$. These are $M=\mathbf{Q}_{2}(\sqrt{3+2 \sqrt{-5}}, \sqrt{5})$, $\mathbf{Q}_{2}(\sqrt{4+\sqrt{-5}}, \sqrt{5})\left(\right.$ resp. $\mathbf{Q}_{2}(\sqrt{3+2 \sqrt{-1}}, \sqrt{5})$, $\left.\mathbf{Q}_{2}(\sqrt{2+\sqrt{-1}}, \sqrt{5})\right)$.

The compositum of two $S D_{16}$-extensions whose intersection is a D_{8}-extension is an $S D_{16} \times C_{2^{-}}$ extension. If there exists an $S D_{16}$-extension containing M, we find another $S D_{16}$-extension in the compositum of it and a quadratic extension over \mathbf{Q}_{2}.

If $K=\mathbf{Q}_{2}\left(E_{3}\right)$ for an elliptic curve E, we see that M is the field generated by all the x-coordinates of E_{3}. We put $g_{2}=2^{a} \alpha$ and $g_{3}=2^{b} \beta$.

In the first place, we consider the case of $3 a<2 b$. We get $S D_{16}$-extensions K which are cyclic over $\mathbf{Q}_{2}(\sqrt{-1})$ in the case of $2 b-3 a \geq 3$. We get $M=\mathbf{Q}_{2}(\sqrt{3+2 \sqrt{-5}}, \sqrt{5}) \quad$ (resp. $M=$ $\left.\mathbf{Q}_{2}(\sqrt{4+\sqrt{-5}}, \sqrt{5})\right)$ by putting $a=2, b=5$ and $\alpha \equiv 1 \bmod 2^{3}($ resp. $a=1, b=4$ and $\alpha \equiv$ $\left.\pm 1 \bmod 2^{3}\right)$. We get two $S D_{16}$-extensions by putting $d \equiv \pm 1 \bmod 2^{2}$ or $d \equiv 2 \bmod 2^{2}$ in each case. We get all $S D_{16}$-extensions which are cyclic over $\mathbf{Q}_{2}(\sqrt{-1})$. We get $S D_{16}$-extensions K which are cyclic over $\mathbf{Q}_{2}(\sqrt{-5})$ in the case of $2 b-3 a=2$. We get $M=$ $\mathbf{Q}_{2}(\sqrt{3+2 \sqrt{-1}}, \sqrt{5})$ for any 2-adic integers α and β. We get two $S D_{16}$-extensions by putting $d \equiv$ $\pm 1 \bmod 2^{2}$ or $d \equiv 2 \bmod 2^{2}$, respectively. We see $\left[\mathbf{Q}_{2}\left(E_{3}\right): \mathbf{Q}_{2}\right] \leq 8$ in the case of $2 b-3 a=1$, where we denote by $\left[\mathbf{Q}_{2}\left(E_{3}\right): \mathbf{Q}_{2}\right]$ the degree of $\mathbf{Q}_{2}\left(E_{3}\right) / \mathbf{Q}_{2}$.

In the second place, we consider the case of $3 a>$
$2 b$. We see that b is divisible by 3 , if and only if
$\Delta^{1 / 3} \in \mathbf{Q}_{2}$. We see $\left[\mathbf{Q}_{2}\left(E_{3}\right): \mathbf{Q}_{2}\right] \leq 8$ in the case of $a-(2 / 3) b \geq 2$. In the case of $a-(2 / 3) b=1$, we get $S D_{16}$-extensions which are cyclic over $\mathbf{Q}_{2}(\sqrt{-5})$ (resp. $\left.\mathbf{Q}_{2}(\sqrt{-1})\right)$ for $\alpha \equiv-1 \bmod 2^{2}($ resp. $\alpha \equiv$ $\left.1 \bmod 2^{2}\right)$. We get $M=\mathbf{Q}_{2}(\sqrt{3+2 \sqrt{-1}}, \sqrt{5})$ for $\alpha \equiv-1 \bmod 2^{2}$ 。

In the last place, we consider the case of $3 a=$ $2 b$. We see that $\Delta^{1 / 3} \in \mathbf{Q}_{2}$ if and only if $\alpha^{3}-27 \beta^{2}=$ $2^{3 c} \gamma$ for a positive integer c and a 2 -adic unit γ. By calculating $f(x)$, we see that $\sqrt{2+\sqrt{-1}}$ never appear in the field generating by x-coordinates of E_{3}.

