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Weak Coupling Causes Non-monotonic Changes and
Bifurcations in the Interspike Intervals in the BVP
Model with High-Frequency Input and Noise

SUMMARY  Effects of high-frequency cyclic input and noise
on interspike intervals in the coupled Bonhoeffer-van der Pol
(BVP) model are studied with computer simulation. When two
BVP elements are weakly coupled and cyclic input or noise is
added to the first element, the interspike intervals of the sec-
ond element decrease non-monotonically as the amplitude of the
input increases. Further, complicated bifurcations in the inter-
spike intervals are caused by cyclic input in the coupled BVP
model in the oscillating state. Effects of the coupling on small
rotations due to noise and the interruption of oscillations due to
cyclic input, which occur when the equilibrium point is close to
“the critical point, are also studied. The non-monotonic changes
and bifurcations in the interspike intervals are attributed to the
phase locking of the coupled elements.

key words: coupled BVP model, non-monotonic change, high-
frequency input, noise

1. Introduction

Responses of a neuron to various stimuli have been of
wide interest since they are fundamental to the under-
standing of the function of the nervous system. In gen-
eral a neuron has two states: an excitable state and an
oscillating state. The former describes the generation
of spikes by adding stimuli and the latter corresponds
to spontaneous firing.

In the excitable state, it is known that the spikes
generated by periodic pulses show the phase locking
and complicated bifurcations when the period of the
input lies in the refractory period in a simple neu-
ron model [23], the BVP model [1],[27], the Hodgkin-
Huxley model [29] and the squid giant axon [30]. Com-
puter simulation has shown that high-frequency sinu-
soidal input fails to generate spikes and blocks the prop-
agation of spikes in the Hodgkin-Huxley model [26].

Recently, effects of noise on neuronal activity have
much attention in the context of stochastic resonance in
excitable media [6] (and references therein). Coherence
resonance (stochastic resonance without signals) [7],
[25], the phenomenon in which the regularity of spikes is
optimal at intermediate noise strength, was also found
in the BVP model [19], [24], the Plant model [20] and
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the Hodgkin-Huxley model [18]. Further, several re-
sults have been obtained on coherence resonance in the
coupled BVP model [12], [13], [15], [16].

In the oscillating state, periodic stimuli cause bi-
furcations and chaos similar to those in the excitable
state. Sinusoidal input the period of which lies in
the refractory period causes chaotic responses in the
Hodgkin-Huxley model and the squid giant axon [3],
[17] (and references therein). High-frequency sinusoidal
input decreases the period of the BVP oscillator {14].

Concerning effects of noise, experimental and sim-
ulation studies on actual and model neurons have
shown that the noise causes various changes in the oscil-
lation period of the repetitive firing of a neuron. It is ex-
pected that the oscillation period decreases as the noise
strengthens since the firing of a neuron is regarded as a
relaxation oscillator [8]. It was shown that the oscilla-
tion period decreases when the noise is added to stimu-
lus currents in experiments on the giant squid axon [9]
and the crayfish stretch-receptor neuron [2] under spon-
taneous firing. However, the noise either decreases or
does not change or even increases the oscillation period
of afferent nerve fibers of the guitarfish [21]. Tt can also
be seen from computer simulation with stochastic ver-
sions of the Hodgkin-Huxley model that fluctuations in
opening and closing of Na (K) channels cause increases
(decreases) in the oscillation period [28], while white
noise has little effects on the mean of the oscillation
period [32]. Further, computer simulation on the BVP
model showed that the oscillation period decreases (in-
creases) by adding the noise to the fast (slow) variable
[11], [14].

In this study, effects of coupling on the response of
the BVP model to high-frequency cyclic input and noise
are studied with computer simulation. Concerning the
coupled BVP model in the excitable state with noise,
coherence resonance with multiple peaks has been re-
ported elsewhere [13]. We then focus on the excitable
state with high-frequency input as well as the oscil-
lating state with noise or high-frequency input. It is
shown that non-monotonic changes and bifurcations in
the interspike intervals or the oscillation periods occur
in the coupled BVP model when the coupling between
the elements is weak.

Model equations and simulation method are given
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in Sect. 2. Non-monotonic changes in the interspike in-
tervals generated by high-frequency sinusoidal input in
the coupled BVP model are shown in Sect. 3. In Sects. 4
and 5, it is shown that non-monotonic changes and bi-
furcations in the period of the coupled BVP oscillators
are caused by noise and high-frequency sinusoidal in-
put. Further, effects of the coupling in the BVP os-
cillators close to the excitable state are considered in
Sect.6. It is shown that increases in the oscillation
period due to small rotations caused by noise are sup-
pressed and complicated patterns in the oscillation pe-
riod with cyclic input are caused by weak coupling. Dis-
cussion on mechanism causing non-monotonic changes
in the interspike intervals is given in Sect. 7.

