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Abstract:  
 
Effects of additive noise on a series of the periods of oscillations in unidirectionally coupled 
ring neural networks of ring oscillator type are studied. Kinematical models of the traveling 
waves of an inconsistency, i.e. the successive same signs in the states of adjacent neurons in 
the network, are derived. A series of the half periods in the network of N neuron is then 
expressed by the sum of N sequences of the N-1st-order autoregressive process, the process 
with the spectrum of exponential type and the first-order autoregressive process. Noise and 
the interaction of the inconsistency cause characteristic positive correlations in a series of the 
half periods of the oscillations. Further, an experiment on an analog circuit of the ring neural 
oscillator was done and it is shown that correlations in the obtained periods of the oscillations 
agree with the derived three expressions.  
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1. Introduction  
 
  We consider the following ring network of unidirectionally coupled neurons with 
sigmoidal input-output relations with additive noise.  
 

 
 dxn(t)/dt = -xn(t) + f(xn-1(t)) + σxwn(t)    (x0 = xN,  1 ≤ n ≤ N (= 2M + 1 ≥ 3))  

 
  f(x) = tanh(gx)    (g < -1/cos(π/N) < 0)  
 

  E{wn(t)} = 0,  E{wn(t)wn’(t’)} = δnn’·δ(t - t’)      (1)  
 

where xn is the state of the nth neuron, N is the number of neurons, f(x) is the output function 
of the neurons and g is the coupling gain. The neurons are unidirectionally coupled and the 
output of the Nth neuron is fed backed into the first neuron. The Gaussian white noise wn(t) 
with the strength σx is added to each neuron independently. In the absence of noise, the 
properties of the ring neural networks are as follows [1, 2, 12]. The origin xn = 0 (1 ≤ n ≤ N) 
is globally stable when the absolute value of the coupling gain is less than unity (|g| < 1). 
When the couplings are excitatory (i.e. positive output of the nth neuron gives positive input 
to the n+1st neuron (g > 0)) and g > 1, the network has a pair of the non-zero stable steady 
states: (x1, x2, · · ·,  xN ) = ±(xp, xp, · · ·,  xp), xp = f(xp) > 0 and is bistable. When the 
couplings are inhibitory (positive output gives negative input (g < 0)) and g < -1, the behavior 
of the network depends on the parity of the number of neurons. When the number of neurons 
is even (N = 2M), the network is bistable: (x1, x2, · · ·,  xN ) = ±(xp, -xp, · · ·,  -xp), in which 
the signs of the states of neurons change alternately. When the number of neurons is odd (N = 
2M + 1 ≥ 3) and the coupling gain is less than the value of the Hopf bifurcation point (g < 
-1/cos(π/N)), however, the network is qualitatively the same as a ring oscillator and shows 
stable oscillations. The ring oscillator is a closed loop of inverters and is widely used as a 
variable-frequency oscillator in analog and digital circuits [10]. The mechanism of the 
oscillations is qualitatively simple. Let the state x1 of the first neuron be positive. Its inverting 
output f(x1) < 0 (g < 0) is transmitted to the second neuron, and so on. The Nth neuron then 
gives negative input to the first neuron, which makes the state of the first neuron negative. 
This inconsistency propagates in the direction of the coupling. When N = 3, for instance, the 
states of neuron changes as (x1, x2, x3): (+, -, +) → (-, -, +) → (-, +, +) → (-, +, -) → ···. The 
state of each neuron then oscillates in the form of a rectangular wave.  

Such ring networks of neurons in the absence of noise have been widely studied from the 
viewpoint of the dynamics of neural networks [1, 12], for recurrent neural networks [2] and 
as cyclic feedback systems [7] so that their various properties have been proven. The discrete 
systems of them have multiple stable orbits [27] and the networks with delays cause various 
spatio-temporal patterns [9, 21, 29] and long lasting transient oscillations [3, 4, 30]. Further, 
it was recently shown that the ring networks even without delays cause long lasting transient 
oscillations [18, 22, 24, 25] and the duration increases exponentially with the number of 
neurons [19, 20].  

