Local fields generated by 3-division points of elliptic curves

By Hirotada NAITO

Department of Mathematics, Kagawa University, 1-1, Saiwai-cho, Takamatsu, Kagawa 760-8522 (Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 2002)

Abstract: We determine all the extensions generated by 3-division points of elliptic curves over the fields of *p*-adic numbers. As application, we construct $GL_2(\mathbf{F}_3)$ -extensions over the field of rational numbers with given finitely many local conditions.

Key words: Elliptic curves; local fields; Galois theory.

1. Introduction. Let E be an elliptic curve defined over the field \mathbf{Q} of rational numbers. We denote by E_l the set of l-division points of E for a prime l. We put $K_{(l)} = \mathbf{Q}(E_l)$. We denote by $G_{(l)} =$ $\operatorname{Gal}(K_{(l)}/\mathbf{Q})$ the Galois group of $K_{(l)}$ over \mathbf{Q} . We think that $G_{(l)}$ is a subgroup of the general linear group $GL_2(\mathbf{F}_l)$ of degree 2 over the finite field \mathbf{F}_l of lelements, because E_l is isomorphic to a vector space of dimension 2 over \mathbf{F}_l .

We know that the action of $\sigma \in G_{(l)} \subset GL_2(\mathbf{F}_l)$ on an *l*-th primitive root ζ_l of unity is determined by $\zeta_l^{\sigma} = \zeta_l^{\det \sigma}$. Thus we see that the fixed field of $G_{(l)} \cap SL_2(\mathbf{F}_l)$ is $\mathbf{Q}(\zeta_l)$, where SL_2 is the special linear group of degree 2.

We denote by $L(s, E/\mathbf{Q}) = \sum_{n=1}^{\infty} a_n n^{-s}$ the Hasse-Weil zeta function of E over \mathbf{Q} . We know that a_p mostly describes the decomposition law of a prime p of $K_{(l)}/\mathbf{Q}$ (cf. Shimura [9]).

For example in the case of l = 2, Koike [3] proved that $a_p \equiv b_p \mod 2$ for good primes $p \neq 2$, where $L(s, \rho, K_{(2)}/\mathbf{Q}) = \sum_{n=1}^{\infty} b_n n^{-s}$ is the Artin Lfunction for the 2-dimensional irreducible representation ρ of $GL_2(\mathbf{F}_2)$. Naito [7] got a similar result in the case of l = 3. In the case of l = 2, $GL_2(\mathbf{F}_2)$ is isomorphic to the symmetric group \mathfrak{S}_3 of degree 3. Let K/\mathbf{Q} be a Galois extension whose Galois group is isomorphic to \mathfrak{S}_3 . We can find a polynomial f(X)of degree 3 with rational coefficients such that K is the decomposition field over **Q** of f(X) = 0. Let E be the elliptic curve defined by $y^2 = f(x)$. We see $K = \mathbf{Q}(E_2)$. Therefore the theorem of Koike [3] is regarded as a decomposition law of primes of Galois extensions whose Galois groups are isomorphic to \mathfrak{S}_3 . Next we consider the case of l = 3. Let

 K/\mathbf{Q} be a Galois extension whose Galois group is isomorphic to $GL_2(\mathbf{F}_3)$. When is there an elliptic curve E defined over \mathbf{Q} such that $K = \mathbf{Q}(E_3)$? We see that a necessary condition for existence of such an elliptic curve is that K contains a certain cubic root by considering the equation of x-coordinates of 3-division points. Lario and Rio [4, 5] got some sufficient conditions.

We consider local cases in this note. Let K_p be a Galois extension over the field \mathbf{Q}_p of *p*-adic numbers for a prime *p* whose Galois group $\operatorname{Gal}(K_p/\mathbf{Q}_p)$ is isomorphic to a subgroup *G* of $GL_2(\mathbf{F}_3)$. From now on, we call such a Galois extension a *G*-extension, for simplicity. We determine all such K_p which contains ζ_3 with $\zeta_3^{\sigma} = \zeta_3^{\det \sigma}$ for $\sigma \in \operatorname{Gal}(K_p/\mathbf{Q}_p) \subset GL_2(\mathbf{F}_3)$. Recently Bayer and Rio [1] determined all such extensions over \mathbf{Q}_2 without the condition $\zeta_3^{\sigma} = \zeta_3^{\det \sigma}$. They also computed irreducible equations and the discriminants of those fields.

Next we examine whether there exists an elliptic curve E such that $K_p = \mathbf{Q}_p(E_3)$. We get such curves satisfying some congruence conditions in possible cases. We get two examples K_2 such that there exists no elliptic curve E over \mathbf{Q}_2 satisfying $K_2 =$ $\mathbf{Q}_2(E_3)$.