2. Simulation Method

A couple of simplified versions of the Bonhoeffer-van
der Pol (BVP) model [4], [5] with sinusoidal input and
noise are used.

dv(t)/dt = D(va(t) — vi(8)) + f(v2(2)) — wi(?)
+Asin 2nt /Ty, + on(t)
dw1 (t)/dt — &N (t)
dva(t)/dt = D(v1(t) — v2(t)) + f(v2(t)) — wa(?)
dws(t)/dt = eva(t) (e =0.001) 1)
where f(v

fo;A) = —(v—A)v—1—-A){v+1-—A) (2)

) is a cubic function:

and n(t) is Gaussian white noise with zero mean.
E{n(t)}=0
E{n{t1)n(t2)} = 6(t1 — t2) 3)

Two identical BVP elements are linearly coupled to
each other with the coupling strength D. Sinusoidal
input with the amplitude A and the period T, or Gaus-
sian white noise with the strength o is added to the fast
variable vy of the first element. Equation (1) is numer-
ically integrated using the simple Euler method with
the time step At = 0.1. It was confirmed that similar
results are obtained in simulation with At = 0.2.

3. High-Frequency Input to the Coupled Ex-
citable BVP Model

Effects of high-frequency sinusoidal input on the inter-
spike intervals of the coupled BVP model in the ex-
citable state are considered. We take 0.6 as A (A =
0.6) in f(v; A) in Eq. (2) so that the equilibrium point
(v, w) = (0, f(0)) is stable and the BVP elements are
in the excitable state. A value of the period T}, of sinu-
soidal input is taken to be 50.0, which is much smaller
than the absolute refractory period of the BVP ele-
ments, the order of which is O(10%). (The strength o
of noise is set to be 0.)
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Fig.1 Mean interspike interval T vs. amplitude A of sinusoidal
input in a single BVP model.
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Fig.2 Mean interspike interval T1 (triangles) of the first ele-
ment and To (circles) of the second element vs. amplitude A of
sinusoidal input in the coupled BVP model.

First, changes in the interspike intervals of a single
BVP model (D = 0) due to high-frequency input are
shown for comparison. Spikes are generated by adding
the sinusoidal input of A > 0.02. Figure 1 plots the
mean of the interspike intervals T from 11th to 30th
against the amplitude A of the sinusoidal input. The
interspike intervals of the generated spikes decrease as
the amplitude of the sinusoidal input increases. The
generated spikes are periodic, i.e., the interspike inter-
vals are constant, except for those at a few values of
the amplitude of the sinusoidal input (in which the in-
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Fig.3 Time series v1(¢) (dashed lines) and va(¢) (solid lines)

of the coupled BVP model.

terspike intervals are 2-periodic).

Then, a couple of the BVP elements with high-
frequency sinusoidal input are dealt with. Figure 2
plots the mean interspike interval 177 of the first ele-
ment (triangles) and T of the second element (circles)
against the amplitude A of the sinusoidal input. Val-
ues of the coupling strength are: D = 1.0 (a) and D
= 0.01 (b). When-the coupling strength is large (D =
1.0 (a)), the two elements are phase locked and the val-
ues of the interspike intervals of the two elements are
the same. The interspike intervals of both elements de-
crease as the strength of the sinusoidal input increases
in the same manner as a single BVP model. When
the coupling strength is small (D = 0.01 (b)), however,
the mean interspike interval 75 of the second element is
changed in a non-monotonic manner; T once decreases
as A increases, but increases suddenly at A = 0.04, de-
creases again until A = 0.21 and increases at A = 0.22,
and so forth. On the other hand, the mean interspike
interval T1 of the first element decreases monotonically
as the strength of the sinusocidal input increases.
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Figure 3 shows the time series of the fast variables
in the coupled BVP model (v(t): dashed lines, vs(¢):
solid lines). The spikes of the second element are phase
locked to those of the first element in the ratios 1/1,
1/2, 1/3 and 1/4 for A = 0.02 (a), 0.2 (b), 0.28 (c)
and 0.32 (d), respectively. In fact, the mean inter-
spike interval of the second element is double that of
the first element for 0.04 < A < 0.21, triple for 0.22
< A <0.29, and quadruple for 0.30 < A < 0.32. These
changes in the ratio of the phase locking result in the
non-monotonic changes in the interspike intervals of the
second element. (The interspike intervals of the second
element are constant at all the values of A, while those
of the first element are 2-, 3- or 4-periodic for A > 0.04.)

