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[LETTER

Coherence Resonance in Propagating Spikes in the

FitzHugh-Nagumo Model

SUMMARY  Coherence resonance in propagating spikes gen-
erated by noise in spatially distributed excitable media is stud-
ied with computer simulation and circuit experiment on the
FitzHugh-Nagumo model. White noise is added to the one end
of the media to generate spikes, which propagate to the other
end. The mean and standard deviation of the interspike inter-
vals of the spikes after propagation take minimum values at the
intermediate strength of the added noise. This shows stronger
coherence than obtained in the previous studies.
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Stochastic resonance in excitable media is of wide inter-
est since it may be related to sensory signal processing
in nervous systems [1]. Recently, it was shown that co-
herence resonance (stochastic resonance without input
signals), which was found in some limit cycle models
[2], occurs also in excitable media [3]-[12]. That is, the
coherence or regularity of the spikes generated by addi-
tive noise in excitable media is optimal at intermediate
noise strength.

In this letter coherence resonance in spatially dis-
tributed excitable media is studied with computer simu-
lation and circuit experiment on the FitzHugh-Nagumo
model, a simple model of a nerve fiber [13], [14]. White
noise is added to the one end of the media, by which
spikes are generated and propagate to the other end.
It is shown that the mean and standard deviation of
the interspike intervals of the spikes after propagation
take minimum values at intermediate noise strength.
This is stronger coherence than that obtained in the
previous studies on excitable media, in which some rel-
ative measures of coherence, e.g., the product of the
height of the peak and the quality factor of the power
spectrum, the coefficient of variation and the correla-
tion time were used. Although similar non-monotonic
relations of the firing frequency to the numbers of ion
channels have been obtained in computer simulation
on stochastic versions of the Hodgkin-Huxley model, in
which fluctuations in ion channel dynamics are taken
into account [15],[16], the mechanism causing this co-
herence resonance is different from them.
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First, the results of computer simulation on the
one-dimensional FitzHugh-Nagumo model are shown.

dv/dt = 0*v/0z® —v(v — a)(v — 1) — w + nd(z)

dw/di = e(v — yw)
(a=02e=0003,v=050<z<30) (1)

where Gaussian white noise n with zero mean and
strength o (E{n(t)n(t)} = ¢25(t —t')) is added to v
at the one end (z = 0). Spikes are generated by the
noise and propagate to the other end. Equation (1)
is numerically calculated by the simple Euler method
with Az = 1.0 and At = 0.2. The time series of v
at the noise-added point (z = 0) and after propaga-
tion (¢ = 25) with ¢ = 0.2, 0.4 and 0.6 are shown in
Fig. 1. The spikes of proper shape are obtained after
propagation (x = 25) owing to the wave shaping action
of excitable media [17], while there are large variations
due to the noise at z = 0. Figure 2 plots the mean
and standard deviation (S.D.) of 10000 interspike in-
tervals of the propagating spikes at z = 25 against
the noise strength o. Both take minimum values at
o =2 0.38. This means the frequency and regularity of
the spikes are absolutely highest at the intermediate
noise strength. The coefficient of variation (the ratio of
the standard deviation to the mean) of the interspike
intervals is also minimum at the same noise strength
o =2 0.38, though not shown here. Note that the values
of the noise strength are smaller than the amplitude of
the spikes and are considered to be physically relevant.

This coherence resonance can be obtained in wide
parameter ranges. Figure 3 shows changes in the op-
timal noise strength o,y and the mean interspike in-
terval T,,; by adding constant input / at x = 0 to the
right-hand side of dv/dt in Eq. (1). The optimal noise
strength and the mean interspike interval are small at
0.3 €I £ 1.3, where the spikes are periodically gener-
ated without noise in the single element.

Next, experiment on Nagumo’s active transmission
line [14], an analog circuit for the FitzHugh-Nagumo
model is done. The N-shaped nonlinear current device
(T.D.) and inductor are constructed with operational
amplifiers [18], as shown in Fig.4. The Nagumo’s ac-
tive line is made by coupling 20 elements with resistors.
The value of V,,, is set to be 4.9V so that the elements
are mono-stable. White noise source is added to Vi,
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Fig.1 Time series of v at the noise-added point (z = 0) and
after propagation (z = 25) with ¢ = 0.2 (a), 0.4 (b) and 0.6 (c)
(the FitzHugh-Nagumo model).
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Fig.2 Mean and standard deviation (S.D.) of 10000 interspike
intervals of the propagating spikes at £ = 25 vs. noise strength o
(the FitzHugh-Nagumo model).

in the first element, by which spikes are generated and
propagate in the line. Figure 5 shows the time series of
the voltage in the 1st and 20th element with the noise
strength o = 0.5, 2.0 and 3.5V. The mean and S.D.
of the interspike intervals in the 20th element recorded
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Fig.3 Optimal noise strength o,p: and mean interspike inter-
val Topt vs. constant input I (the FitzHugh-Nagumo model).
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Fig.4 Nagumo’s active transmission line (a) and an analog
circuit for one element with OP amps (b).

during 100sec are plotted against the noise strength o
in Fig. 6. The mean and S.D. of the interspike intervals
after propagation take minimum values at the interme-
diate values ¢ = 2.0-2.5V of the noise strength.

It was shown that the mean and standard deviation
of the interspike intervals of the propagating spikes gen-
erated by point stimulus in excitable media take mini-
mum values at the intermediate levels of noise strength.
The previous studies on coherent resonance in the sin-
gle element of excitable media have shown that the
mean interspike interval decreases monotonically as the
noise strength increases [4], [8], [9]. The results obtained
in this study show the existence of stronger coherence
than those in these studies, and are also different from
the previous results on coherence resonance and noise-
sustained patterns in spatially distributed excitable me-
dia [7], [10], [11], [19].

The mechanism of this coherence resonance is a
combination of the decrease in the interspike intervals
of the spikes due to the noise, which is attributed to
the mean first passage time for the Ornstein-Uhlenbeck
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Fig.5 Time series of the voltage in the noise-added (1st) ele-
ment and 20th element with ¢ = 0.5V (a), 2.0V (b) and 3.5V
(c) (Nagumo’s active line).
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Fig.6 Mean and S.D. of the interspike intervals of the propa-

gating spikes in the 20th element vs. noise strength o (Nagumo’s
active line).

process and a double-well potential system [20], and the
failure of spike propagation due to the refractory period
[17]. That is, as the noise strength increases, the inter-
spike intervals at the stimulus point decrease, but the

1595

spikes with the interval to the previous one smaller than
the refractory period fail to propagate. This failure of
the spike propagation makes the mean and S.D. of the
interspike intervals larger. It is difficult to see the spike
failure due to the refractory period in the single element
model since the noise gives large variations at the stim-
ulus point, as can be seen in Figs.1 and 5. The wave
shaping action according to spike propagation in spa-
tially distributed excitable media makes this coherence
resonance clear.
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