Therefore these two $S D_{16}$-extensions which contain $\mathbf{Q}_{2}(\sqrt{2+\sqrt{-1}}, \sqrt{5})$ never coincide with $\mathbf{Q}_{2}\left(E_{3}\right)$ for any elliptic curves E.
(7-1) $\quad G=\left\langle\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\right\rangle$. It is isomorphic to C_{8}. This case occurs in $p \equiv 2 \bmod 3$. The compositum of two C_{8}-extensions whose intersection is a C_{4}-extension is a $C_{8} \times C_{2}$-extension. Therefore we find another C_{8}-extension containing the same $C_{4}{ }^{-}$ extension by composing a quadratic extension over \mathbf{Q}_{p}.

For $p \equiv 1 \bmod 4$, there exist four C_{8}-extensions. We construct two C_{4}-extensions by adding x coordinates of E_{3}. By putting $g_{2}=p \alpha$ and $g_{3}=$ $p^{3} \beta$, the field generated by x-coordinates of E_{3} is a C_{4}-extension. We get two C_{8}-extension by taking d as a p-adic unit and a prime element, respectively. We also get another C_{4}-extension by putting $g_{2}=\alpha$ and $g_{3}=p^{2} \beta$. We see that it is unramified over \mathbf{Q}_{p}. We get an unramified C_{8}-extension by taking a p adic unit d such that $d \bmod p$ is a quadratic residue. We also get another C_{8}-extension by taking d as a prime element.

For $p \equiv 3 \bmod 4$, there exist two C_{8}-extensions. We can prove that there exist $\alpha, u \in \mathbf{F}_{p}^{\times}(\alpha \neq u)$ such that $\alpha^{3}-u^{3}$ is a quadratic residue but not $\alpha-$ u. By putting $g_{2} \equiv \alpha \bmod p$ and $g_{3} \equiv \beta \bmod p$, we get two C_{8}-extensions, where β satisfies $27 \beta^{2} \equiv \alpha^{3}-$ $u^{3} \bmod p$. We remark that it is unramified by taking d as $d \bmod p$ is a quadratic residue. We also get another C_{8}-extension by taking d as a prime element.

For $p=2$, there are eight C_{8}-extensions. By putting $g_{2}=2 \alpha\left(\alpha \equiv 1 \bmod 2^{3}\right)$ and $g_{3}=2^{2} \beta$, we get a C_{4}-extension by adding x-coordinates of E_{3}. We also get the unramified C_{4}-extension by putting $g_{2}=2^{2} \alpha\left(\alpha \equiv 1 \bmod 2^{2}\right)$ and $g_{3}=\beta(\beta \equiv \pm 1 \bmod$ 2^{3}). We get four C_{8}-extensions $\mathbf{Q}_{2}\left(E_{3}\right)$ by taking $d \equiv 1 \bmod 2^{3}, d \equiv-1 \bmod 2^{3}, d \equiv 2 \bmod 2^{4}$ and
$d \equiv-2 \bmod 2^{4}$, respectively in each case.
(7-2)

$$
G=\left\langle a=\left(\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right), b=\left(\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right)\right\rangle
$$ with $a^{4}=b^{2}=1, b^{-1} a b=a^{-1}$. It is isomorphic to the dihedral group D_{8} of degree 8 . This case occurs in $p \equiv 2 \bmod 3$. Moreover we see $p \equiv$ $3 \bmod 4$ or $p=2$ by Naito [6]. In $p \neq 2$, by putting $g_{2}=p \alpha, g_{3}=p^{3} \beta$ and $d \not \equiv 0 \bmod p$, we see that $\mathbf{Q}_{p}\left(E_{3}\right)$ is a D_{8}-extension. We know by Naito [6] that there exists only one D_{8}-extension for $p \equiv 3 \bmod 4$. For $p=2$, there exist eighteen D_{8}-extensions. By putting $g_{2}=2 \alpha(\alpha \equiv$ $-1 \bmod 2^{3}$) and $g_{3}=2^{2} \beta$, we get two D_{8}-extension $\mathbf{Q}_{2}\left(E_{3}\right)$ for $d \equiv 1 \bmod 2^{3}, d \equiv-1 \bmod 2^{3}$, respectively. They are $\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt{\sqrt{-2}(1+\sqrt{-2})}\right)$ and $\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt{\sqrt{-2}(1+3 \sqrt{-2})}\right)$. Other D_{8}-extentions do not satisfy the condition $\zeta_{3}^{\sigma}=\zeta_{3}^{\operatorname{det} \sigma}$.