As application of these results, we can construct infinitely many $GL_2(\mathbf{F}_3)$ -extensions over \mathbf{Q} satisfying decomposing conditions for given finitely many primes by using these results in local cases.

2. Results in local cases. We list all subgroups G of $GL_2(\mathbf{F}_3)$ up to conjugacy. The order of G is divisible by 3 in $(1), \ldots, (4-2)$ and (5). That in other cases is not divisible by 3. We remark that the order of $GL_2(\mathbf{F}_3)$ is $48 = 2^4 \cdot 3$. We denote by C_n (resp. D_n) the cyclic group (resp. the dihedral group) of order n. In each case, we list all Galois extensions

²⁰⁰⁰ Mathematics Subject Classification. $11F85,\ 11G05,\ 11G07.$

 K_p containing ζ_3 whose Galois group $\operatorname{Gal}(K_p/\mathbf{Q}_p)$ is isomorphic to G satisfying $\zeta_3^{\sigma} = \zeta_3^{\det \sigma}$ for $\sigma \in \operatorname{Gal}(K_p/\mathbf{Q}_p)$. At last we give elliptic curves E such that $K_p = \mathbf{Q}_p(E_3)$ in the possible cases. In only two extensions for p = 2 in (6), there exists no such elliptic curve.

Let K/\mathbf{Q}_p be a Galois extension. We put F the maximal unramified extension in K/\mathbf{Q}_p . We see that F/\mathbf{Q}_p is a cyclic extension. We put e = [K : F] and $f = [F : \mathbf{Q}_p]$. If K/\mathbf{Q}_p is tamely ramified, K/F is a cyclic extension and e divides $p^f - 1$. Therefore it is easy to list all G-extensions in the cases of $p \neq 2, 3$. We see by $\zeta_3 \in K$ and $\zeta_3^{\sigma} = \zeta_3^{\det \sigma}$ that G is contained in $SL_2(\mathbf{F}_3)$ if and only if $p \equiv 1 \mod 3$.

We define an elliptic curve E by the equation

$$dy^2 = 4x^3 - g_2x - g_3, \quad (d, g_2, g_3 \in \mathbf{Z}_p),$$

where \mathbf{Z}_p is the ring of *p*-adic integers. The equation of *x*-coordinates of E_3 is as follows:

$$f(x) = x^{4} - \frac{g_{2}}{2}x^{2} - g_{3}x - \frac{g_{2}^{2}}{48}$$

$$= \left(x^{2} - \sqrt{\frac{g_{2} - \Delta^{1/3}}{3}}x - \frac{2\Delta^{1/3} + g_{2}}{12} - \frac{g_{3}}{2\sqrt{\frac{g_{2} - \Delta^{1/3}}{3}}}\right)$$

$$\times \left(x^{2} + \sqrt{\frac{g_{2} - \Delta^{1/3}}{3}}x - \frac{2\Delta^{1/3} + g_{2}}{12} + \frac{g_{3}}{2\sqrt{\frac{g_{2} - \Delta^{1/3}}{3}}}\right)$$

$$= 0,$$
where $\Delta = e^{\frac{3}{2}} - 27e^{\frac{2}{3}}$

where $\Delta = g_2^3 - 27g_3^2$.

Therefore x-coordinates of 3-division points are independent on d. Moreover we see that $\Delta^{1/3}$ is contained in the field generated by all the x-coordinates of E_3 .

Now we describe data. We use α and β as *p*-adic units in this section.

(1) $G = GL_2(\mathbf{F}_3)$. We see that this case occurs in only p = 2 by considering a ramification. Weil [10] proved that there exist three Galois extensions M/\mathbf{Q}_2 whose Galois groups are isomorphic to the symmetric group \mathfrak{S}_4 of degree 4, which is isomorphic to $GL_2(\mathbf{F}_3)/{\pm 1}$. Such fields are

$$M_{1} = \mathbf{Q}_{2} \left(\zeta_{3}, \sqrt[3]{2}, \sqrt{3(1+\sqrt[3]{2})} \right),$$
$$M_{2} = \mathbf{Q}_{2} \left(\zeta_{3}, \sqrt[3]{2}, \sqrt{1+\sqrt[3]{2}^{2}} \right)$$

and

$$M_3 = \mathbf{Q}_2\left(\zeta_3, \sqrt[3]{2}, \sqrt{3(3 + \sqrt[3]{2} + \sqrt[3]{2}^2)}\right).$$

 M_1 and M_2 have four quadratic extensions K whose Galois group over \mathbf{Q}_2 are isomorphic to $GL_2(\mathbf{F}_3)$ respectively. But M_3 has no such extension. Furthermore he gave elliptic curves E satisfying K = $\mathbf{Q}_2(E_3)$. We give another elliptic curves in this note. We see that M_1 is generated by the *x*-coordinates of 3-division points of the elliptic curve with $g_2 = 2\alpha$ ($\alpha \equiv 3 \mod 4$) and $g_3 = 2\beta$, and M_2 is similarly generated with $g_2 = 2^2\alpha$ ($\alpha \equiv 3 \mod 4$) and $g_3 =$ $2^2\beta$. We can construct four K by taking d as $d \equiv$ 1,3 mod 2^3 and $d \equiv 2, 6 \mod 2^4$, respectively.