In this study we consider effects of temporal noise on the ring neural networks of ring 
oscillator type, in which stable oscillations exist. Although it is known that there are clock 
jitter and phase noise in ring oscillators and they have been studied [13, 25], the properties 
shown in this paper has not been shown as far as the authors know. Expressions for variations 
and correlations in the periods of the oscillations due to the noise are then obtained with the 
kinematical descriptions of the traveling waves in the networks which result in the 
oscillations of the state of neurons. In Sect. 2, a series of the half periods of the oscillations is 
formulated as a discrete time series and is expressed as the sum of the autoregressive process. 
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In Sect. 3, changes in the half periods are formulated with a differential equation model and 
correlations in a series of the half periods with power spectra of exponential type are derived. 
The derived expressions for a series of the half periods agree with simulation results. Further, 
the results of an experiment on an analog circuit of the ring neural oscillator are shown in 
Sect. 4. Finally, conclusion and discussion are given in Sect. 5.  

 
 

2. Discrete process model  
 
Let the number of neurons be odd: N = 2M + 1 ≥ 3 with negative coupling gain less than 

the Hopf bifurcation point: g < -1/cos(π/N) < 0 in Eq. (1). The network shows a stable 
oscillation, which corresponds to the ring oscillator. As mentioned in Sect. 1, there is one 
inconsistency in the signs of the states of neurons, i.e. the two successive same signs, and it 
rotates in the direction of the coupling as (x1, x2, · · ·,  xN): (+, -, +, +, -, +, -, · · ·, -) → (+, -, +, 
-, -, +, -, · · ·, -) → (+, -, +, -, +, +, -, · · ·, -) → ···. The oscillation is this traveling wave of the 
inconsistency. We consider variations in the half periods (i.e. the pulse width) of the stable 
oscillation caused by the noise. The half period is the interval of the passing time of the 
successive inconsistencies at one neuron. The inconsistency rotates the network one time in 
the half period and then the period of the oscillation is its double.  

In this section, we derive an expression for a series of the half periods of the oscillations as 
a discrete time series. We here replace f(x) with the following sign function, which 
corresponds to the limit of the coupling gain g → - ∞.  

 
sgn(-x) = -1   (x ≥ 0)  
 
      = 1    (x < 0)         (2)  
 

Let tj(n) be the time at which the state xn of the nth neuron be zero at jth time, i.e. the time of 
jth occurrence of xn = 0. We define the propagation time ∆tj(n) of the inconsistency at the nth 
neuron at jth time by  

 
∆tj(n) = tj(n) - tj(n - 1)    (1 ≤ n ≤ N,  tj(0) = tj-1(N))     (3)  
 

That is, the propagation time is time required for the propagation over one unit distance (one 
neuron). In the absence of the noise, the propagation time m(∆t) (= ∆tj(n), for all n and j) of 
the inconsistency and the half period Tm of the stable oscillation are constant and given by the 
following equations [2].  

 
xmax = -(xmax + 1)exp(-Tm) + 1     (xmax > 0)  
 
m(∆t) = log(xmax + 1),   Tm = Nm(∆t)        (4)  
 

The value xmax is the maximum value xn(tj-1(n - 1)) of the states of the neurons at the time 
when the states of the preceding neurons cross zero (xn-1 = 0) from negative to positive. The 
first equation in Eq. (4) is derived from the condition: xn(tj(n - 1)) = xn(tj-1(n - 1) + Tm) = 
-xn(tj-1(n - 1)), and m(∆t) is the solution of the equation: xn(tj(n - 1) + m(∆t)) = (xmax + 
1)exp(-m(∆t)) - 1 = 0.  
  The propagation time varies in the presence of noise. Let the state xN of the Nth neuron 
change from positive to negative at t = tj-1(N) and be negative until t = tj(N). When the sign 
function (Eq. (2)) is used for f(x), changes in the state x1(t) of the first neuron results in the 
Ornstein-Uhlenbeck (OU) process in the interval (tj-1(N), tj(N)) as  
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dx1(t)/dt = -x1(t) + 1 + σxw1(t),  x1(tj(1)) = 0   (tj-1(N) = tj(1) - ∆tj(1) < t < tj(N))   (5)  
 

