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The purpose of this paper is to show how appropriate models of spatial
systems can be derived by maximizing a function describing the entropy or
information contained in such systems subject to relevant constraints. This
approach is specifically related to the concept of interaction in the system of
interregional commodity flows. And it can be shown that the models which
can be derived using entropy-maximizing methods are equivalent to many of
the models already in use which have been derived empirically. Accordingly,
in the process of this review, theory-building and verification are the main
concerns.

This paper begins with the brief discussion on the input-output model-
This section shows how to locate the input-output model within the frame-
work of the general equilibrium theory, and also refers to the still remained
areas about it. In Section 3, the Leontief-Strout multiregional model is exam-

ined as one of the extensive expansions of the input-output model. Section 4
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digs into the entropy-maximizing methods from the viewpoint of the model-
building. It also evaluates the entropy-maixmizing model for the original
Leontief-Strout version. The paper closes with some concluding remarks and a
forward look.

II

The input-output model is known as one of the central subjects in the
field of modern economics. For the purpose of simplicity, let us consider the
single-region, static, open input-output model. The input-output analysis
consists of the following three tables :

1) the transaction matrix table ;

2) the input coefficient matrix table ;

3) - the inverse matrix table.
Among them, the first table is the most important. It has a property of double-
entry system where every cell stands for an input as well as an output. Owing
to this property, we come to obtain a clear idea of the structural characteristics
of one industry compared with the others.

However, in order to make use of the transaction matrix table not only
as the descriptive device but also as the analytical tool, we usually assume
the following technical assumptions :

1) constant returns to scale;

2) convexity of the isoquant surfaces ;

3) fixed coefficients of production.
If we admit all of these assumptions, the latter two tables (i. e., the input
coefficient matrix table and the inverse matrix table) can be readily calculated
to serve as efficient tools in a variety of economic problems. Therefore, when-
ever we are interested in the application of the input-output model, these as-
sumptions should be theoretically as well as statistically tested.?’

1) For the detailed discussion, see Thara (2).
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As previously stated, the development of the input-output model stems
mainly from economics. Thus, for the purpose of better understanding the
effective range and deficiencies of the input-output model, let us locate single-
region, static, open input-output model within the general equilibrium frame-
work. It is schematically pictured in Figure 1.

Figure 1

Diagrammatic Representation of the Input-Output Model®
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Consider the dual problem of the input-output model. Let w be an
equilibrium price of labor, and let V be the column vector of the average value-
added, which is defined as (wage payment per unit of each output) + (average
profit per unit of each output). As a result of competition, the equality be-
tween price and cost holds with respect to each commodity. Hence, if we put
V=wA], which in turn determines the price vector P as follows :

P={U-AN" wA,={(I-A)}wA,.

From this, we conclude with the following statements :

2) In this diagrammatic representation, the writer draws upon Morishima (7), and
Dorfman, Samuelson, and Solow (1). In this Figure, note that the input coefficient
matrix A is measured in physical units. Furthermore, if we replace “Employment”
by the primary factors of production, and “ Supply of Labor” and “Wage Rate” by
the supplies and prices of the primary factors of production, respectively, we can
view this chart in a more general way.
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1) The input-output model takes a role of one part of the general
equilibrium theory. Hence, it may be called a partial theory.
It should be noted that the general equilibrium theory has a
sophisticated mathematical structure, while the input-output
model is rather operational, macrostate description.

2) From the viewpoint of the general equilibrium theory, the input-
output model can be viewed to have a peculiar characteristic,
and hence it is not always effective. Specifically, any price
change induces the change in input coefficients.® However, in
the input-output model, the price-determining mechanism is
independent of the output-determining. This is one of the
theoretical characteristics built in the input-output model. '

Consider the separability conditions, If we assume the labor market of
the Keynesian type® for example, then we can assert that the input coeffi-
cients remain unchanged in a case where the involuntary unemployments exist.
As the result, the input-output relation tends to be stable. The Keynesian
model can also be built in the input-output framework as follows :

From this we conclude that :

1) The Keynesian model deals with the aggregate values. Hence,
it may be called the aggregate theory.

2) The input-output model and the Keynesian model are supple-

3) In a general case, any change in w causes the changes in P, which in tumn cause
the change in A and 4,. In other words, the relative price changes are not allowed
to take place in the conventional input-output model.

4) The labor market of the Keynesian type can be written as follows; y=y (n)...
production function, w=3’ (n)...real wage rate equals the marginal productivity
of labor, W=W,+W (n) where W=Pw...labor supply function. The Keynesian
model has a labor supply function, which relates the labor offered to the money
wage rate (instead of the real wage rate), and it introduces an in flexible rate W,
for employment below a certain level 7z In a case of this inflexible money wage
rate Wy, the excess supply of labor does not induce the decreasing change in wage
rate, hence the relative price changes do not take place.
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Figure 2
The Relationships between Keynesian and Input-Output Models
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mentary one another, but not always so when viewed from the

theoretical base and data check.

3) The results are only identical under the following special condi-
tions ;

1) Any relative change in National Income Produced (which
is disaggregated at sector base) does not cause the change
in the relative share of the National Income Recieved.

ii) There are no significant differences in the propensity to
consume for each class.

When we turn to the state of the interregional as well as intraregional
economy, the situations seem to be more complicated. For this reason, a con-
sistent and systematic way of approach is highly required to tackle the compli-
cated situations. Although there are a few methods to grasp the economic
structure, here we employ the input-output model among other methods, and
set it at the base for our study below.

As for the orientation of how to develop the input-output model, we can
suggest the following two big categories :

1) Intensive expansion oriented;
To close the model with respect to the exogenous sectors (e.

g., households) ; to convert the static model into the operation-
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al dynamic one contained the capital coefficients ; the impact
analysis with an aid of the varied intersectoral multipliers, etc.
2) Extensive expansion oriented ;
To link the input-output model to the other kind of models,
such as the econometric models, the linear programming mod-
el, the industrial complex ahalysis, the gravity model, etc.
The latter is the line which we now pursue.