(2) $G = SL_2(\mathbf{F}_3)$. It must be $p \equiv 1 \mod 3$. But we see that this case occurs in the case of p = 2 by considering a ramification. So it never occurs.

(3)
$$G = B = \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in GL_2(\mathbf{F}_3) \right\}$$
. *B* is perphic to the dihedral group D_{12} of order 12. It

isomorphic to the dihedral group D_{12} of order 12. It must be $p \not\equiv 1 \mod 3$. In $p \neq 2, 3, K = \mathbf{Q}_p(\zeta_3, \sqrt[6]{p})$ is the only one D_{12} -extension. We get an elliptic curve E by putting $g_2 = p^2 \alpha$, $g_3 = p\beta$ and $d \not\equiv 0 \mod p$ satisfying $K = \mathbf{Q}_p(E_3)$. We remark that a D_{12} -extension is the compositum of an \mathfrak{S}_3 -extension and a quadratic extension. Hence we simultaneously deal the case of p = 2, 3 in (4-1).

$$(4-1) \quad G = \left\{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbf{F}_3) \right\} \quad \text{or}$$

 $\left\{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \in GL_2(\mathbf{F}_3) \right\}.$ Both of them are isomorphic to \mathfrak{S}_3 . It must be $p \not\equiv 1 \mod 3$. In $p \neq 2, 3$, $K = \mathbf{Q}_p(\zeta_3, \sqrt[3]{p})$ is the only one \mathfrak{S}_3 -extension. We get an elliptic curve E satisfying $K = \mathbf{Q}_p(E_3)$ by putting $g_2 = p^3 \alpha$, $g_3 = p^2 \beta$ and $d \not\equiv 0 \mod p$, where $-\beta \mod p$ is a quadratic residue. If $d \mod p$ is a quadratic residue. If $d \mod p$ is a quadratic residue, the Galois group of $\mathbf{Q}_p(E_3)/\mathbf{Q}_p$ is $\left\{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \right\}.$ Otherwise it is $\left\{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \right\}.$

In p = 3, there exist four \mathfrak{S}_3 -extensions K containing ζ_3 . They are $K = \mathbf{Q}_3(\zeta_3, \sqrt[3]{2})$, $\mathbf{Q}_3(\zeta_3, \sqrt[3]{3})$, $\mathbf{Q}_3(\zeta_3, \sqrt[3]{6})$ and $\mathbf{Q}_3(\zeta_3, \sqrt[3]{12})$. Each \mathfrak{S}_3 -extension over \mathbf{Q}_3 is extended to only one D_{12} -extension. By putting $g_2 = 3^3 \alpha$ and $g_3 \equiv 2 \mod 3^2$, we get a $\left\{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \right\}$ -extension (resp. $\left\{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \right\}$ -extension, D_{12} -extension), if $d \equiv 1 \mod 3$ (resp. $d \equiv -1 \mod 3$, $d \equiv 3 \mod 3^2$). These extensions contain $\mathbf{Q}_3(\zeta_3, \sqrt[3]{2})$. By putting $g_2 = 3^4 \alpha$ and $g_3 = 3\beta$,

[Vol. 78(A),

we get a $\left\{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \right\}$ -extension (resp. $\left\{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \right\}$ extension, D_{12} -extension), if $d \equiv 0 \mod 3$, $d \not\equiv 0 \mod 3^2$ and $-3\beta/d \equiv 1 \mod 3$ (resp. $d \equiv 0 \mod 3$, $d \not\equiv 0 \mod 3^2$ and $-3\beta/d \equiv -1 \mod 3$, $d \equiv -\beta \mod 3$). We see that these extensions contain $\mathbf{Q}_3(\zeta_3, \sqrt[3]{3})$ (resp. $\mathbf{Q}_3(\zeta_3, \sqrt[3]{6})$, $\mathbf{Q}_3(\zeta_3, \sqrt[3]{12})$) if $\beta \equiv 1 \mod 3^2$ (resp. $\beta \equiv 2 \mod 3^2$, $\beta \equiv 4 \mod 3^2$).