The probability density function of x1(tj(N)) at t = tj(N) is then Gaussian [8]. The mean 
m(x1(tj(N))) is then given by the solution for σx = 0 as  
 

m(x1(tj(N))) = 1 - exp[-(tj(N) - tj(1))] = 1 - exp(-∑
=

∆
N

n
j nt

2
)( )   

          ≈ 1 - exp[-(N - 1)m(∆t)]∏
=

∆−
N

n
j nt

2

))('1(   

           ≈ xmax + exp[-(N - 1)m(∆t)]∑
=

∆
N

n
j nt

2

)('    

       ∆t’j(n) = ∆tj(n) - m(∆t)        (6)  
 

where we use the condition x1(tj(1)) = 0 and approximate x1(tj-1(N)) by -xmax.  
The variance σ2(x1(tj(N))) is approximated by the variance at the mean elapsed time m(tj(N) - 
tj(1)) = (N - 1)m(∆t) as [8]  
 
σ2(x1(tj(N)) ≈ σ2(x1(tj(1) + (N - 1)m(∆t)))   
 
         = σx

2/2·{1 - exp[-2(N - 1)m(∆t)]}      (7)  
 

The propagation time ∆tj+1(1) of the inconsistency at the first neuron at j+1st time is given by 
the first passage time (FPT) of x1 from x1(tj(N)) to 0 as  

 
dx1(t)/dt = -x1(t) - 1 + σxw1(t),  x1(tj(N) + ∆tj+1(1)) = 0   (t ≥ tj(N))   (8)  
 

When the variance of the noise is small (σx
2 « 1), the mean of the FPT is approximated by 

m(∆t) in the absence of noise. Hence,  
 
∆tj+1(1) = log[1 + x1(tj(N))] + σ(∆t)wj+1(1)  
 
      = log[1 + m(x1(tj(N))) + σ(x1(tj(N)))wj’] + σ(∆t)wj+1(1)  
 

      = log{1 + xmax + exp[-(N - 1)m(∆t)]∑
=

∆
N

n
j nt

2
)('  + σ(x1(tj(N)))wj’} + σ(∆t)wj+1(1)  

      ≈ m(∆t) + exp(-Nm(∆t))∑
=

∆
N

n
j nt

2
)('  + σt’wj’ + σ(∆t)wj+1(1)    

 
   σ2(∆t) ≈ σx

2/2·{1 - exp[-2m(∆t)]}  
 
   σt’2 = exp(-2m(∆t))σ2(x1(tj(N))) ≈ σx

2/2·{1 - exp[-2(N - 1)m(∆t)]}exp(-2m(∆t))  (9)  
 

where wj+1(1), wj’, wj+1 are the Gaussian white noise, e.g. E{wj(n)} = 0, E{wj(n)wj’(n’)} = 
δj,j’δnn’. The variations in ∆tj+1(1) consist of two factors; σ(∆t)wj+1(1) is due to the noise 
σxw1(t) in Eq. (8) and σt’wj’ is due to the variation in x1(tj(N)). Here the variance σ2(∆t) is 
approximated by that of x1(tj(N) + ∆tj+1(1)). That is, the probability density function of 
x1(tj(1)) is Gaussian and the probability density function of the FPT is approximated by the 
Gaussian function with the same variance [8]. The variances are the same since the value of 
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the slope of the trajectory at x1(t) = 0 in the absence of noise is minus unity (dx1/dt|x1 = 0 = -1). 
The variance of x1(tj(N) + ∆tj+1(1)) is then approximated by letting x1(tj(N)) = xmax and ∆tj+1(1) 
= m(∆t).  
  A series of the propagation times ∆tj(n) is then expressed by the N-1st-order autoregressive 
(AR) process with the same positive weights exp(-Tm) as  
 