I

As regional economic research has expanded in recent years, input-
output has been used as the basic research tool for many of the regional stud-
ies. The economic analysis usually has been restricted to an isolated region,
although some multiregional input-output studies have been completed. The
latter generally are more difficult to implement, because the data require-
ments are greater. When we are concerned with interregional trade, informa-
tion on the flows of goods and services among regions also must be assembled.

Spatially differentiated general equilibrium models have been used to
estimate the interregional trade flows for aggregate commodity groups. Moses
(1960) tested a linear programming model explaining shipments of all goods
within the United States, but the empirical results were not very reasonable.
The linear programming model generates implausible results, especially in
cases where non-homogeneous products must be combined, since for compo-
site products much cross-hauling (simultaneous flows of the same commodity
between two regions) generally is observed.

’ More recently, a gravity trade model has been advocated by Leontief
Lénd Strout (1963) for use within a spatial, general equilibrium model, because
it requires only a minimum of basic, factual information, and also permits the
occurrence of cross-hauls among regions.

The gravity model was first discussed for use with regional input-



ON THE SYSTEM OF INTERREGIONAL COMMODITY FLOWS — 81 —

output models by Isard (1960) as a possible means of estimating commodity
shipments. In 1963, Leontief and Strout presented a form of the gravity trade
model which can be readily implemented for a multiregional input-output
analysis.”
The Leontief-Strout Gravity Trade Model

The Leontief-Strout gravity trade model is specified by the following
basic sets of equations :

(1) 2= % awy 2l + v
(2) 2= 528

J
(3) 2 = T

xp xh
(4) af) = ——q3;

m

where m,n=1,2, ...,p:67=12, ..., ¢
g =0.
The notation used in the equations includes :
zix  the amount of commodity m produced in region ¢ which is shipped
to region 7j,
2% the total amount of commodity # demanded by all final and intez-
mediate consumers in region iz,

x?  the total amount of commodity 7 produced in region i,

a™  the total amount of commodity m produced (consumed) in all re-
gions,

5) Since this model combines the interindustry model and a gravity transportaion
model, regional outputs and interregional shipments of commodities are determined
simultaneously. However, a consistent set of regional input-output tables with
interregional flows specified should be available. Poleenske (1970) describes the
implementation of the complete model of this type in a multiregional input-output
analysis of the Japanese economy.
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vy 7 the total amount of commodity 7 demanded by final users in re-

gion 7,

a,t, theamount of input of commodity m required by industry » located
in region 7 to produce one unit of output of commodity 7,

gi;  a trade parameter which is a function of the cost of transferring
commuodity 7 from region 7 to region 7,

? the number of commodities,

q  the number of regions.

The first equation shows that a balance exists between the total amount
of commodity 7 demanded by the intermediate and final users within a region
and the total amount supplied to that region. The second and third equations
define the total production in region 7 and the total consumption in region j,
respectively. The fourth equation states that the shipment of commodity m
from region 7 to region j is proportional to the total production and total con-
sumption of commodity # in the two regions respectively, and inversely pro-
portional to the total amount of commodity 72 produced in all regions.®

The above equation system permits simultaneous shipments of the same
commodity to occur in both directions between two regions. In an actual
economy, cross shipments of a product are often observed because data for
commodity shipments are not assembled for strictly homogeneous products
and are available on a regional, rather than a point-to point, and on an annual,
rather than a monthly or a weekly, basis.

The multiregional system is completed by substituting the interregional

trade eq. (4) first into eq. (2) and then into eq. (3) :

6) Since the nonlinear interregional eq. (4) is homogeneous of degree one, propor-
tional changes in regional outputs and supplies cause interregional shipments to
vary by the same proportion.
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7. z (=7 q3)
(5) af =% ay= —""—"—"—" + x,
7

xn

=% 3 (= g7
(6) = Safy = ————— + 1},

xn

.

where ¢f, ¢ = 0.

Eq. (6) can be rewritten with ¢ substituted for j:
x5 (=72 @)
(6) xi = "*“*“;;:____“'+‘IZ,

where ¢j; = 0.

Eq. (5) shows that the production of commodity 7 in region ¢ is equal to the
total amount of commodity 7 produced and soled in the region plus the pro-
duction sold to other regions. In a corresponding way, eq. (6) or eq. (6)’
indicates that total consumption of commodity m in region 7 is equal to the
total amount of commodity 7 produced and used in the region plus the a-
mount imported for consumption from other regions.

Assuming the final demands (y7), the technical input coefficients
(ai), and the trade parameters (gf;) are known, the model is used to deter-
mine the total production of each commodity in region i (z}), the total con-
sumption in region j (z7%), and the amount of the commodity produced and

used in region 7 (z73).

Figure 3
Relations between Equations and Unknowns
a) Equations b) Unknowns
(1) ... pg z u~-pq1
(8) ... pq 3pq 2 .. pq 13pg
(6) ... PqJ xig e qu

In order to implement the model, the basic system of equations is reworked
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into a simpler, more operational form. The first step is to reduce the num-
ber of equations and unknowns. The second step involves linearizing the
structural interregional eqations.
Reduction of the number of variables

The reduction is accomplished by summing the two sets egs. (2) and
(8) above over all regions and subtracting one from the other. By this pro-
cedure, the pg variables x7; can be eliminated.

Eq. (7) shows egs. (2) and (3) summed over all regions :
(7 ;x;" = ;le xp = ‘72 =z,

wherem = 1,2,..., p.
Eqgs. () and (6)’ can be rewritten as :

(8) apal — 2 X (2 gn) = a2l — 25 B (% g ),

wherem = 1,2, ..,p: =12, ..., ¢ q:: = Q.
Since the intraregional flows, the x7}’s, have been eliminated, only 2pg varia-
bles remain to be determined by the 2pg equations. In fact, p of the equa-
tions are redundant in eq. (8) since any one of the ¢ equations found by sum-
ming over regions in eq. (8) can be obtained from the other ¢-1 equations.

Since from eq. (7) the total supply of commodity 7 must equal the
total demand for the commodity, additional p restrictions must be considered
part of the system : '
(9 inl” = I %y

wherem = 1,2, ..., p.

Eqgs. (1), (8), and (9) constitute a system of 2pq equations in 2pg unknowns.