These non-monotonic changes in the interspike in-
tervals due to high-frequency input occur not only in
coupled neuron models but also in a nerve fiber model,
in which the spatial distribution of nerve membrane is
incorporated. It is shown that similar non-monotonic
changes in the interspike intervals of propagated spikes
in the FitzHugh-Nagumo model [22] appear when the
diffusion coefficient is small (Appendix).

4. Noise to the Coupled BVP Oscillators

Effects of noise on the coupled BVP model in the oscil-
lating state are considered. We set A = 0in f(v; A) in
Eq. (2) so that the equilibrium point of each BVP ele-
ment is unstable and the stable limit cycle exists. The
oscillation periods of the BVP elements were measured
by recording the time at which the fast variable vy (v3)
crosses the axis v1 = 0 (v2 = 0) from right to left in the
upper phase plane w; > 0 (w2 > 0). The oscillation
period without noise is 1681.2. (The amplitude A of
sinusoidal input is set to be 0.)

In Fig. 4, the mean and standard deviation (5.D.)
of the period Ty of the first oscillator (a) and T of
the second oscillator (b) are plotted against the noise
strength o with the coupling strength D = 1.0, 0.25,
0.1, 0.04, 0.02 and 0.01. The mean (S.D.) of the period
T} of the first oscillator decreases (increases) monoton-
ically as the noise strength increases. When the cou-
pling strength is large (D = 1.0, 0.25), the mean of
the period T, of the second oscillator also decreases
monotonically as the noise strength increases. In the
intermediate levels of the coupling strength (D = 0.1,
0.04), however, the mean of T5 once decreases, turns
to increase, and decreases again as the noise strength
increases. As the coupling weakens further (D = 0.02,
0.01), the changes in the mean of T; become small. As
for the S.D. of Ty, the maximum peaks appear in the
intermediate noise strength when the coupling strength
is small (D < 0.25).

Figure 5 shows the time series v1(t) and wva(t) of
the fast variables of the BVP oscillators with D =0.04,
in which the non-monotonic changes in the mean oscil-
lation period of the second oscillator occur. In the first
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Fig.4 Mean and S.D. of the periods T} (a) and T (b) of the
first and second oscillators vs. noise strength ¢ (D = 1.0, 0.25,
0.1, 0.04, 0.02 and 0.01).

decreasing region (o = 0.1) (a), the oscillators are phase
locked with each other. In the increasing region (o =
0.2) (b), the period of the first oscillator decreases and
the second oscillator fails to follow the first oscillator
owing to the small coupling strength. Some oscillations
still remain phase locked. As the noise strengthens fur-
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Fig.5 Time series v1(t) and v2(t) of the fast variables of the
first and second oscillators with D =0.04 (¢ = 0.1 (a), 0.2 (b),
0.3 (c))-

ther (o = 0.3) (¢), the fast variable of the first oscillator
has larger variations and works as noisy input to the
second oscillator.

5. High-Frequency Input to the Coupled BVP
Oscillators

Changes in the oscillation period of the coupled BVP
oscillators caused by high-frequency sinusoidal input
are shown. The BVP elements are in the oscillating
state with f(v; 0) and sinusoidal input with the period
T, = 10.0 is added to the fast variable of the first BVP
oscillator. (The strength o of noise is set to be 0.)
Figure 6 shows the period 77 of the first oscilla-
tor (a) and Ty of the second oscillator (b) against the
amplitude A of the sinusoidal input when the coupling
strength D is 0.04. Two hundred periods from 101st
to 300th are plotted for each value of A. Note that
the coupling strength lies in the values at which the os-
cillation period changes non-monotonically as the noise
strengthens, shown in Sect. 4. The oscillation periods of
both oscillators decrease as the amplitude of the sinu-
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of the first and second oscillators vs. amplitude A of sinusoidal
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Fig.7 Series (a) and return map (b) of the oscillation periods

Ty of the second oscillator with sinusoidal input of A = 0.2173
(Tim = 10.0, D = 0.04).
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soidal input increases from A = 0 to 0.21. The series of
the oscillation periods cause bifurcations at A =~ 0.217
and show complicated patterns as A increases further.
Irregular series of the oscillation periods are observed
at some values of A.