In p = 2, $\mathbf{Q}_2(\zeta_3, \sqrt[3]{2})$ is the only one \mathfrak{S}_3 -extension. Then all D_{12} -extensions are $\mathbf{Q}_2(\zeta_3, \sqrt[3]{2}, \sqrt{-1})$, $\mathbf{Q}_2(\zeta_3, \sqrt[3]{2}, \sqrt{2})$ and $\mathbf{Q}_2(\zeta_3, \sqrt[3]{2}, \sqrt{-2})$. We put $g_2 = 2^4 \alpha$ and $g_3 = 2\beta$. We see that $\mathbf{Q}_2(E_3)$ is a D_{12} -extension $\mathbf{Q}_2(\zeta_3, \sqrt[3]{2}, \sqrt{-1})$ (resp. a $\left\{ \begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix} \right\}$ -extension, $\left\{ \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \right\}$ -extension) for $d \equiv 2\beta \mod 2^4$ (resp. $d \equiv -2\beta \mod 2^4$, $d \equiv 6\beta \mod 2^4$). We see $\mathbf{Q}_2(E_3) = \mathbf{Q}_2(\zeta_3, \sqrt[3]{2}, \sqrt{2})$ (resp. $\mathbf{Q}_2(\zeta_3, \sqrt[3]{2}, \sqrt{-2})$) for $d \equiv -\beta \mod 2^3$ (resp. $d \equiv \beta \mod 2^3$). (4-2) $G = \left\langle \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix} \right\rangle$. It is isomorphic to

 C_6 .

(

5)
$$G = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$$
. It is isomorphic to C_3 .

These two cases occur in $p \equiv 1 \mod 3$. There are four C_3 -extensions. They are $\mathbf{Q}_p(\sqrt[3]{\delta}), \, \mathbf{Q}_p(\sqrt[3]{p}),$ $\mathbf{Q}_p(\sqrt[3]{\delta p})$ and $\mathbf{Q}_p(\sqrt[3]{\delta^2 p})$, where δ is a *p*-adic unit such that $\delta \mod p$ is not a cubic residue. Each C_6 extension is the compositum of a C_3 -extension and a quadratic extension. There are three quadratic extensions, $\mathbf{Q}_p(\sqrt{\gamma})$, $\mathbf{Q}_p(\sqrt{p})$ and $\mathbf{Q}_p(\sqrt{\gamma p})$, where γ is a *p*-adic unit such that $\gamma \mod p$ is not a quadratic residue. We put $g_2 = p\alpha$ and $g_3 = \beta$, where $\beta \mod p$ is not a cubic residue. We see that $\mathbf{Q}_p(\sqrt[3]{\delta})$ coincides with the field generated by x-coordinates of E_3 . We see that $\mathbf{Q}_p(E_3)$ is a C_3 -extension $\mathbf{Q}_p(\sqrt[3]{\delta})$, if $-\beta/d \mod p$ is a quadratic residue. We also see that $\mathbf{Q}_p(E_3)$ is a C_6 -extension containing $\mathbf{Q}_p(\sqrt{\gamma})$ (resp. $\mathbf{Q}_p(\sqrt{p}), \mathbf{Q}_p(\sqrt{\gamma p})), \text{ if } -\beta/d \mod p \text{ is not a quadratic}$ residue (resp. $-\beta/d \equiv p \mod p^2$, $-\beta/d \equiv \gamma p \mod p^2$ p^2). We put $g_2 = p^3 \alpha$ and $g_3 = p^2 \beta$. We see that the extension generated by x-coordinates of E_3 is $\mathbf{Q}_p(\sqrt[3]{p})$ (resp. $\mathbf{Q}_p(\sqrt[3]{\delta p}), \mathbf{Q}_p(\sqrt[3]{\delta^2 p}))$, for $\beta \equiv 1 \mod 1$ p (resp. $\beta \equiv \delta \mod p$, $\beta \equiv \delta^2 \mod p$). If $-\beta/d \mod p$ is a quadratic residue, $\mathbf{Q}_p(E_3)$ is a C_3 -extension. If $-\beta/d \mod p$ is not a quadratic residue, $\mathbf{Q}_p(E_3)$ is a C₆-extension containing $\mathbf{Q}_p(\sqrt{\gamma})$. If $-d/\beta \equiv$ $p \mod p^2$ (resp. $-d/\beta \equiv p\gamma \mod p^2$), $\mathbf{Q}_p(E_3)$ is a C_6 -extension containing $\mathbf{Q}_p(\sqrt{p})$ (resp. $\mathbf{Q}_p(\sqrt{\gamma p})$).