∆tj+1’(1) ≈ exp(-Tm)∑
=

∆
N

n
j nt

2

)('  + σtwj+1,   ∆t’j(n) = ∆tj(n) - m(∆t)    

 
   σt

2 = σt’2 + σ2(∆t)  
 
     = σx

2/2·[1 - exp[-2m(∆t)] + {1 - exp[-2(N - 1)m(∆t)]}exp(-2m(∆t))]    (10)  
 
The power spectrum is given by  

 

S(ω; ∆tj(n)) = σt
2/|1 - ∑

−

=

ω−−
1

1
)iexp()exp(

N

n
m nT |2   (-π ≤ ω ≤ π)    (11)  

 

The half period Tj is the sum of the propagation times of N neurons (Tj = ∑
=

∆
N

n
j nt

1

)( ). It is 

given by making a series ∑
=

+∆
N

m
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)(  of the sums of the propagation times of the 

successive N neurons and then doing downsampling by a factor N of them. The power 
spectrum S(ω; Tj) of a series of the half period Tj is obtained by N times folding at ω = π/N 

after multiplying S(ω; ∆tj(n)) by |∑
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n
n |2.  
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  Figure 1 shows the power spectra S(ω; Tj) of a series of the half periods in the ring network 
of three neurons (N = 3) in the presence of noise of σx = 0.1. Plotted are estimates with the 
average of two hundred spectra with 128 point FFT of 25600 half periods obtained with 
computer simulation of Eq. (1) with g = -10.0 (closed circles) and with the sign function (Eq. 
(2)) (open squares). A time step for numerical calculation is 0.001. Equation (12) is also 
plotted with a solid line. The values of the parameters for N = 3 are:  

 
xmax = (-1 + 51/2)/2 ≈ 0.618,  m(∆t) = log((1 + 51/2)/2) ≈ 0.481,  
 
Tm = log(2 + 51/2) ≈ 1.44,  exp(-Tm) = (xmax +1)-3 = -2 + 51/2 ≈ 0.236  (in Eq. (4)),  
 
σt

2 = σt’2 + σ2(∆t) = σx
2/2·[(-1 + 51/2)/4 + (-5 + 3·51/2)/4·(3 - 51/2)/2]  
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  = 2(-2 + 51/2)σx
2 ≈ 0.472σx

2   (in Eq. (10))       (13)  
 
The expression with Eq. (12) (solid line) agrees with the simulation results with the sign 
function (open squares), while the power of the simulation results with the sigmoidal function 
with g = -10.0 (closed circles) is slightly smaller than them. The power spectra increase in the 
low frequency region and thus the noise causes positive correlations in a series of the half 
periods. However, the value of the weights of the AR process decreases exponentially with 
the number N of neurons. The correlations due to the noise are then considerable only for 
small N. Decreases in the variations in the half periods for the sigmoidal function f(x) = 
tanh(gx) might be contrary to intuition but are explained as follows. The FTP of x1 in Eq. (8) 
with f(x) is the time for changes in x1 from f(xN) to f -1(x2) and the length reduces to |f(xN) - f 

-1(x2)| (< xmax). This reduction and shift in the length of FPT makes the variance of the 
propagation time smaller, though changes in x1 is slower owing to |f(x)| < 1 so that the mean 
propagation time increases about to 0.51 (m(∆t) ≈ 0.481).  
 
 
3. Differential equation model  

 
In this section, we derive a differential equation model for changes in the half periods and 

derive their properties. From Eq. (9), the propagation time ∆tj+1 of the j+1th passing of the 
inconsistency at the nth neuron is expressed with the half period Tj by  

 
∆tj+1 ≈ log{1 + xmax + exp[-(N - 1)m(∆t)][(N - 1)/N]T’j} + σt’wj’ + σ(∆t)wj+1  
 
   ≈ m(∆t) - exp(-Tm)[(N - 1)/N]Tj’ + σtwj+1   
 

 σt
2 = σt’2 + σ2(∆t),   Tj = tj - tj-1,  Tj’ = Tj - Tm      (14)  

 
where the neuron number is omitted since it is arbitrary. The coefficient of T’j is multiplied by 
(N - 1)/N since ∆tj in Tj must be excluded since it does not contribute to changes in x1(tj+1) 
according to the derivation of Eq. (9). Then the changes in the half period Tj at the location l 
in the network is expressed as  

 
dTj(l)/dl = d(tj - tj-1)/dl ≈ ∆tj - ∆tj-1  
 
       ≈ β(Tj - Tj-1) + σt(wj - wj-1)  
 