Figure 7(a) plots the series T2 (j) (1001 < j < 2000)
of the periods of the second oscillator at A = 0.2173. It
can be shown that T5(7) is not periodic until 5 < 10000.
The period T of the second oscillator increases phase
locked to that of the first oscillator from 75 ~ 1380
to 1530 gradually. The phase lock is then lost and 15
changes mainly as Ty =~ 1760, 1480, 1380 or 15 ~ 1640,
1660, 1390. The phase lock is then recovered and the
gradual increase in T is repeated again. The return
map of T5(j) (the jth of Ty vs. the j+1st of Ty, 1001 <
J < 6000) is shown in Fig. 7(b). It is expected that the
tangent bifurcation occurs and causes the intermittency
in the series of the periods of the second oscillator.

Similar bifurcations in the oscillation periods ap-
pear in about the same range of the coupling strength
as the noise causes the non-monotonic changes. The
break of the phase locking of the oscillators causes the
periodic and complicated patterns in the series of the
oscillation periods.

6. Coupled BVP Oscillators Close to the Ex-
citable State

The coupled BVP oscillators close to the excitable
state, in which the unstable equilibrium point is close to
the minimal point of w = f(v), are considered. We let
A be 0.577 in f(v; A) so that the equilibrium point (0,
f(0; A)) is unstable and the stable limit cycle of spike-
like form exists. (The oscillation period is 3150.6). Ef-
fects of noise and high-frequency sinusoidal input added
to the first oscillator coupled to the second oscillator are
studied.

First, it is known that small noise causes small
rotations at the equilibrium point and the mean oscil-
lation period increases consequently in a single BVP
oscillator close to the excitable state [14].

Figure 8 plots the mean of the period 77 of the
first oscillator (a) and Ty of the second oscillator (b)
against the noise strength ¢ with the coupling strength
D =1.0, 0.1, 0.01, 0.0025 and 0.0004. (The amplitude
A of sinusoidal input is set to be 0.) When the coupling
strength is large (D = 1.0, 0.1), the mean oscillation pe-
riod shows a peak at small strength of the noise (o =
0.001). As the coupling weakens (D = 0.01, 0.0025),
the height of the peak decreases. For extremely small
coupling strength (D = 0.0004), the phase locking of
the oscillators is lost. Then the peak in the mean oscil-
lation period of the first oscillator reappears while that
of the second oscillator is less changed.

The second oscillator works to prevent the occur-
rence of the small rotations at the equilibrium point of
the first oscillator. That is, when the point of the first
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Fig.8 Mean of the periods T1 (a) and T3 (b) of the first and
second oscillators close to the excitable state vs. noise strength
o (D = 1.0, 0.01, 0.0025 and 0.0004).

oscillator turns to the left in the phase (v-w) plane to
rotate at the equilibrium point, the point of the sec-
ond oscillator is located on the right-hand side. The
coupling term (D(v2(t) — v1(t))) in Eq. (1) then has a
positive sign and tends to make the sign of dvy(¢)/dt
positive so that the point of the first oscillator turns to
the right and moves away from the equilibrium point.
This prevention of the small rotations of the first oscilla-
tor due to the second oscillator occurs in the intermedi-
ate ranges of the coupling strength (D = 0.01, 0.0025).
(The oscillators are phase locked to each other when
the coupling strength is large; thus the system reduces
to a single oscillator (D = 1.0, 0.1). The first oscillator
is hardly affected by the second oscillator and acts as
a single oscillator when the coupling is extremely weak
(D = 0.0004).)

Next, it is known that, when high-frequency sinu-
soidal input is added to a single BVP oscillator close to
the excitable state, the oscillation is ceased as the am-
plitude of the sinusoidal input crosses over some thresh-
old value (A = 0.015). It can be shown that the oscilla-
tion is recovered by adding noise of small strength (o =
10~*). It is expected that the coupling of the oscillators
causes fluctuations and also recovers the oscillation.
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Figure 9 shows the periods of the oscillators against
the amplitude A of sinusoidal input of period T;, =
10.0 with the coupling strength D = 0.25 (a), 0.01 (b)
and 0.001 (c¢). (The strength o of noise is set to be 0.)
Two hundred periods from 101st to 300th are plotted
for each value of A with open circles for the period T3
of the first oscillator and closed circles for the period
T5 of the second oscillator. The oscillations of both
oscillators are still maintained in the wide ranges of
the amplitude of the sinusoidal input (0 < A < 0.5)
for D =0.25 (a). When the coupling strength decreases
(D = 0.1 (b)), the oscillations are once ceased at A =
0.05, then recovered at A = 0.22, and maintained with
the period decreasing. For extremely small coupling
strength (D = 0.001 (c)), the oscillation of the first
oscillator is ceased at A =0.15, while the oscillation of
the second oscillator is maintained as A increases.