Figure 4
Relations between Equations and Unknowns
a) Equations b) Unknowns
(8) .- pglbutpare |y, 2pq
: redundant) q z"; e Pg

(9) .o p
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Linearization of the Model
The next process is to linearize the pg structural interregional eq. (8).
The method used is to express all the endogenous and exogenousvariables as

deviations from their base-year values :

0) 2P =2 + An,
A 2% = 2% + A,
A2)  y =0+ AV,

wherem=1,2, ...,02i=1,2,...,q.

A barred variable represents the base-year value. All /s signify deviations
from the base-year magnitude. From egs. (5) and (6)’, we have eq. (8).
Then, to obtain a linear approximation of eq. (8), we substitute in it egs. (10)
and <11).

In the resulting expression all terms containing a product of two barred
letters will cancel out, because eq. (8) holds for the base year, and all the
products of two deviations of variables can be dropped because they represent
second-order terms. Thus the first-order approximation of eq. (8) takes the
form of the following set of linear relationships :

(13) ; (A 2Z M7 — ; (A =z NG =0,

wherem = 1,2, ...,p:i=12, ..., (g-1).

- The new constants M and N are introduced to simplify the form of these e-
quations :

{fcl" Q- 4d» Gf 72 4)
Mz = _ _ -
= 2t + 2 (xP 9w Gf » = 2)
{ 2 A - g Gf 7 35 )
N7 =14_ - -
% — i + X (x% 9f) Gfr = 2)

where ¢f; = 0.
In passing from eq. (8) to eq. (13), we have dropped the p equations with the
subscript s = g, because, as is demonstrated above, they can be considered
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to be redundant.
Finally, a complete linear system can be written as :
(1) 2" =X al,zr + 7,
wherem = 1,2, ...,p:¢ = 1,2, ...,q.
(9) Xz = %} xh (=20,
wherem = 1,2, ..., p.
13 z ANZEME) — S (AN =0,

wherem = 1,2, ...,p:¢ = 1,2,..., (g-1).

Figure 5
Relations between Equations and Unknowns
a) Equations b) Unknowns
(1) .- pg o
Zil e Pq
(9) .. p }szz " }qu
a3 ...p @D AR

The corresponding changes in all intraregional flows A 7}, and intex-
regional flows A z, can be determind by insexrting the previously computed
values of A z7* and A 7} into equations (4) and (5), or eq. (6)".

Iv

1. On the Concept of Entropy”
The measure of the uncertainty was given by Shannon as
(14) S (PlaPZ, oy P‘n) = _kl=21 Pl lnpz,
where £ > 0.
This is defined to be the entropy of the probability distribution p1, p2, .., Pa.

7) In this section we draw heavily upon Wilson (9), Appendix 1. However, since

his explanation has some troubles in using notations, we have somewhat modified
it.
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The proof that this is a unique, unambiguous measure of uncertainty can be
sketched as follows :

We want a quantity S (1, P2, ..., Pn) to represent the uncertainty
associated with a probability distribution p1, p2, ..., pn. Only three condi-
tions have to be satisfied :

1) Sis a continuous function of the p:.
2) If all p; are equal,
15 AG) = S(h 2 oo D)
is an increasing function of n.®
3) Suppose events are grouped in various ways, and let
wi = Pp1 + P2+ ... + D

(16) 'wz = Pl§+1 S + Pl
7«;))2 - P;n‘-{-l Tt ieeeeen + I;n
Then p1 | wy, P2 | wr, ov... are the conditional probabilities of the events

(21, X2, ey Ti)y (Thtdy vevnns Ty oones (Tmaly ooy Za).®
We require that the following composition law be satisfied :
A7) S (py, bz ovvs Pu) = S (w1, wa, ..., wh)
+ wi S (P wi, P2 | wi, o Pr | wi)
+ we S (Prar | we, <oy Pr |l we) - oo
+ wn S (Pmat | Why vuuy Pr | W)
Because of condition 1), we only need determine S for rational values of w;,

18) w; = —"—,
h
2 Ny
j=1

where the 7n; are integers.
The following chart may be helpful to understand this situation.

8) Each event corresponds to the sample point which has the equal probability.

9) Condition 3) is introduced to give the property of the probability to the function
S.
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Figure 6
Relations between Events and Composite Events
a) Name of Events
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¢) Name of Composite Events

X , X2 oy X; yioy Xn.
d) Probability of Composite Events

wy s we yous wj yoos Wh

13
Then, we can view this as follows : x; can occur n; times out of 33 n;
i=1
equal possibilities. That 1s, we can consider our events xi, x2, ..., Trn as
themselves composite events out of #1, 7z, ..., 7z equal alternatives. Thus,
condition 3) gives

19 S (wi, we, .., wr) + ;} WS (Pj1 | Wis «« ey Ping | wi)
= S (PLP2 ceeinraiiiianaaaene , Pn).

In particular, we can choose all n; equal to m,'® so eq. (19) reduces to
20) AG) + A(Gn) = A(mh).
It can then be shown that the only function which satisfies this and condition
2) is
1) A(m) = kl.(m),

where & > 0.
Substitute from eq. (21) into eq. (19), to obtain
22) S(wi, we, .., wr) = S(P1, P2, ooy Pn) — ; w;S(Pilwy, «or Pin | W)

=klnn—~kZ]w7lnn;’
7

It

— k(zj] Wi lnng — Inn)

10) This means that in eq. (18), w; =7 _m_ 1
ng
f=1
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= —k(Z wj lnn; — E} wj I n) since 3 wy = 1,
7 . J

—kZ wils (nj — n)
i

7ty
n

7
= —k 2 w; I wy using eq. (18).
7
Thus, in general, the entropy of a probability distribution can be defined as

W) S ps, s ) = =k 5 b1 b pr
This is a unique, unambiguous criterion for the amount of uncertainty repre-
sented by a discrete probability distribution.'®

It also agrees with our intuitive notions that a broad distribution repre-
sents more uncertainty than does a sharply peaked one. Let X be a random
variable which can take values X1, X», and X: with probabilities p1, p2, and

Ps, respectively.