(6)
$$G = \left\langle a = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, b = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle$$
 with

 $a^8 = b^2 = 1, b^{-1}ab = a^3$. It is isomorphic to the semi-dihedral group SD_{16} of order 16. We see that this case occurs in only p = 2 by considering a ramification. Let K be an SD_{16} -extension. Let M be the $\langle a^4 \rangle$ -fixed subfield of K/\mathbf{Q}_p . We see that M is a D_8 -extension over \mathbf{Q}_2 . Naito [6] determined all such extensions. By the action of the Galois group on ζ_3, K must be a cyclic extension of degree 8 over a quadratic field other than $\mathbf{Q}_2(\zeta_3)$. We see that M is a cyclic extension over k. We see $k = \mathbf{Q}_2(\sqrt{-1})$ or $\mathbf{Q}_2(\sqrt{-5})$ by Naito [6].

By local class field theory and computation of $k^{\times}/(k^{\times})^8$, where $k = \mathbf{Q}_2(\sqrt{-1})$ or $\mathbf{Q}_2(\sqrt{-5})$, we can determine all D_8 -extensions M which have quadratic extensions K which are cyclic of degree 8 over $\mathbf{Q}_2(\sqrt{-1})$ (resp. $\mathbf{Q}_2(\sqrt{-5})$) such that $\operatorname{Gal}(K/\mathbf{Q}_2) \cong$ SD_{16} . These are $M = \mathbf{Q}_2(\sqrt{3+2\sqrt{-5}},\sqrt{5})$, $\mathbf{Q}_2(\sqrt{4+\sqrt{-5}},\sqrt{5})$ (resp. $\mathbf{Q}_2(\sqrt{3+2\sqrt{-1}},\sqrt{5})$, $\mathbf{Q}_2(\sqrt{2+\sqrt{-1}},\sqrt{5})$).

The compositum of two SD_{16} -extensions whose intersection is a D_8 -extension is an $SD_{16} \times C_2$ extension. If there exists an SD_{16} -extension containing M, we find another SD_{16} -extension in the compositum of it and a quadratic extension over \mathbf{Q}_2 .

If $K = \mathbf{Q}_2(E_3)$ for an elliptic curve E, we see that M is the field generated by all the *x*-coordinates of E_3 . We put $g_2 = 2^a \alpha$ and $g_3 = 2^b \beta$.

In the first place, we consider the case of 3a < 2b. We get SD_{16} -extensions K which are cyclic over $\mathbf{Q}_2(\sqrt{-1})$ in the case of $2b - 3a \geq 3$. We get $M = \mathbf{Q}_2(\sqrt{3+2\sqrt{-5}},\sqrt{5})$ (resp. M = $\mathbf{Q}_2\left(\sqrt{4+\sqrt{-5}},\sqrt{5}\right)$ by putting a = 2, b = 5and $\alpha \equiv 1 \mod 2^3$ (resp. a = 1, b = 4 and $\alpha \equiv$ $\pm 1 \mod 2^3$). We get two SD_{16} -extensions by putting $d\equiv \pm 1 \bmod 2^2$ or $d\equiv 2 \bmod 2^2$ in each case. We get all SD_{16} -extensions which are cyclic over $\mathbf{Q}_2(\sqrt{-1})$. We get SD_{16} -extensions K which are cyclic over $\mathbf{Q}_2(\sqrt{-5})$ in the case of 2b - 3a = 2. We get M = $\mathbf{Q}_2\left(\sqrt{3}+2\sqrt{-1},\sqrt{5}\right)$ for any 2-adic integers α and β . We get two SD_{16} -extensions by putting $d \equiv$ $\pm 1 \mod 2^2$ or $d \equiv 2 \mod 2^2$, respectively. We see $[\mathbf{Q}_2(E_3):\mathbf{Q}_2] \leq 8$ in the case of 2b-3a=1, where we denote by $[\mathbf{Q}_2(E_3):\mathbf{Q}_2]$ the degree of $\mathbf{Q}_2(E_3)/\mathbf{Q}_2$.

In the second place, we consider the case of 3a > 2b. We see that b is divisible by 3, if and only if

No. 9]

 $\Delta^{1/3} \in \mathbf{Q}_2. \text{ We see } [\mathbf{Q}_2(E_3) : \mathbf{Q}_2] \leq 8 \text{ in the case of } a - (2/3)b \geq 2. \text{ In the case of } a - (2/3)b = 1, \text{ we get } SD_{16}\text{-extensions which are cyclic over } \mathbf{Q}_2(\sqrt{-5}) \text{ (resp. } \mathbf{Q}_2(\sqrt{-1})) \text{ for } \alpha \equiv -1 \mod 2^2 \text{ (resp. } \alpha \equiv 1 \mod 2^2). \text{ We get } M = \mathbf{Q}_2\left(\sqrt{3} + 2\sqrt{-1}, \sqrt{5}\right) \text{ for } \alpha \equiv -1 \mod 2^2.$

In the last place, we consider the case of 3a = 2b. We see that $\Delta^{1/3} \in \mathbf{Q}_2$ if and only if $\alpha^3 - 27\beta^2 = 2^{3c}\gamma$ for a positive integer c and a 2-adic unit γ . By calculating f(x), we see that $\sqrt{2 + \sqrt{-1}}$ never appear in the field generating by x-coordinates of E_3 .

