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Empirical Measurement of One-way Effect

Abstract This paper aims to show the characterization of causal
structure of the recent Japanese and Chinese macroeconomy. For
this purpose, we first give an introduction to the one-way effect
causal measure and its Wald test as well as their computational
algorithm. In view of the causal measures (in frequency domain
and in time domain) in cointegrated vector time series, the long-
run and short-run economic relationships are showed. We can
also see the processes of applying the one-way effect causality
theory to the analysis of macroeconomy.

1. Introduction

To solve the problems of determining the direction of causality between
a pair of time series and also of statistically testing the absence of feedback,
Granger (1963, 69) introduced a celebrated definition of causality. His
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concept of causality is a statistically testable criterion defined in terms of
predictability based on the assumption that the cause chronologically
precedes the effect and the future does not cause the past. As far as testing
absence of feedback relation is concerned, the earlier representative studies
are the Granger test of zero restriction of specific coefficients of an station-
ary autoregressive representation, and the Sims test of the zero restriction
of some coefficients in moving-average representation of stationary bivar-
iate processes.

As regards testing Granger’s non-causality in levels of a nonstationary
vector autoregressive (VAR) system, Sims, Stock and Watson (1990) dealt
with trivariate VAR systems, to conclude that the Wald test statistic has a
limiting x? distribution if the time series are cointegrated and otherwise that
it has a nonstandard limiting distribution. Liitkepohl and Leimers (1992),
using the Wald test for Granger’s non-causality in bivariate cointegrated
finite order AR process, investigated the short and long-term interest rates
in the U. S., whereas Toda and Phillips (1993) extended the results of Sims,
Stock and Watson (1990). So far, the interest of the econometric literature
seems mostly concerned with Granger’s non-causality test.

For the purpose of quantitative characterization of the feedback rela-
tionship between two multivariate time series, Geweke (1982) introduced an
early version of the measure of causality from one time series to another in
the time domain as well as in the frequency domain. Developing Geweke’s
frequency-domain approach, Hosoya (1991) introduced three causal mea-
sures summarizing the interdependency between a pair of nondeterministic
stationary processes. Granger and Lin (1995) gave an extended measure of
one-way effect for an nonstationary bivariate cointegrated process. Yao
and Hosoya (1995) showed the algorithms of numerical computations of the
causal measures in cointegrated relations. Yao (1996b) discusses algorithm
of the one-way effect measure applied to Japanese macroeconomy involv-
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ing structural changes and also gives an emperical analysis to the financial
and external trade of Japan Hosoya (1997) extended all his causal mea-
sures to nonstationary reproducible processes.

For the purposes of testing causal relations in cointegrated processes
and constructing their confidence-sets, Yao and Hosoya (1998) introduced
the Wald statistics. In contract to the conventional tests of Granger’s non-
causality which amount to testing the hypothesis of zero restriction of a
certain set of autoregressive coefficients, the approach enables us to exam-
ine a variety of causal characteristics between time-series ; it can test not
only Granger’s non-causality by means of testing the nullity of the overall
measure of one-way effect (OMO), but also the strength of the one-way
effect. Moreover by means of the integral of the frequency-wise measure of
one-way effect (FMO) on specific frequency bands, the long-run and short
-run causal relationships can also be tested.

In this paper, we apply the Wald test theory presented by Yao and
Hosoya (1998) to Japanese and Chinese macroeconomic data over the span
of the recent twenty years. Our empirical analysis of Japanese ma-
croeconomic data shows that, at 0.05 significance level, the one-way effect
in neither direction between money and income is significant, but at 0.1
significance level a weak causal effect from money to income is detected.
Our investigation also shows that the one-way effects from interest rates to
the other variables are notably strong in general. In contrast, the effects
in the reverse direction are weak and not significant. For certain cases,
even though a single series does not cause significantly a specific series, a
multiple series including that series is observed to cause the other series,
indicating that policy mix might be effective in those circumstances.
During the period we analyzed, the Japanese economic growth can be
thought caused by the exports in conformity with the common understand-
ing. The emperical results also show that the economic relation between
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Japan and China, at least in the meaning of international trade, is not
competitional.