Figure 7
Hypothetical Example
a) Name of Events: X , Xe s Xa.
b) Probabilities : P s P s

If we are confident that X will surely occur, then it is quite natural that we
would assign to 1 and 0 to the other probabilities, 2, and ps. In this case,
the entropy as a measure of the uncertainty can be evaluated as

23) SA,0,00) = -k 1.1 +01l,p2+01,p5) =0.
P20 Ps—>o

On the other hand, if we are not quite sure that any X; will most probably
occur, then we would assign the equal probability (%— in this case) to every
random variable (X;: ¢ = 1, 2, 3).

11) As for a continuous probability distribution, the entropy can be defined by
S(X) = — S_Wf (X) In (X)dX.
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The entropy can be evaluated as
@) S5 3 ) = kGl Gy g lp) =1
Tt is now evident how the entropy plays a role of criterion for the amount of
uncertainty, which agrees with our intuitive notions and meets the properties
included in the concept of the probability.
2. Derivation of the Gravity Model using Entropy-maximizing Methods
2.1. The Gravity Model
Any derivation of the gravity model-is based on analogies between spa-
tial interaction in geography and spatial interaction in classical physics. Let
X7 and Y7 be masses of commodity m related to the origin and destination of
a spatial interaction between regions 7 and j. The transport cost of a unit of
commodity m is defined to be ¢} and this can be considered to be a distance.
A strictly Newtonian interaction would then be an 7} defined by

Xy Yy
(25) aff = Kn————,
(iy)?
where K™ is a normalizing factor which ensures that
) £ D= DX =D Y} =X
% P 7
That is,

@7 Er = X

ZZ?Z]‘. (X7 Y7/ (.

The first development of this model is to argue that geographic spatial
interaction for commodity flows may well be governed by a general distance
function other than the inversesquare law.
The modified gravity model'® is then
12) The parameter “k” is so defined to make .S unity.

13) Note that we have allowed in our notation for the possibility of a different func-
tion for each commaodity group.



ON THE SYSTEM OF INTERREGIONAL COMMODITY FLOWS ~ 91 —

28) ai5 = Km XD YT f™ (e,

where f™ (cf}) is some decreasing function of (3,
K™ is now calculated from
Xm
25 XT YT ().

2.2. Classification of the Basic Cases

(29) Km =

Further development is possible, but, as a preliminary, we must inter-
pret our terms very carefully. Strictly, a model of interregional commodity
flows provides estimates of z7}, and hence, of z* z7}, and z".. However, 27,
and possibly x}* and z7}, may be estimated direc’tly from independent models,
and in our notation we have called such estimates X, X7, and Y7, respec-
tively.

There are four possible cases to be studied :

Case (1) there is an independent estimate of X™, but not of X" or Y7

Case (2) there is an independent estimate of X" (which determines
X™), but not of Y7.

Case (3) there is an independent estimate of Y7 (which determines
XY, but not of X7".

Case (4) thers are independent estimates of both X7* and Y7 (made in
such a way that they determine X™ and that ‘T_, X7 =X™and
; Y7 = Xm).

We can now carry out a further appraisal of the Newtonian form of the
gravity model presented in eq. (28). Note that in egs. (28) and (29), X}
should be replaced by x7', and Y7 by z7, in cases where they are not inde-
pendently estimated. Since an estimate of X* is assumed to exist in all cases,
an equation of the form of eq. (29) can always be used to estimate K™,

Thus egs. (28) and (29) represent the Newtonian gravity model for

case (4) and can easily be solved directly for z7%. For each of cases (1), (2),
(3), the modified versions of egs. (28) and (29) lead to quadratic equations
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in 2, which cannot easily be solved.

Consider case (4), which may be called the origin-destination-con-
strained model, because the following equations should be satisfied :
30 ; xi; = X,

@B % af =Y
i
Then, we can find a set of normalizing factors to replace the single factor K™

which will ensure that egs. (30) and (31) are always satisfied.
Define a set of factors A7 and B} and then modify eq. (28) to read

(32 a7y = A} BY X Y7 ™ ().
The factors A7 and B} can be calculated by substituting 27 from eq. (32) into
egs. (30) and (31), respectively.

This gives!®
@33 A7 = [i; By Y7 f™ ()

GH By = (D ATXY (e
and egs. (33) and (34) can be solved iteratively.
2.3. Entropy associated with the Commodity Flows

The entropy maximizing principle offers a general tool. If a set of var-
iables are to be estimated, such as the flows x7}, and if the known constraints
on z7; can be expressed in equation from, then the entropy of a probability dis-
tribution associated with z7; can be maximized and a maximum probability
estimate of z7; obtained. Before we use this general tool to integrate the grav-
ity and input-output models, it will be more useful to show how to gravity
model presented in Section 4. 2. 1. can be derived, and this will further

14) A7 signifies the constant associated with origin, while B} signifies the con-
stant associated with destination. Note also that ¢7} should be interpreted as a gen-
eral measure of impedance, as travel time, as cost, or more effectively as some
weighted combination of such factors sometimes referred to as a generalized cost.
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deepen our understanding of the gravity model itself.
In addition to the constraints (30) and (31), we assume that a total a-
mount C™ is spent on transporting commodity 7.

That is, as a cost constraint,

(3) T3 aly oy = C™

Let.us find the matrix {z}%} which has the greatest number of states,
say W ({z}3}), subject to the constraints (30), (31), and (35). The number
of states which give rise to a matrix {z}}} can be obtained as follows :

Suppose X™ is the total amount of commodity m, (7. e, X™ = ‘ij;xﬁ)

How many assignments of commodity 7 to boxes of Figure 3 give rise to
{33} ?
Figure 8

Origin-Destination Table
(in a singlecommodity case)

destination j

origin i

Firstly we can select 7% from X™, £7 from X™ - 7, etc., and so the number
of possible assignments, or states, is the number of ways of selecting ] from
Xm (Xm C x7%), multiplied by the number of ways of selecting 75 from X™ -
2 (Xm -2 C 2, etc.  Thus,'®

15) This result is independent of the order in which the boxes of Figure 8 are consid-
ered.
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X (Xm - D!
(36) W({x:’;}) = . sesscse
i (X - 2! Tl (X™ - 2y -2 !
X!
= 37 ]
ig Tig*

We now maximize W ({z73}) subject to egs. (30), (31), and (35) in order to
find the most probable {z%}. In fact, any monotonic function of W ({z7}})
can be used to give the same result, and for convenience we maximize [, (W
({xf})) ——— we write this as [,({W73}) hereafter --- subject to egs. (30),
(31), and (35).