Therefore these two SD_{16} -extensions which contain $\mathbf{Q}_2\left(\sqrt{2+\sqrt{-1}},\sqrt{5}\right)$ never coincide with $\mathbf{Q}_2(E_3)$ for any elliptic curves E.

(7-1) $G = \left\langle \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$. It is isomorphic to C_8 . This case occurs in $p \equiv 2 \mod 3$. The compositum of two C_8 -extensions whose intersection is a C_4 -extension is a $C_8 \times C_2$ -extension. Therefore we find another C_8 -extension containing the same C_4 -extension by composing a quadratic extension over \mathbf{Q}_p .

For $p \equiv 1 \mod 4$, there exist four C_8 -extensions. We construct two C_4 -extensions by adding xcoordinates of E_3 . By putting $g_2 = p\alpha$ and $g_3 = p^3\beta$, the field generated by x-coordinates of E_3 is a C_4 -extension. We get two C_8 -extension by taking das a p-adic unit and a prime element, respectively. We also get another C_4 -extension by putting $g_2 = \alpha$ and $g_3 = p^2\beta$. We see that it is unramified over \mathbf{Q}_p . We get an unramified C_8 -extension by taking a padic unit d such that $d \mod p$ is a quadratic residue. We also get another C_8 -extension by taking d as a prime element.

For $p \equiv 3 \mod 4$, there exist two C_8 -extensions. We can prove that there exist $\alpha, u \in \mathbf{F}_p^{\times}$ ($\alpha \neq u$) such that $\alpha^3 - u^3$ is a quadratic residue but not $\alpha - u$. By putting $g_2 \equiv \alpha \mod p$ and $g_3 \equiv \beta \mod p$, we get two C_8 -extensions, where β satisfies $27\beta^2 \equiv \alpha^3 - u^3 \mod p$. We remark that it is unramified by taking d as $d \mod p$ is a quadratic residue. We also get another C_8 -extension by taking d as a prime element.

For p = 2, there are eight C_8 -extensions. By putting $g_2 = 2\alpha$ ($\alpha \equiv 1 \mod 2^3$) and $g_3 = 2^2\beta$, we get a C_4 -extension by adding *x*-coordinates of E_3 . We also get the unramified C_4 -extension by putting $g_2 = 2^2\alpha$ ($\alpha \equiv 1 \mod 2^2$) and $g_3 = \beta$ ($\beta \equiv \pm 1 \mod 2^3$). We get four C_8 -extensions $\mathbf{Q}_2(E_3)$ by taking $d \equiv 1 \mod 2^3$, $d \equiv -1 \mod 2^3$, $d \equiv 2 \mod 2^4$ and $d \equiv -2 \mod 2^4$, respectively in each case.

(7-2) $G = \left\langle a = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}, b = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle$ with $a^4 = b^2 = 1$, $b^{-1}ab = a^{-1}$. It is isomorphic to the dihedral group D_8 of degree 8. This case occurs in $p \equiv 2 \mod 3$. Moreover we see $p \equiv 3 \mod 4$ or p = 2 by Naito [6]. In $p \neq 2$, by putting $g_2 = p\alpha$, $g_3 = p^3\beta$ and $d \neq 0 \mod p$, we see that $\mathbf{Q}_p(E_3)$ is a D_8 -extension. We know by Naito [6] that there exists only one D_8 -extension for $p \equiv 3 \mod 4$. For p = 2, there exist eighteen D_8 -extensions. By putting $g_2 = 2\alpha$ ($\alpha \equiv -1 \mod 2^3$) and $g_3 = 2^2\beta$, we get two D_8 -extension $\mathbf{Q}_2(E_3)$ for $d \equiv 1 \mod 2^3$, $d \equiv -1 \mod 2^3$, respectively. They are $\mathbf{Q}_2\left(\zeta_3, \sqrt{\sqrt{-2}(1+3\sqrt{-2})}\right)$. Other D_8 -extensions do not satisfy the condition $\zeta_3^{\sigma} = \zeta_3^{\det \sigma}$.

(7-3) $G = SD_{16} \cap SL_2(\mathbf{F}_3)$. It is isomorphic to the quaternion group Q_8 of order 8. It occurs in $p \equiv 1 \mod 3$. Fujisaki [2] proved that p satisfies $p \equiv$ $3 \mod 4$ or p = 2 and that there exists only one Q_8 extension for odd prime p. He explicitly constructed them. By putting $g_2 = p\alpha$ and $g_3 = p^3\beta$, we see that $\mathbf{Q}_p(E_3)$ is the Q_8 -extension.