This paper is organized as follows : Section 2 shows a heuristic exposi-
tion of the OMO and the FMO for stationary and nonstationary processes.
Based on an ECM, Section 3 summarizes Wald test statistic for testing the
one-way effect causal measures, and exhibits relevant computational pro-
cedures. Section 4 is for a preliminary data analysis of Japanese and
Chinese macroeconomic time-series in order to identify pertinent ECM’s for
the causal analysis. In that section, we apply Johansen’s likelihood ratio
test for cointegration rank identification and apply extensively the Hosking
statistic and the Doornik-Hansen statistic for testing serial uncorrelation
and Gaussianity of the residuals. Section 5 deals with empirical causal
analysis of 7 economic time serieses in the recent twenty years. The
estimates of the FMO for bivariate and trivariate as well as four-variate
models are exhibited in the figures. The estimated cointegration rank,
estimates of OMO and causal test statistics are also listed in the cbrrespond-
ing figures. For the cases where causality is statistically significant, the
confidence intervals of the true OMO are also listed in the corresponding
figures. Section 6 concludes the paper.

Throughout the paper, we use the following notations and symbols.
The set of all integers and the set of positive integers are denoted by Z and
Z* respectively. For a set of random variables {Z,, i€ A} with finite
second moment, H{Z; ;€ A} implies the closure in mean square of the
linear hull of {Z;, 7€ A} in the Hilbert space of random variables with finite
second moment. For a p-vector process X(¢) with finite covariance
matrix and for S a set of integers, H{X(¢), ¢t € S} implies H{X.(¢t), t€ S,
i =1, -, p}. A* indicates the conjugate transpose if A is a complex
matrix and the simple transpose if A is a real matrix. The vec operator
transforms a m X » matrix B into a vector by stacking the columns of the
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matrix one underneath the other, i. e. vec B is the m-n X1 vector, whereas
v(C) denotes the n(n+1)/2 vector that is obtained from vec C by eliminat-
ing all supradiagnoal elements of a square » X » matrix C. Inthisway, for
symmetric C, »(C) contains only the generically distinct elements of C.
For a random vector X or for a pair of random vectors X and Y, Cov(X)
“and Cov(X, Y) indicate the variance-covariance matrix of X and of vec
(X, Y) respectively. The trace of a square matrix C is denoted by trC
and the determinant is denoted by defC. The Kronecker product of any m
X 7 matrix A and pX g matrix B is denoted by the mp X ng matrix AQRB,
whereas the sum of two vector subspaces H; and H, is denoted by H\P H..
The lag operator denoted by L so that Lx, = x._; and the difference
operator is denoted by A =1—~1L.

2. The Causal Measure of One-way Effect

The section shows the measures OMO and FMO for nondeterministic
stationary time-series and extentions to nonstationary time-series in
cointegrated relations [see for details Hosoya (1991, 1997), Yao and
Hosoya (1998)]. In the last part of this section, we discuss long-run and
short-run relationships expressed by those one-way effect measures.

The construction of the causal measures, in particular the measures of
one-way effect, is closely related to the prediction theory of stationary
processes. Suppose that {U(¢), V(¢), te€ Z}is a zero mean jointly covarian-
ce stationary process where the U(#) and V(¢) are p X1 and p, X1 real
vectors respectively (p = p;+p.). Suppose also that the process {U(¢),
V(#)} is nondeterministic and has the px p spectral density matrix

) filA)
Ja(A)  faaA)

where £,(1) is the p X p, spectral density of {U(¢)}, and that £(2) satisfies

= | —r<isa
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[ log det f()dh > = oo @.1)
Under the condition (2.1), () has a factorization such that
— _1_ —i —2A\ %
FA) = 2”/1(6 YA(e ¥, (2.2)

where A(e™*) is the boundary value limu-1—A(ue ") of a pxp matrix-
valued function /1(z) which is analytic has no zeros inside the unit disc {z:
|z] < 1} of the complex plane. Such a factorization is said to be a canonical
factorization in the sequel. Let 3! be the covariance of the one-step ahead
linear prediction error of the process {U(¢), V(¢)} by its own past ; then,

we have
det{ A0)A0)) = detS = (27r)pexp{% [1og det f(/l)dxl}, 2.3)

[see Rozanov (1967) pp. 71-7, for example]. The relationship (2.2) is the
frequency domain version of the Wold decomposition

(gg;) = S A0 e (-,
where {€(¢)} is a white-noise process with V ar{€(¢)} = I, and the
matrices /(j) are the real-matrix coefficients in the expansion of the
analytic function /A(z); namely A(z) = S50 A(j)2".