We now have to show that the measure of uncertainty, which is restated
here for convenience,

(14> S (Pbpz, cees Pr) = —k zZPt lan

is the same as that introduced above.

Define
m Zij
(37) Y = Xm.

Then, from eq. (36)
B8 LW =L X — 35 1 2!
v 7

= I, X™! — %‘Z?I (x5 In ]y — x373)
after the use of Stirling’s approximation for l, x7; 1%
This can be written in terms of p;; as
B8 I (WD =l X! - pR)3 (o7 X™ Un P + In X™) — P1X™)
= [, X"l - Xm ZZ}ZJPZ", Ll — (X™ e X”‘—X’");;p;’;

16) Stirling’s approximation can be used to estimate the factorial terms, 7. e., {n N!
= NIp N— N.
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= U X! - X" L X+ X™) — X™ 553 I 27y
v 7
Hence, maximizing

S(Pﬁ;?ﬁ: °°°° ) = “??P;n; lnP:ny

subject to egs. (30), (31), and (35) -—- which can be expressed as constraints
on the p7 using our definition (37) —-- will lead to an estimate of xf; which is
the same as that given above. In short, I, ({W3}) and S are linearly related.
2.4. Formulation and its Solution

Our problem under study can be formulated as follows : Maximize!”

B9 S=-Z% x5!
P
subject to
@) I af=X7?
7
@) 2l =Y}

@5) DDl oy =Cm

T
First-order Conditions

To obtain the set of x{; which maximizes eq. (39) subject to the con-
straints (30), (31), and (35), the Lagrangean form has to be maximized :
A0 L= -SSLal!+ 09X - S 2l + 22070 - 3 2

+ ™ (C™ — 5 ag e o)
v 7
where 2, 22, and y™ are Lagrangean multipliers.

The first-order conditions are'® :

17) It is allowed to use this form of .S, since maximizing ln ({W7})) — the left hand

side of eq. (38) -- gives the same answer as using — 3333 In ;! - the second
t 7
term of the right hand side of eq. (38), so long as =3 zj; = X™ = constant.
7

18) For the derivation of eq. (41), the Stirling’s approximation is also used as follows :

ZnN‘.=NlnN—'N,alnN!/aN=lnN—*-N'Z—J;/,—'l=—-“lnN‘
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oL

(41) = Lzl — 2D — 2D =,
ax;

4 L e xr_sman-o,
o1 j

@) - yr_zman=o
oL

U m =C" - DX i ey = 0.
From eq. (41)
(45) afy = exp (— 29 — 2% — um ).

Substitute in eqs. (42) and (43) to obtain 2‘) and 2% :

<46) in = Z7: xw Z €Xp ( (1) - 2(‘2> - /u C“)

= exp (- 27) E; exp (= 29 — p™ D).

Hence,
A7) exp (— 2P) = X7 [; exp (— 2D — p» ML

Similarly,
(48) Y7}

Toaly = Desp (- Y R k)
= exp (— 2%) (2 exp (= 29 — ™ D).

(49) exp (— 7~<§)> = Y7 [; exp (= 29 — ™ i)l

To obtain the final result in more familiar form, write
exp (— 29)
B0) AP = ——
X7
exp (— 29)
¢y B} = —r——,
Yy
and then

1972
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(52) x,7= AT B} XT YT exp (— p™ i),
where, using eqs. (47), (49), (650), and (51)
(83) AT = [? B} Y7 exp (= p™ ¢fD)7Y

(54) Bp = (T AT X7 exp (— pm )L

This model is now equivalent to that given in eqs. (32) through (34),
with the negative exponential function exp (— ™ ¢J%) replacing the general
function f™ (cf3).

The statistical derivation constitutes a new theoretical base for the grav-
ity model. This statistical theory is effectively saying that, given total amounts
of origins and destinations for each zone for a homogeneous commodity m (2.
e, X% YY), given the costs of transporting between each zone (i. e., ¢f}), and
given that there is some fixed total expenditure on transport (7. e., C™), then
there is a most probable distribution of commodity flows between zones, and
this distribution is the same as the one normally described as gravity model
distribution.

2.5. Sufficiency-test for the Solution

The sufficient conditions for distinguishing maxima from minima re-
quire negative definiteness of the bordered Hessian-like matrix. For the pur-
pose of the sufficiency test, let the number of regions be ¢ as in Section 3.
Then, our objective function given by eq. (39) can be written in more general

form as

39 - zj‘_.; Lo 2351 = iy, Zlas evvvvvnnnn > Xgq)

Our constraints given by egs. (30), (31), and (35) can also be rewritten as
7

Xv = Zap;=0— A (2}, 203 ... o , Zy) =0,
(30) {

Xy —Zagy=0—ht (2, 232 +0-- » Zg) = 0,
7
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Y7 — 2 af
€15 {

0 —> ho*t (afy, 25, ... 2g1) =0,

Y mo__ 2 m _
Yo~ }; xp =0 —> h% (2, X5, 0., Zgg) = 0,
35 Cm — o8 af;ely =0— R € o v S s T = 0.
v 7

Since we have assumed that 3 X7* = X Y7,'® the equation system
i ;

given by egs. (30)’ and (31)’ is no longer independent. Thus, we can drop
any one of them-say, the last equation in (31) --without loss of generality.

Now a system of 2¢ linear homogeneous equations (i. e., ¢ of (30) plus

(g-1) out of (31)’ plus 1 of (35)") in ¢ variables (7. €., Z{% 15 « oo er Tigs =+
...... , 2 can be represented as follows®:

h.’ (X Xy evenannns , 2 =0
B | et (s oy 2y = 0 or ht (X =0

where 7 = 1, 2,., 29,
m M —
th (2311, L2 evesescssne s x;’:l) = 0

The Jacobian matrix of this system of constraints, A% (X) = 0, is de-
fined as??

OR /3 s et , 0h'/3 i, Aoy weveennennn , h;g:]

6y J = | HLO R e SO | _ | B e  Kim
: |

BRSO Ty ey OB 2y | Bl , Bim |

Let V be the g2 X ¢% matrix of elements

19) Otherwise, the system of equations given by egs. (30) and (31) becomes incon-
sistent.