(8-1) $G = \left\langle \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix} \right\rangle$. It is isomorphic to C_4 . It occurs in $p \equiv 1 \mod 3$. For $p \equiv 3 \mod 4$, there exist two C_4 -extensions. By putting $g_2 = \alpha$ and $g_3 = p^2 \beta$ such that $(1 - \zeta_3/3) \alpha \mod p$ is a quadratic residue, we get an unramified C_4 -extension $\mathbf{Q}_p(E_3)$ for a p-adic unit d such that $d \mod p$ is a quadratic residue. We get another C_4 -extension for a prime element d. For $p \equiv 1 \mod 4$, there exist six C_4 extensions. By putting $g_2 = \alpha$ and $g_3 = p^2 \beta$, where $\alpha \mod p$ is not a quadratic residue, we get an unramified C_4 -extension $\mathbf{Q}_p(E_3)$ for a *p*-adic unit *d*, which is a quadratic residue of modulo p. We get another C_4 -extension for a prime element d. By putting $g_2 =$ $p\alpha$ and $g_3 = p^3\beta$, we get a C_4 -extension $\mathbf{Q}_p(E_3)$. We get four such extensions as we take $\alpha \mod p$ and $d \mod p$ to be a quadratic residue or not respectively.

(8-2)
$$G = \left\langle \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle$$
. It is isomorphic to $C_2 \times C_2$.

(9-1)
$$G = \left\langle \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle$$
. It is isomorphic to

 C_2

No. 9]

These two cases occur in $p \equiv 2 \mod 3$ or p = 3. For an odd prime $p \equiv 2 \mod 3$, we put $g_2 = p^2 \alpha$ and $g_3 \equiv t^3 \mod p$ for a *p*-adic unit *t*. We see that $\mathbf{Q}_p(E_3)$ is a unique $C_2 \times C_2$ -extension for a prime element *d*. We see $\mathbf{Q}_p(E_3) = \mathbf{Q}_p(\zeta_3)$ for a *p*-adic unit *d*. For p = 2, we put $g_2 = 2^6 \alpha$ and $g_3 = 2^3 \beta$ $(\beta \equiv 1 \mod 2^4)$. We see $\mathbf{Q}_2(E_3) = \mathbf{Q}_2(\zeta_3, \sqrt{6})$ (resp. $\mathbf{Q}_2(\zeta_3, \sqrt{2}), \mathbf{Q}_2(\zeta_3, \sqrt{-1}), \mathbf{Q}_2(\zeta_3))$ for $d \equiv 1 \mod 2^3$ (resp. $d \equiv 3 \mod 2^3, d \equiv 2 \mod 2^4, d \equiv 6 \mod 2^4$). For p = 3, we put $g_2 = 3^4 \alpha$ and $g_3 \equiv t^3 \mod 3^{10}$ for a 3-adic unit *t*. We see $\mathbf{Q}_3(E_3) = \mathbf{Q}_3(\zeta_3, \sqrt{3})$ (resp. $\mathbf{Q}_3(\zeta_3)$) for a 3-adic unit *d* such that $t/d \equiv 1 \mod 3$ (resp. $t/d \equiv -1 \mod 3$).

(9-2) $G = \left\langle \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle$. It is isomorphic to

 C_2 .

(1

0)
$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
. These two cases occur

in $p \equiv 1 \mod 3$. We put $g_2 = p^2 \alpha$ and $g_3 \equiv t^3 \mod p$ for a *p*-adic unit *t*. We see $\mathbf{Q}_p(E_3) = \mathbf{Q}_p(\sqrt{(\gamma/t)p})$ for $d \equiv \gamma p \mod p^2$. We see that $\mathbf{Q}_p(E_3)$ is an unramified quadratic extension for a *p*-adic unit *d* such that $-t^3/d \mod p$ is not a quadratic residue. We see $\mathbf{Q}_p(E_3) = \mathbf{Q}_p$, if $-t^3/d \mod p$ is a quadratic residue.

3. Application. We call $\{G_p, I_p, V_p\}$ a ramification triple of $GL_2(\mathbf{F}_3)$, if it satisfies the following conditions:

- 1. G_p is a subgroup of $GL_2(\mathbf{F}_3)$, such that $G_p \subset SL_2(\mathbf{F}_3)$ (resp. $G_p \not\subset SL_2(\mathbf{F}_3)$) for $p \equiv 1 \mod 3$ (resp. $p \not\equiv 1 \mod 3$),
- 2. I_p is a normal subgroup such that G_p/I_p is a cyclic group,
- 3. V_p is a normal subgroup such that I_p/V_p is a cyclic group and the order $\sharp |I_p/V_p|$ divides $p^{\sharp |G_p/I_p|} - 1$,
- 4. V_p is a *p*-group.