    β = exp(-Tm)·(N - 1)/N,   Tj(0) = Tj-1(N)       (15)  
 

where l corresponds to the neuron number but is continuous in 0 ≤ l ≤ N. Following [15], the 
z transform ZT of Tj is given by  

 
dZT(l)/dl = β(1 - z-1)ZT(l) + (1 - z-1)Zw(l)  
 

'd)'()]')(1(βexp[)1()0(])1(βexp[)( 1

0

11 llZllzzZlzlZ w

l

TT −−−+−= −−− ∫    

 
ZT(0) = z-1ZT(N)        (16)  
 

where Zw(l) is the z transform of the noise σt(wj - wj-1) and ZT(l) is derived from the first and 
third equations. Hence the power spectrum S(ω) of Tj is obtained as  
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S(ω) = E{|ZT(N)|2 z = exp(iω)}  
 

    2iω-iω

0

2 |)]e1(βexp[e1|/d))]ωcos(1)((β2exp[))ωcos(1(2 −−−−σ−= ∫ NllN
N

t   

 
    = σt

2/β·{exp[2βN(1 - cos(ω))] - 1} 
      /{1 + exp[2βN(1 - cos(ω))] - 2exp[βN(1 - cos(ω))]cos[ω - βNsin(ω)]}  (17)  
 

The power spectrum is of exponential form. It increases in a low frequency region since S(0) 
= σt

2N/(1 - βN)2 is larger than S(π) ≈ σt
2N and S(ω) = σt

2N for β = 0. Equation (17) for N = 3 is 
also plotted with a dashed line in Fig. 1, where β = 2/3·(-2 + 51/2) ≈ 0.157. It hardly differs 
from Eq. (12) and agrees with the simulation results with the sign function.  

When |βN| < 1, a series of the half periods is further expressed as the first-order AR process 
as follows.  

 

Tj(N) = tj(N) - tj-1(N) = lnlT jtj

N
d))(β(

0
σ+∫   

 
    ≈ βN/2·(Tj-1(N) + Tj(N)) + σTwj  
 
Tj(N) = φ1Tj-1(N) + σTwj    
 
  φ1 = βN/(2 - βN),   σT

2 = σt
2N/(1 - βN/2)2      (18)  

 
where the trapezoidal rule is used for the estimation of the integral in the first equation to 
derive the second equation. The weight φ1 is positive and the power spectrum S(ω) and the 
autocovariance function γk of a series of the half periods is given by  

 
S(ω) = σT

2/(1 - 2φ1cos(ω) + φ1
2)   

 
γk = E{(Tj(N) - Tm)(Tj-k(N) - Tm)} = σT

2/(1 - φ1
2)·φ1

k    (k ≥ 0)     (19)  
 

The values of the parameters of the first-order AR process for N = 3 are: φ1 = (-1 + 51/2)/4 ≈ 
0.309, σT