20) The number of equations (2q) should be less than the number of variables (@®.
The existence of more equations than variables always implies either redundant
equations (which can be dropped) or an inconsistent system in which not all equa-
tions can be met simultaneously. For this reason, ¢ > 2.

21) The rank of the Jacobian matrix must be 2¢ in this case.
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*f ISy pi 2l ey g 2
(57) Vijs k1 = — — 2 2(7;) h;m = = 2(7‘) him Zm hzqn." 2
62?7-7"‘ axly:zl i=1 ijy "kl i=q+1 ij, "kl ijs "kl
s Oz
which means the second partials or cross-partials of f (or S) less the sum of
those same partials or cross-partials in each of the constraints, each multiplied
by the Lagramgean multiplier for that constraint.
Thus, the bordered Hessian-like matrix is

o | J*
58 T (2gx2q) | (29%g")
G8) V=] T

(g°x2g) | (g"Xg"

where asterisks indicate evaluation at a point satisfying the first-order
conditions for a maximum or a minimum. Then, for d? * << 0 (and hence a
maximum at X*), the last ¢ — 2¢ principal minors of V* must alternate in
sign, with the first having the sign (—1)%*.,

Obviously, for problems in which the number of constraints and the
number of variables are large, the work involved in evaluating principal mi-
nors becomes immense, both because each determinant is large and because
there may be many of them.

We conclude with a specific example. Let us examine the three regions’
case (4. ¢, ¢ = 3). The bordered Hessian-like matrix in question becomes®®
as follows (eq. (59)).

Let us consider this situation from a somewhat different viewpoint.
Namely consider the property of our objective function given by eq. (39) as

S=—2% 1,251, Letitbe £(X) in general. It is quite clear that maxima
17

should be separated from minima by the slope of the function f. Investigation

of the signs of the principal minors of the Hessian matrix of second partial

derivatives evaluated at X* (when df = 0) is precisely an investigation of the
function for convexity or concavity in the neighborhood of X*. So, if a point

22) As usual, asterisks denote that elements of the matrix are evaluated at the point
that satisfy the first-order conditions, given by egs. (41) through (44).
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Sy
0 0 ¢ 1 -1 -1 -1 0o 0 0 0o 0 0
'
0 0. 0+ 0 0 0 -1-1-1 0 0 0
!
: r 00 0 o0 0 0 -1 -1 -1
: i
. 1 -1 60 0 -1 0 0 -1 0 ©
: I
: t 0 -1 0 0 -1 0 0 -1 0
: :
s 0 0 0 t -CR-CH-CAE-CH-C&-CH -Ch-CE-Ch
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- _em ! W1
L0000 Chy 00 0
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3

X* is found for which df* = 0, and if it is known that fis a concave function
in the neighborhood of X*, then we know that X* represents a relative max-
imum. This relation-ship can be shown through the use of Taylor’s series.

Let X* = (xu s xm s eeeeaneens )’ be a point at which the first total
differential of the function is zero -- that is, df* = 0; and let (X* + 4X)
represent the neardy point (.x{’i* + dxi, x}"z* + dxXlsy e Y. Then, the

Taylor expansion is
(60) f(X* + dX) = f(X*) + df* + ( g1) 4+ (3,) a4 .
Thus a second-order approximation to the change in the function as a result of
the displacement d X is given by
61 f(X* +dX) — f(X9) =df* + 5 &F*.

Since X* has been chosen such that df*% = 0, the sign of the change in
the value of f (zi}, 212, e voevvves ) depends entirely on the sign of d? f*, the
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second total differential evaluated at X*. At, or very near the stationary point,
62 fX*+dX) — f(XD = df* + 5 d*f*
oz
=0+ 4 an—2L ) @,
w79 (xip 0 ()
But, we have seen that
By f X = —S8 Lol

and ‘
(63) WX _ _ Ln 25,
50
- L Gf i=Fk and j = 1)
2 m . >
0 xy 0 7,
0 (ifisEkork=+1).
Substituting in eq. (62), we have
| | 1 (dxip*
(65) f(X*+dX) — f(X*) = IR 2P
T 7 2’,‘77
1 dxl; \2
= -5 IX Zigs
T f x;”;
ax;
where is the relative change in z7; away from the most probable

distrbution. From this result, we can state that so long as all zJ; are positive,
X+ dX) — f(X*) <0, and hence X* represents a local maximum -
the function is concave in the neighborhood of X*.

However, if some Lagrangean multipliers 29, 29, um, take on positive

values, the stationary point X* derived from the unconstrained maximization

23) See eq. (41) and footnote 18. As for the three regions’ case, see eq. (59).
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problem does not meet all the constraints given by egs. (30), (31), and (35).
In this sense, Lagrangean rgultjr?liers P, 2%, ) provide useful information
about the constraints A% (Zyy, Tigy sveeevee) = 0.

When we consider the constraints explicitly, using the Lagrangean form,
their values evaluated at a stationary point (X*) -- now the dimension of X*
vector is augmented by the number of constraints - give the partial deriva-
tives of our objective function f (X) evaluated at X*, with respect to the con-
straint constants. Loosely speaking, they give approximations to the amounts
that the optimum value of £ (X) will change for a unit change in the constraint
constants. Therefore, by examining the values of Lagrangean multipliers, we
can easily check how effectively each constraint works in the maximization

problem.
3. Integration of the Gravity and Input-Output Models

In the gravity-model approach to case (1), we assumed that an inde-
pendent estimate of X™ did exist, though there was no such estimate for X7"
and Y7 For this particular development of the integrated model, we assume
that there is no such estimate of X m_ and this brings us into line with the as-
sumptions of Leontief and Strout, which we referred to in Section 3. Thus,
the case (1) model to be developed here represents the modification to the
Leontief-Strout model brought about by integrating the gravity and input-out-
put models using entropy-mazximizing principles, but otherwise no new as-
sumptions are made.??