(7-3) $\quad G=S D_{16} \cap S L_{2}\left(\mathbf{F}_{3}\right)$. It is isomorphic to the quaternion group Q_{8} of order 8. It occurs in $p \equiv 1 \bmod 3$. Fujisaki [2] proved that p satisfies $p \equiv$ $3 \bmod 4$ or $p=2$ and that there exists only one $Q_{8^{-}}$ extension for odd prime p. He explicitly constructed them. By putting $g_{2}=p \alpha$ and $g_{3}=p^{3} \beta$, we see that $\mathbf{Q}_{p}\left(E_{3}\right)$ is the Q_{8}-extension.
(8-1) $\quad G=\left\langle\left(\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right)\right\rangle$. It is isomorphic to C_{4}. It occurs in $p \equiv 1 \bmod 3$. For $p \equiv 3 \bmod 4$, there exist two C_{4}-extensions. By putting $g_{2}=\alpha$ and $g_{3}=p^{2} \beta$ such that $\left(1-\zeta_{3} / 3\right) \alpha \bmod p$ is a quadratic residue, we get an unramified C_{4}-extension $\mathbf{Q}_{p}\left(E_{3}\right)$ for a p-adic unit d such that $d \bmod p$ is a quadratic residue. We get another C_{4}-extension for a prime element d. For $p \equiv 1 \bmod 4$, there exist six $C_{4}{ }^{-}$ extensions. By putting $g_{2}=\alpha$ and $g_{3}=p^{2} \beta$, where $\alpha \bmod p$ is not a quadratic residue, we get an unramified C_{4}-extension $\mathbf{Q}_{p}\left(E_{3}\right)$ for a p-adic unit d, which is a quadratic residue of modulo p. We get another C_{4}-extension for a prime element d. By putting $g_{2}=$ $p \alpha$ and $g_{3}=p^{3} \beta$, we get a C_{4}-extension $\mathbf{Q}_{p}\left(E_{3}\right)$. We get four such extensions as we take $\alpha \bmod p$ and $d \bmod p$ to be a quadratic residue or not respectively.

$$
G=\left\langle\left(\begin{array}{cc}
-1 & 0 \tag{8-2}\\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\rangle . \text { It is }
$$ isomorphic to $C_{2} \times C_{2}$.

$$
G=\left\langle\left(\begin{array}{cc}
-1 & 0 \tag{9-1}\\
0 & 1
\end{array}\right)\right\rangle . \text { It is isomorphic to }
$$ C_{2}.

These two cases occur in $p \equiv 2 \bmod 3$ or $p=3$. For an odd prime $p \equiv 2 \bmod 3$, we put $g_{2}=p^{2} \alpha$ and $g_{3} \equiv t^{3} \bmod p$ for a p-adic unit t. We see that $\mathbf{Q}_{p}\left(E_{3}\right)$ is a unique $C_{2} \times C_{2}$-extension for a prime element d. We see $\mathbf{Q}_{p}\left(E_{3}\right)=\mathbf{Q}_{p}\left(\zeta_{3}\right)$ for a p-adic unit d. For $p=2$, we put $g_{2}=2^{6} \alpha$ and $g_{3}=2^{3} \beta$ $\left(\beta \equiv 1 \bmod 2^{4}\right)$. We see $\mathbf{Q}_{2}\left(E_{3}\right)=\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt{6}\right)($ resp. $\left.\mathbf{Q}_{2}\left(\zeta_{3}, \sqrt{2}\right), \mathbf{Q}_{2}\left(\zeta_{3}, \sqrt{-1}\right), \mathbf{Q}_{2}\left(\zeta_{3}\right)\right)$ for $d \equiv 1 \bmod 2^{3}$ $\left(\right.$ resp. $d \equiv 3 \bmod 2^{3}, d \equiv 2 \bmod 2^{4}, d \equiv 6 \bmod 2^{4}$). For $p=3$, we put $g_{2}=3^{4} \alpha$ and $g_{3} \equiv t^{3} \bmod 3^{10}$ for a 3 -adic unit t. We see $\mathbf{Q}_{3}\left(E_{3}\right)=\mathbf{Q}_{3}\left(\zeta_{3}, \sqrt{3}\right)$ (resp. $\left.\mathbf{Q}_{3}\left(\zeta_{3}\right)\right)$ for a 3 -adic unit d such that $t / d \equiv 1 \bmod 3$ $($ resp. $t / d \equiv-1 \bmod 3)$.