Let G_p be a Galois group of a Galois extension $\mathbf{Q}_p(E_3)/\mathbf{Q}_p$. Let I_p (resp. V_p) be an inertia (resp. wild ramification) group of G_p . We see that $\{G_p, I_p, V_p\}$ is a ramification triple of $GL_2(\mathbf{F}_3)$. We get:

Theorem. Let S be a finite set of primes. For $p \in S$, let $\{G_p, I_p, V_p\}$ be a ramification triple of $GL_2(\mathbf{F}_3)$. Moreover we assume that $\sharp |G_p/I_p|$ is even for $p \not\equiv 1 \mod 3$. Then there exist infinitely many Galois extensions K/\mathbf{Q} satisfying the following conditions:

- 1. Galois group of K/\mathbf{Q} is isomorphic to $GL_2(\mathbf{F}_3)$,
- 2. $\zeta_3^{\sigma} = \zeta_3^{\det \sigma} \text{ for } \sigma \in \operatorname{Gal}(K/\mathbf{Q}),$

3. For $p \in S$, the decomposition (resp. inertia, wild ramification) group is conjugate to G_p (resp. I_p, V_p).

Proof. We put $K = \mathbf{Q}(E_3)$ for an elliptic curve E defined over **Q**. We see that the Galois group G of K/\mathbf{Q} is a subgroup of $GL_2(\mathbf{F}_3)$ and $\zeta_3^{\sigma} = \zeta_3^{\det \sigma}$ for $\sigma \in \operatorname{Gal}(K/\mathbf{Q})$. If $\{G_p, I_p, V_p\}$ is a ramification triple of $GL_2(\mathbf{F}_3)$ satisfying the assumption in the theorem, G_p occurs in one of the case (1), (2), ..., or (10). We remark that every SD_{16} -extention in (7.2) has the same ramification triple whether it is generated by 3-division points of an elliptic curve or not. We take an elliptic curve E satisfying congruence conditions of modulo a suitable power of $p \in S$ as the previous section, for each prime $p \in S$. We see that K satisfies the third condition. Moreover we put $G_{q_1} = C_8$, $G_{q_2} = B$, for primes $q_1, q_2 \notin S$. Consequently G contains a subgroup which is isomorphic to C_8 . It also contains a subgroup isomorphic to B. Hence we get $G = GL_2(\mathbf{F}_3)$. Hence we get one extension K in the theorem.

Next we prove that there exist infinitely many such fields. If there exist only finite such extensions, we put them K_1, \ldots, K_t . Let p_i be a prime which completely decomposes in K_i/\mathbf{Q} . We take S containing p_1, \ldots, p_t . We put $G_{p_i} \neq \{1\}$. We take an elliptic curve E as above discussion. We see that $K = \mathbf{Q}(E_3)$ is not K_1, \ldots, K_t . Thus we can construct infinitely many K.

Acknowledgements. The author expresses his appreciation of the hospitality of the Faculty of Science of Osaka University during studying this theme in 1995. The summary of this note was published in [8] in Japanese. He also expresses his heartfelt thanks to the referee.

References

- Bayer, P., and Rio, A.: Dyadic exercises for octahedral extensions. J. Reine Angew. Math., 517, 1–17 (1999).
- Fujisaki, G.: A remark on quaternion extensions of the rational *p*-adic field. Proc. Japan Acad., 66A, 257–259 (1990).
- [3] Koike, M.: Higher reciprocity law, modular forms of weight 1 and elliptic curves. Nagoya Math. J., 98, 109–115 (1985).
- [4] Lario, J.-C., and Rio, A.: An octahedral-elliptic type equality in Br₂(k). C. R. Acad. Sci. Paris Sér. I Math., **321**, 39–44 (1995).

- [5] Lario, J.-C., and Rio, A.: Elliptic modularity for octahedral Galois representations. Math. Res. Lett., 3, 329–342 (1996).
- [6] Naito, H.: Dihedral extensions of degree 8 over the rational *p*-adic fields. Proc. Japan Acad., **71A**, 17–18 (1995).
- [7] Naito, H.: A congruence between the coefficients of the *L*-series which are related to an elliptic curve and the algebraic number field generated by its 3-division points. Mem. Fac. Edu. Kagawa Univ., 37, 43–45 (1987).
- [8] Naito, H.: Local fields generated by 3-division points of elliptic curves. RIMS Kokyuroku, 971, 153–159 (1996). (in Japanese).
- [9] Shimura, G.: A reciprocity law in non-solvable extensions. J. Reine Angew. Math., 221, 209–220 (1966).
- [10] Weil, A.: Exercises dyadiques. Invent. Math., 27, 1–22 (1974).