2 = 3/4·(1 + 51/2)σx
2 ≈ 2.43σx

2. The power spectrum S(ω) in Eq. (19) also agrees with 
Eqs. (12) and (17) (not shown in Fig. 1).  
 
 
4. Circuit experiment  
 
  In this section, we show the results of an experiment with an analog circuit for the ring 
neural networks. Figure 2 shows an analog circuit of the ring neural oscillator of three 
neurons with noise. It was made with TC4049 for inverters and operational amplifiers 
RC4558 for inverting and summing amplifiers. The sigmoidal function f(x) = tanh(gx) is 
replaced with the step function of the inverter: Vout = 0V for Vin > 2.5V, Vout = 5V for Vin < 
2.5V with the supply voltage 5V. The supply voltage for the operational amplifiers is 12V, 
and C = 1µF, R = 10kΩ, (time constant: CR = 10ms) were used. Noise sources were three 
untuned FM radios. It was checked that these noise sources are hardly correlated with each 
other.  
  We measured the half periods of the oscillations by recording the times at which the 
voltage V1 at the first node crosses the threshold voltage 2.5V of the inverters. We then 
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obtained and used a series of the periods (the sum of the successive two half periods) of the 
oscillations. It is because small biases in the supply voltage and offset voltages of the 
inverters cause considerable differences between the averages of the positive and negative 
half periods. (The terms of positive and negative correspond to the signs of the states of the 
neuron, hence the voltage in the half periods are over and below the threshold 2.5V, 
respectively.) They cause alternate variations in a series of the half periods and apparent large 
negative correlations.  
  The power spectrum S(ω; Tpj) of a series of the periods Tpj = T2j + T2j+1 is given by doing 
downsampling by a factor two of a series of the sums of the successive two half periods as  
 
  S(ω; Tpj) = [1 + cos(ω/2)]S(ω/2; Tj) + [1 + cos(π - ω/2)]S(π - ω/2; Tj)   (20)  
 
Figure 3 shows an example of time series of the voltage V1 (upper panel) at the first node and 
the noise voltage Vw (lower panel) in the analog circuit. The mean and SD of the voltages of 
the noise measured at the outputs of the inverting amplifiers were 0.0V and 1.53V 
respectively. The noise varies the waveform of the voltage V1. Figure 4 then shows the power 
spectra S(ω; Tpj) of a series of the periods Tpj. Plotted are estimates with the average of 40 
spectra with 128 point FFT of 5120 periods obtained with the experiment (raw (closed 
circles) and smoothed with triangle windows (open circles)), and Eq. (20) with Eq. (12) for 
the second-order AR process (solid line) and with Eq. (17) for the differential equation model 
(dashed line). The value of the variance σt

2 in Eqs. (12) and (17) was estimated with the 
variance σ2(Tj) = E{(Tj - Tm)(Tj - Tm)} ≈ 1.26ms2 of the measured half periods Tj by σt

2 = 
σT

2(1 - βN/2)2/N = σ2(Tj)(1 - φ1
2)(1 - βN/2)2/N ≈ 0.222. The power spectra increase in the low 

frequency region and a series of the periods is positively correlated though the correlations 
are smaller than those in a series of the half periods. The expressions with the second-order 
AR process and of exponential type agree about with the result of the experiment though they 
are slightly smaller in the low frequency region.  
 
 
5. Conclusion and discussion  
 
  The kinematical description of the traveling waves of the inconsistency in the rings of 
unidirectionally coupled neurons in the presence of additive noise was derived. In the ring 
network with odd numbers of neurons and sufficiently large inhibitory couplings, there is one 
traveling wave at which there is the inconsistency in the signs (the two successive same 
signs) of adjacent neurons. The resulting oscillation is stable and the corresponding electronic 
circuit is known as the ring oscillator. It was shown that the noise causes the positive 
correlations in a series of the periods of the oscillations. A series of the half periods is 
expressed by the sum of the successive N propagation times, which is expressed by the 
N-1st-order AR process with the same positive weights, where N is the number of neurons. It 
is also described by the differential equation model and the power spectrum is expressed in 
the form of the exponential function of frequency. Further, it is expressed by the first-order 
AR process with the positive weight. These three expressions agree with the results of the 
computer simulation and experiment. A series of the half periods is positively correlated 
owing to the interaction with the previously passing inconsistency in Eq. (15). The speed of 
the inconsistency increases when the elapsed time after the preceding passage decreases since 
the interaction is attractive (β > 0). The successive half periods then tend to remain long or 
short depending on the preceding ones, which results in positive correlations.  
  When there are two or more inconsistencies in the ring neural network, the inconsistencies 
interact with each other attractively. Smaller distances between them decrease and the 
inconsistencies collapse and disappear even in the absence of noise. Finally, one 
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inconsistency remains when the number of neurons is odd, which is a stable oscillation, while 
no inconsistencies remain and the network reaches one the two stable states when the number 
of neurons is even. When the number of neuron is large, the interaction is expressed with the 
exponentials of the distances lj (the number of neurons) between the adjacent inconsistencies 
as [19, 20]  
 
  dlj/dt ≈ 1/(log2)2·[exp(-log2·lj-1) - exp(-log2·l j)]       (21)  
 