The only constraints, then, are eq. (35), which is restated here for con-

venience :

24) -Case (4) model - which we called the origin-destination-constrained model in
Section 4. 2. 2. and considered in Section 4. 2. 4. — is the only one which offers a
simple estimate of zj; The other cases, (1), (2),and (3) -- the modified versions
of eqs. (28) and (29) - lead to quadratic equations in z7}, although some iterative-
solution-procedure could be devised. In this Section 4. 3., we only refer to case (1)
as representative of the rest.
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@5 =Xy ey =Cm,
o

and the Leontief-Strout eq. (1) as a constraint on z7}, and so we rewrite it in
terms of the z7; as
y Zj‘, = 5 ap, 3 2y + Y

n ?
We now have to maximize the entropy of the probability distribution associ-
ated with x7% (with m varying now as well as i & j). The problem can be
formulated as follows : #°
Maximize our entropy S defined by
66) S(X)=— 22X x5 In 205

i im
subject to eqs.(35) and (1)".
To solve the problem, we form the Lagrangean form L :
67 L=—-SZ8allbal+ 2217 OF + D ab,S iy — 2 2
it Jm im n 7 7

+ D oum (C™ — DX xfy e oy
m v 7

where 77 is the set of Lagrangean multipliers associated with eq. (1)’
and pm the set associated with eq. (35). We now obtain an estimate of x7; by

solving the first-order conditions

oL

(68) = = Loaly = 1+ T g — 1 — =0,
oz "

©) 2L —yr 4 Sab, DAy - Sl =0,
a?’:n n 7 7 |
oL

T W = Cm — ;72 agy oy = 0.
Eq. (68) gives
(1) xfy = exp (

3

P
it

3 m m
— . — m v
Amn 77‘ H Cij) >

25)3 (Eq. (66) can be derived from eq. (38). Itis convenient to use this form of .S,
since — 2; In 273 ! appears to cause conceptual difficulties if 27} is noninteger.

K2
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wheze a 1 has been absorbed into the multiplier 77, without loss of gen-
erality.

Now, y™ is obtained by substituting z; from eq. (71) into eq. (70), and
similarly 77 is found by substituting 27} from eq. (71) into eq. (69). This gives

(72) Texp (27 Upn = 77— 1™ €5

@
—Zﬂai}m‘? exp(fnﬁrza;n—r?— ™y ) —vi =0
Then, |
72 exp (=) 2 exp (DT apn — ¢
= Dap,  exp (D97 ap) Dexp (= f = D~y =0
For the purpose of simplicity, let us define
(73) 9} = exp (277 aha),

and

(74 &f = exp (=17,
so that

(75) 87 = IT () = ahn

Then, eq. (72)’ can be written as
(76) &f 07 exp (— u™ ¢}) — Xy 07 e exp (— p™ cfy) — v = 0,
% K 7

which can be rearranged to give for 7 :

yE+ D T ST pa el exp (— um™ ¢

T =
5 07 exp (— g™ ¢7)

The equation cannot be solved explicitly for e}%.22 However, eq. (77)

suggests an iterative-solution-procedure :

26) Because &7 still appears in the numerator of the right-hand side of eq. (77).
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Iterative Procedures

Firstly guess €7, then calculate 87 from eq. (75), recalculate ¢ from eq.
(77), and continue this cycle until the process converges. Then, using egs.
(73) and (74), eq. (71) for a7} can be written as

(78) xfj = 07 ¢f exp (— u™ cgy).
Thus, in short, the entropy-maximizing model for what might be called the
Leontief-Strout version of our case (1) is finally given by egs. (78), (77), and
(75).

The processes to reach our final results derived from the first-order con-

ditions can be pictured as follows :

Figure 9
The Entropy-maximizing Mode! for the Leontief-Strout Version
eq. (68) ——> eq. (71) T\ ,t eq. (78)
i

eq. (69) - :; : eq. (72) 0 —> eq.(76) —> eq. (77)
eq. (70) ==~ Ao eq. (73) —p» eq. (75)

eq. (71) _-r

A

In this paper we have discussed the theoretical and practical question
of designing operational models based on interaction among different regions.
We have shown how appropriate models of spatial systems can be derived by
maximizing a function describing the entropy or information contained in such
sytems subject to relevant constraints.

The theoretical result in this paper is that the models derived from en-
tropy maximizing procedures are equivalent to many of the models already in
use which have been derived empirically. The gravity model, among others,
has been used as an empirical or phenomenological estimate for some years,
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and is in reasonable accord with reality.?” These ideas shall be developed in
relation to several urban and regional systems such as not only the interregional
commodity flows, but also the transport, the location of population, etc.
However, if there is any desire to use the concept of entropy,then it
should be made quite clear how it could be measured - in terms of either ob-
jective probability or subjective probability.?® This is the most crucial prob-
lem in entropy maximizing procedure.?®
Application of the concept of entropy
We can summarize the types of application as follows :
1) hypothesis generation, or theory building,3®
2) interpretation of theories.
The entropy maximizing procedure can be used to develop hypotheses. We
can call this the main type of application. The general rule for generating
hypotheses can be written as follows :
a) Set up the variables which define the system of interest, and write
down the known constraint equations on these variables.
b) Define the entropy of the system, either directly or by using an
associated probability distribution.
¢) The variables can then be estimated by maximizing the entropy
subject to the constraints.

In our example which was discussed in Section 4. 3, two types of constraint e-

27) As for the gravity model, many refinments are possible. The Stouffer’s inter-
vening model may be seen as one of them.

28) The objective view is that probability is always capable of measurement by obser-
vation of frequency ratio in a random experiment. The subjective view regards
probability as expressions of human ignorance; the probability of an event is merely
a formal expression of our expectation that the event will, or did, occur based on
whatever information is available.

29) It suggests us that if there is not any information in advance (7. e., in the case of
no constraint), the commodity flows tend to take on the uniform distribution (Z.c.,
the dispersing tendency). But, why ? What kind of theoretical interpretation can
be ready for this ?

30) A theory is a well-tested hypothesis.
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quations were specified in terms of x75. One was the cost constraint given by
eq. (35), and the other was the input-output constraints given by eq. (1)’, which
signify the different production structures with respect to each region. We
then defined the entropy of the probability distribution associated with 7} as
— z}‘;%} &y la x5 given by eq. (66). This is our objective function which
should be maximized. Finally, from the method of the Lagrangean multipliers,
we obtained the optimum values of x5 as eq. (78). Their derivation was
schematically pictured in Figure 9.