$$
G=\left\langle\left(\begin{array}{cc}
-1 & 0 \tag{9-2}\\
0 & -1
\end{array}\right)\right\rangle . \text { It is isomorphic to }
$$ C_{2}.

$$
G=\left\{\left(\begin{array}{ll}
1 & 0 \tag{10}\\
0 & 1
\end{array}\right)\right\} . \text { These two cases occur }
$$ in $p \equiv 1 \bmod 3$. We put $g_{2}=p^{2} \alpha$ and $g_{3} \equiv t^{3} \bmod p$ for a p-adic unit t. We see $\mathbf{Q}_{p}\left(E_{3}\right)=\mathbf{Q}_{p}(\sqrt{(\gamma / t) p})$ for $d \equiv \gamma p \bmod p^{2}$. We see that $\mathbf{Q}_{p}\left(E_{3}\right)$ is an unramified quadratic extension for a p-adic unit d such that $-t^{3} / d \bmod p$ is not a quadratic residue. We see $\mathbf{Q}_{p}\left(E_{3}\right)=\mathbf{Q}_{p}$, if $-t^{3} / d \bmod p$ is a quadratic residue.

3. Application. We call $\left\{G_{p}, I_{p}, V_{p}\right\}$ a ramification triple of $G L_{2}\left(\mathbf{F}_{3}\right)$, if it satisfies the following conditions:
4. G_{p} is a subgroup of $G L_{2}\left(\mathbf{F}_{3}\right)$, such that $G_{p} \subset$ $S L_{2}\left(\mathbf{F}_{3}\right)\left(\right.$ resp. $\left.G_{p} \not \subset S L_{2}\left(\mathbf{F}_{3}\right)\right)$ for $p \equiv 1 \bmod 3$ (resp. $p \not \equiv 1 \bmod 3$),
5. I_{p} is a normal subgroup such that G_{p} / I_{p} is a cyclic group,
6. V_{p} is a normal subgroup such that I_{p} / V_{p} is a cyclic group and the order $\sharp\left|I_{p} / V_{p}\right|$ divides $p^{\sharp\left|G_{p} / I_{p}\right|}-1$,
7. V_{p} is a p-group.

Let G_{p} be a Galois group of a Galois extension $\mathbf{Q}_{p}\left(E_{3}\right) / \mathbf{Q}_{p}$. Let I_{p} (resp. V_{p}) be an inertia (resp. wild ramification) group of G_{p}. We see that $\left\{G_{p}, I_{p}, V_{p}\right\}$ is a ramification triple of $G L_{2}\left(\mathbf{F}_{3}\right)$. We get:

Theorem. Let S be a finite set of primes. For $p \in S$, let $\left\{G_{p}, I_{p}, V_{p}\right\}$ be a ramification triple of $G L_{2}\left(\mathbf{F}_{3}\right)$. Moreover we assume that $\sharp\left|G_{p} / I_{p}\right|$ is even for $p \not \equiv 1 \bmod 3$. Then there exist infinitely many Galois extensions K / \mathbf{Q} satisfying the following conditions:

1. Galois group of K / \mathbf{Q} is isomorphic to $G L_{2}\left(\mathbf{F}_{3}\right)$,
2. $\zeta_{3}^{\sigma}=\zeta_{3}^{\operatorname{det} \sigma}$ for $\sigma \in \operatorname{Gal}(K / \mathbf{Q})$,
3. For $p \in S$, the decomposition (resp. inertia, wild ramification) group is conjugate to G_{p} (resp. $\left.I_{p}, V_{p}\right)$.
Proof. We put $K=\mathbf{Q}\left(E_{3}\right)$ for an elliptic curve E defined over \mathbf{Q}. We see that the Galois group G of K / \mathbf{Q} is a subgroup of $G L_{2}\left(\mathbf{F}_{3}\right)$ and $\zeta_{3}^{\sigma}=\zeta_{3}^{\operatorname{det} \sigma}$ for $\sigma \in \operatorname{Gal}(K / \mathbf{Q})$. If $\left\{G_{p}, I_{p}, V_{p}\right\}$ is a ramification triple of $G L_{2}\left(\mathbf{F}_{3}\right)$ satisfying the assumption in the theorem, G_{p} occurs in one of the case (1), (2), ... or (10). We remark that every $S D_{16}$-extention in (7.2) has the same ramification triple whether it is generated by 3 -division points of an elliptic curve or not. We take an elliptic curve E satisfying congruence conditions of modulo a suitable power of $p \in S$ as the previous section, for each prime $p \in S$. We see that K satisfies the third condition. Moreover we put $G_{q_{1}}=C_{8}$, $G_{q_{2}}=B$, for primes $q_{1}, q_{2} \notin S$. Consequently G contains a subgroup which is isomorphic to C_{8}. It also contains a subgroup isomorphic to B. Hence we get $G=G L_{2}\left(\mathbf{F}_{3}\right)$. Hence we get one extension K in the theorem.

Next we prove that there exist infinitely many such fields. If there exist only finite such extensions, we put them K_{1}, \ldots, K_{t}. Let p_{i} be a prime which completely decomposes in K_{i} / \mathbf{Q}. We take S containing p_{1}, \ldots, p_{t}. We put $G_{p_{i}} \neq\{1\}$. We take an elliptic curve E as above discussion. We see that $K=\mathbf{Q}\left(E_{3}\right)$ is not K_{1}, \ldots, K_{t}. Thus we can construct infinitely many K.

Acknowledgements. The author expresses his appreciation of the hospitality of the Faculty of Science of Osaka University during studying this theme in 1995. The summary of this note was published in [8] in Japanese. He also expresses his heartfelt thanks to the referee.

References

[1] Bayer, P., and Rio, A.: Dyadic exercises for octahedral extensions. J. Reine Angew. Math., 517, 1-17 (1999).
[2] Fujisaki, G.: A remark on quaternion extensions of the rational p-adic field. Proc. Japan Acad., 66A, 257-259 (1990).
[3] Koike, M.: Higher reciprocity law, modular forms of weight 1 and elliptic curves. Nagoya Math. J., 98, 109-115 (1985).
[4] Lario, J.-C., and Rio, A.: An octahedral-elliptic type equality in $B r_{2}(k)$. C. R. Acad. Sci. Paris Sér. I Math., 321, 39-44 (1995).
[5] Lario, J.-C., and Rio, A.: Elliptic modularity for octahedral Galois representations. Math. Res. Lett., 3, 329-342 (1996).
[6] Naito, H.: Dihedral extensions of degree 8 over the rational p-adic fields. Proc. Japan Acad., 71A, 17-18 (1995).
[7] Naito, H.: A congruence between the coefficients of the L-series which are related to an elliptic curve and the algebraic number field generated by its 3-division points. Mem. Fac. Edu. Kagawa Univ., 37, 43-45 (1987).
[8] Naito, H.: Local fields generated by 3-division points of elliptic curves. RIMS Kokyuroku, 971, 153-159 (1996). (in Japanese).
[9] Shimura, G.: A reciprocity law in non-solvable extensions. J. Reine Angew. Math., 221, 209-220 (1966).
[10] Weil, A.: Exercises dyadiques. Invent. Math., 27, 1-22 (1974).

[^0]: 2000 Mathematics Subject Classification. 11F85, 11G05, 11G07.