Note that the oscillations of both oscillators are
ceased in the same manner as a single oscillator for
large (D = 1.0) and intermediate (D = 0.01) coupling
strength, though not shown. Further, the oscillation
of the first oscillator is ceased while the oscillation of
the second oscillator is maintained in the limit of small



888
100000 =
80000
- 60000 :"E
40000 % i: .
. 3.
20000 —a it v
0 --oooooaol! [] ' I"Il""'ll"..l.o-.l
0.06 0.07 0.08 0.09 0.10
A
(a)
15000 pos
. o e
X . A
o N
..
®e o . .
10000 [ i % . o *
[ ]
g IR O
2 3f o o s0e® % e
‘.\ (2
-4 PR
5000 |- . b e ot e
%% o °* LI
0 L ]
0 5000 10000 15000
T2
(b)
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from Fig.11(c)) (a), and return map of T at A = 0.082 (b).

coupling strength. In two distinct regions of the values
of the coupling strength (D ~ 0.25 and D =~ 0.001), the
oscillations of the coupled oscillators are recovered.

The region from A = 0.06 to 0.1 in Fig.9(c) (D
=0.001) is magnified in Fig. 10(a). Large oscillation pe-
riods close to 10° exist, which are almost thirty times as
large as the oscillation period without input. The time
series v1(t) and va(t) of the fast variables of the oscil-
lators at A ~ 0.07 then show bursting patterns with
rather regular oscillations interrupted by long ceased
intervals. The series of the oscillation periods vary sen-
sitively as the amplitude of sinusoidal input changes,
while they are periodic. Figure 10(b) shows the return
map of the series To(5) (101 < j < 400) of the periods of
the second oscillator with sinusoidal input of 4 = 0.082,
in which the series has period 294 (T5(j) = T2(j+294)).
Low dimensional structures are not observed from the
return map of the oscillation periods. The cause of the
occurrence of the bursting patterns is not clear and is
a future problem.

7. Discussion

It was shown that the interspike intervals of the
spikes in the coupled BVP model are changed non-
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monotonically as the amplitude of high-frequency cyclic
input increases when the coupling strength is small.
The decrease in the interspike intervals of the first el-
ement due to the high-frequency cyclic input and the
changes in the ratio of the phase locking due to the re-
fractory period cause the non-monotonic changes in the
interspike intervals of the second element. The inter-
spike intervals of the first element decrease monotoni-
cally as the amplitude of the sinusoidal input increases.
The spikes in the second element are generated by the
spikes in the first element. The interspike intervals of
the second element decrease phase locked to the first
element in the ratio 1/1, but the ratio of the phase
locking is dropped to 1/2, 1/3 and so forth, because of
the refractory period of the second element, as the in-
terspike intervals of the first element decrease further.
The similar mechanism causes the non-monotonicity in
the firing rate with periodic pulses [10] and in the co-
herence resonance [13] in the coupled BVP model.

These non-monotonic changes in the interspike in-
tervals appear only in the intermediate range of the
period (frequency) of the sinusoidal input. Spikes are
not generated when the period of the sinusoidal input
is small (T}, < 16). When the order of the period of
the sinusoidal input is equal to that (O(10%)) of the
refractory period, generated spikes are phase locked to
the sinusoidal input.

Further, it was shown that the noise or high-
frequency cyclic input causes the mnon-monotonic
changes and bifurcations in the oscillation period of the
coupled BVP oscillators. The noise causes the decrease
in the period of the first oscillator. The period of the
second oscillator also decreases phase locked to the first
oscillator. As the noise strength increases and the pe-
riod of the first oscillator decreases further, however,
the phase locking is lost and the period of the second os-
cillator increases. The non-monotonic changes appear
only when the coupling is weak. The high-frequency
cyclic input also makes the oscillation period small.
When the coupling is weak, the phase locking of the
oscillators is also lost as the amplitude of the input in-
creases and the period of the first oscillator decreases.
The tangent bifurcation then occurs and complicated
patterns in the series of the oscillation periods appear.