Many, if not most, hypotheses thus generated could be produced by more
conventional means. However, at the very least, the entropy maximizing pro-
cedure enables us to handle extremely complex situations in a consistent way.
In fact, past experience has shown that this sort of consistency is very difficult
to achive otherwise. In this sense, the entropy maximizing procedure can be
well regarded as more significant and meaningful approach among others.®

When we construct hypotheses or models, it is often necessary to in-
clude terms which are difficult to interpret in any direct way. These are
high-level theoretical concepts which are often well removed from possibilities
of direct measurement. They may be the parameters of a model, such as ™
in the Leontief-Strout version of our case (1).

Suppose the model given by egs. (75), (77) and (78) could be developed
and used fruitfully without entropy maximizing procedures. It is then possible
to write down the set of constraint equations which give rise to the same mod-
el, in this example egs. (1) and (35). The parameter y™, for example, is then
seen to be the Lagrangean multiplier associated with the constraint eq. (35),
and the interpretaton of this equation adds to our knowledge of the role u™
plays in the model.

The sign of pm* tells us the direction of the change in the optimum

31) However, it should be emphasized that the hypotheses which are generated should
be tested in the same way as hypotheses generated by any other procedure.
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value of S (X) given by eq. (66).°® A positive p”* means that if the right-
hand side of the constraint, eq. (35), increases, so does S (X*): % < 0
means that an increase in the constraint constant C™ is accompanied by a de-
crease in S (X*). In fact, the value of y™* represents the partial derivative of
S (X)), evaluated at X* with respect to the right-hand side of the constraint,
Cm.‘33)

In this sense, although the Lagrangean multipliers (say y™) are not the
variables whose optimum values are of direct interest in the problem, it does
turn out that those multipliers provide useful information about the constraints.
Keeping this fact in our mind, we can introduce any additional constraint -
which might be expected to cause the significant change in the optimum solu-
tion -~ to our model and then we can also evaluate how effectively such a hy-
pothetical constraint works in the entropy maximizing procedures,’®
Necessity for the model building

Urban and regional models are of interest for two main reasons :

1) Model building is at the root of all scientific study, and urban
and regional modelling is part of an attempt to achieve a scien-

tific understanding of cities and regions.

32) Asterisk denotes that u™ is evaluated at the point that satisfies the first-order
conditions given by egs. (68), (69) and (70).

33) Recall that the form of the constraint used in the Lagrangean form is Cm — 5]

i
gy ¢i; = 0. From eq. (67), at X* and pm*, L*%/0Cm = ym*_ Since at optimum
the constraint (1)’ and (35) must hold (. e.,eqs. (69) and (70) must hold), we
obtain L* = S (X*), and hence 85 (X*)/0Cm* = pm*,

34) Note that the discussion on the interpretation of the Lagrangean multiplier can
be applied to the case where the problem has some inequality constraints. For ex-
ample, the rule for the problem ; maximize S (X) subject to g (X) < C, can be
written as follows: Solve the problem as if the constraint were an equality using
both first-and second-order conditions ; then (1) if g* > 0, the maximum is on the
boundary, therefore X* found by assuming g (X) = C is correct, (2) if p* <0,
the maximum is interior to the boundary, therefore redo the problem ignoring the
constraint completely.
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2) A variety of severe urban and regional problems exist, and asso-
ciated planning activity has become increasingly important ; ur-
ban and regional modelling is a part of the advance on this front.

The most crucial problem in the model building lies in the determination of
relationships among variables, which is often called the model-specification.
It is dependent on an exogenously given objective, since the model must always
be built in order to meet some a priori objective. Such a objective usually
includes description, prediction and/or impact analysis based on simulation.

In Japan, we have been suffering from severe regional problems, such
as pollution and congestion. Quite recently, in order to remedy those prob-
lems, Prime Minister K. Tanaka presented an ambitious decentralization plan
known as “A Plan for Remodelling the Japanese Archipelago.” To make his
decentralization plans work requires a vast improvement in air, rail and road
transport. By 1985, he insists, there must be an additional 6,000 miles of rail-
way lines and a series of high-speed trains crisscrossing the archipelago. By
then, the islands will have been connected by the bridges and tunnels.

If all goes according to that plan, 32 new expressways will also be built
by 1985, and the new travel network will enable a person to journey to any
point in Japan within one day. As might be expected, Tanaka’s plans have
already evoked a considerable amount of criticism. To conservative, they are
too visionary. The left charges they ignore basic social inequalities. However,
no matter how we like it or not, we are facing a number of severe theoretical
problems around it. Our study is often a multidisciplinary one in the sense
that we need to use concepts from several disciplines - economics, geography,
sociology, etc.

The concept of entropy has, until recently, been used primarily in the
nonsocial sciences. From our discussion in this paper, it turned out that the
entropy maximizing procedure has a useful and valuable role in one branch of
the social sciences -~ the study of interregional commodity flows. When we
take account of data availability, processing cost, and time relevance, the en-
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tropy maximizing procedure enables us to tackle some of our basic problems,
such as an impact analysis, in a fruitful way. It endeavors to shape tools that
can help assess and anticipate impact estimates stemming from the new decen-
tralization plan previously stated.

It should be recalled that some problems still remain to be solved in or-
der to apply the entropy maximizing procedure to the real-world situations :
both how to estimate the transport cost of a unit of commodity m (i e., cf3),
and what sort of theoretical implications can be given to the maximizing moti-
vation of our objective function S (X).

Some of them may be solved in the process of empirical implementa-
tions.®®  But, some may not, and require further theoretical examinations.
However, any model should be evaluated not only from the theoretical view-
point, but also from the empirical or practical viewpoint. Thus, although an
entropy maximizing procedure has some deficiencies in the sense that it is hard
to give the theoretical interpretations to the maximizing motivation, so long as
it gives good predictions by reproducing complex real-world situations, it must

be favorably evaluated because of its flexibility and operationality.

35) For the detailed discussion about the estimation of Japanese 1963 interregional
trade flows, see Polenske (8).
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