The interaction is exponentially small with the distances, hence the number of neurons, and 
changes in the distances are exponentially slow. Transient states then become exponentially 
long as the number of neurons increases. It was shown that the exponentially long transient 
oscillations in the networks of even numbers of neurons are two inconsistencies traveling in 
the networks and the properties of the duration of the oscillations were derived [18 - 20, 22, 
24, 25]. It is also known that the movement of fronts or kinks in bistable reaction-diffusion 
equations is expressed in the same form as Eq. (21) and the movement is exponentially small 
[5, 6, 23]. The duration of the transient fronts then increases exponentially with the length of 
domains. It was shown that the properties of the duration of the fronts are similar to those of 
the duration of the oscillations in the ring neural networks [17].  
  It is also known that similar interactions exist in a car-following model in traffic flow 
problems [11, 31] and spike propagation in excitable media [26, 28]. In these cases the 
interaction is mainly repulsive contrary to the ring neural networks and the bistable 
reaction-diffusion equations. In excitable media, e.g. a nerve fiber, the propagation speed of a 
spike decreases in the refractory period. It is known that the interaction between the spikes 
then smooths the interspike intervals in a spike train propagating in a nerve fiber and cause 
positive correlations in a series of the interspike intervals [14 - 16]. It has been shown, 
however, that the interaction causes negative correlations in the intervals in a spike rotating in 
a ring nerve fiber with noise [15]. It is of interest that the correlations caused by the same 
interaction differ between line and ring media.  
  When a signal is added to one end of an open chain or array of the neurons, rectangular 
pulses switching positive and negative signs can be generated and propagated toward the 
other end. The chain network is then regarded as a transmission line of the signals. Each 
pulse interacts with the preceding one attractively in the chain networks through Eq. (15). It 
is then expected that variations in the pulse widths increase and the pulse sequence becomes 
negatively correlated during propagation. The sign of correlations in the pulse sequences in 
the chain networks is opposite to that in the half periods in the ring networks. Further, small 
pulses disappear and the adjacent pulses merge during propagation when the number of 
neurons is large. These changes result in modulations of the signals and their properties are 
now under study.  
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Figure captions  
 
 
Fig. 1.  Power spectra S(ω) of a series Tj of the half periods in the ring neural oscillator of 
three neurons (N = 3) in the presence of noise of σx = 0.1. Estimates with the results of 
computer simulation of Eq. (1) with g = -10.0 (closed circles) and with the sign function (Eq. 
(2)) (open squares), Eq. (12) (solid line) and Eq. (17) (dashed line).  
 
 
Fig. 2.  Analog circuit of the ring neural oscillator of three neurons with noise.  
 
 
Fig. 3.  Time series of the voltage V1 (upper panel) at the first node and the noise voltage Vw 
(lower panel) in the analog circuit.  
 
 
Fig. 4.  Power spectra S(ω; Tpj) of a series of the periods Tpj in the analog circuit. Estimates 
with the results of the experiment (closed and open circles), and Eq. (20) with Eq. (12) (solid 
line) and with Eq. (17) (dashed line).  
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Fig. 2.  Analog circuit of the ring neural oscillator of three neurons with noise.  
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Fig. 3.  Time series of the voltage V1 (upper panel) at the first node and the noise voltage Vw 
(lower panel) in the analog circuit.  
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Fig. 4.  Power spectra S(ω; Tpj) of a series of the periods Tpj in the analog circuit. Estimates 
with the results of the experiment (closed and open circles), and Eq. (20) with Eq. (12) (solid 
line) and with Eq. (17) (dashed line).  
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