In Sect.6, the coupled BVP oscillators in which
the unstable equilibrium point is close to the minimal
point of w = f(v) were dealt with. It is known that
small noise causes a peak in the mean of the oscillation
period and cyclic input ceases the oscillation in a sin-
gle BVP oscillator. It was shown that weak coupling
makes the height of the peak small and recovers the
oscillation. Although these results have little relation
to the non-monotonic changes in the interspike inter-
vals and the oscillation period shown in Sects. 3-5, both
are caused only in the intermediate ranges of the cou-
pling strength. It should be mentioned that the weak
coupling may have various effects on the system near
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critical states between excitable and oscillatory states.

The non-monotonic changes and bifurcations in
the interspike intervals and the oscillation periods ob-
tained in this study appear irrespectively of the precise
forms of the functions in the BVP model. It can be
shown that similar changes occur with a piecewise lin-
ear function as f(v), for instance. It is only needed that
the values of the small parameter ¢ and the coupling
strength D are sufficiently small. The noise and cyclic
input decrease the oscillation period only of relaxation
oscillators of small €. The strength D of the coupling
between the oscillators must be small so that the phase
locking of the oscillators is lost as the oscillation period
decreases.

When the BVP model is in the excitable state, it
is known that the coherence resonance occurs, i.e., the
regularity of the spikes is optimal at an intermediate
level of the noise strength [19], [24]. It has been shown
that weak coupling causes multiple maxima in the mean
of the interspike intervals [13]. The mechanism caus-
ing the multiple maxima is considered to be similar to
that shown in this study, i.e., the phase locking of the
oscillators. The multiple maxima in the coherence res-
onance, however, only appear in the BVP model with
a plecewise linear function as f(v), not with a cubic
function. The non-monotonic relations of the firing fre-
quency of neurons to the noise strength may appear
more likely in spontaneously firing neurons than in less
firing neurons.

It is known that the mean oscillation period of a
single BVP oscillator increases when noise is added to
the slow variable w [11], [14]. Weak coupling may sup-
press this increase in the oscillation period in the same
manner as shown in Sect. 6. Further, more complicated
patterns in the series of the oscillation periods may ap-
pear when the number of the coupled oscillators in-
creases.

The coupled BVP model is a simplified model
of interacting neurons. The noise and high-frequency
stimuli added to one part of neurons can cause non-
monotonic changes in the firing frequency of another
part of neurons. It is also regarded as a model of a
single neuron of complicated shapes, e.g., bifurcations
in dendrites and axon terminals. The mean firing fre-
quency of a single neuron may vary non-monotonically
as the strength of the noise and stimuli depending on
the location.
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Appendix: High-Frequency Input to the FHN

Model

The non-monotonic changes in the interspike intervals
due to high-frequency input shown in Sect.3 occur in
propagated spikes in a nerve fiber model, in which the
spatial distribution of nerve membrane is incorporated,
when the diffusion coefficient is small. Computer simu-
lation is done on the FitzZHugh-Nagumo model [22] with
cyclic input to the one end.

ov(z,t)/0t = D'8%v(x,t) /02> + f(v(z, 1))
—w(z,t) + 6(x)Asin 27t/ Ty,
Ow(z,t)/0t=ev(z,t) (€=0.001,0<z<20)
(A-1)

where D' is the diffusion coefficient, which corresponds
to the coupling strength D in Eq. (1). Sinusoidal input
with T3, = 50.0 is added to the one end (z = 0) of the
fiber. Spikes are generated at © = 0 and are propagated
to the other end (z = 20). Equation (A-1) is spatially
discretized with Az = 1.0 and is numerically calculated
by the Euler method with At = 0.1. The spatially
discretized model is equivalent to a linear chain of 20
BVP elements.

Figure A-1 plots the mean interspike interval T' of
the propagated spikes at x = 20 against the amplitude
A of the sinusoidal input. Values of the diffusion coef-
ficient are: D’ = 1.0 (a) and D’ = 0.04 (b). The mean
interspike interval decreases monotonically as the am-
plitude of the sinusoidal input increases for the large
diffusion coefficient (D’ = 1.0 (a)). When the diffusion
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Fig. A1 Mean interspike interval T' of propagated spikes vs.

amplitude A of sinusoidal input in the FHN model.

coefficient is small (D’ = 0.04 (b)), however, the mean
interspike interval decreases once as A increases, but
increases at A = 0.09, then turns to decrease and in-
creases again at A = 0.27. The non-monotonic changes
in the mean interspike interval of the spikes propagated
in a nerve fiber are caused by the high-frequency sinu-
soidal input.
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