The one-way effect component of V() is the component which causes
{U(t)} one-sidedly but suffers no feedback from it in the Granger sense.
We can extract such component from V{(¢) as the regression residual
obtained by regressing V(#) on {U(¢t+1—j), V(i—j), j € Z*}. Formally,
let Vo_.(¢) be the residual of orthogonal projection (with respect to the
mean-square) of V{(¢) onto H{U(¢t+1—j), V{(t—j;), 7 € Z*}. It turns out
that {V,,(#)} is a white noise process with covariance matrix >lp— 35 21

2z
In contrast to the Wold decomposition of {U(z), V(¢)} which is a
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decomposition into an orthogonal sum in the time domain, {U(¢#), V(¢)}is
known to have the spectral representation

Ut = /:Zel‘th(ﬂ) and V(¢) = /:zei“dV(/i)

where (1) and V(2) are (frequency-wise orthogonal) random measures
such that
Cov{dU(A), dV ()} = F(A);

namely, the processes {U(#)} and { V(¢#)} are interpreted as weighted sums
of harmonic oscillations with orthogonal random weight for the respective
frequency. Hence the prediction error formula (2.3) implies for instance that
the one-step ahead prediction error of U(¢) measured in terms of the
determinant of the prediction error covariance matrix is the geometric
mean of the detCov{dU(2)} over the frequency domain —7 < A< . In
other words, the variability of dU(2) expresses the frequency-wise contri-
bution to the one-step ahead prediction error of U(#). In the case of the
joint one-step ahead prediction of {U(¢), V(¢)}, a similar argument applies
and the variability expressed by det Cov{dU(2), dV(2)} indicates the
contribution of the A-frequency oscillation to the joint prediction error of
U(t) and V(¢).

Then in view of the Granger concept of causality, the questions to be
asked are how much of the prediction error reduction in U(#) is attributed
to the other series { V(s), s < ¢—1} when it is added for the prediction of
U(t) and which portion of the variability in the pair {dU(2), iV (A)}, which
is correlated in general, is attributable to the series {U(#)}. The pairing
(U(#), Vo-i(#)} instead of the original pair {U(¢#), V(¢#)} helps us to deal
with these questions. In view of the construction of V, -i(¢), the projection
residual of U(¢) onto H{Vi,-1(s); s < t—1} is given by

Ut) = ["e TN~ FulD) Fa D) Ta-s)), 2.4)
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where the spectral density matrix of the process {U(¢), Vo,—:(#)} is denoted
by the p; to p. partitioned matrix

) = ’:le(ﬁ) 212(/1) }
Fald)  fae(A)

and fu(d) = fu(R), Fa(d) = (= ZaZ7, LA0)A(e™ ) f1(A), where f.
1() is the matrix which consists of the first g, columns of f(1), Fu(2) = %
{(Zee— D> 0202 [see Hosoya (1991), pp. 432-3, and also see Whittle
(1963) for the spectral regression (2.4)]. Since the one-step ahead predic-
tion error of U(¢) on the basis of U(s) and V,,_1(s)(s < £—1) is the same as
that of {J'(¢) on the basis of its own past, it follows that

det>n = (27)" exp[%/_: log det Cov{dU(A)— f12(R) F

(/I)d%,-x(/l)}dxi], 25)

where >V}; denotes the covariance matrix of the one-step ahead prediction
error of [J'(¢); whereas as for the prediction of U(¢) by its own past values,
we have the relation

det 231 = (2m)P'exp 1 '”Iog‘ det Cov{dU(A)}dA |- 2.6)
272' -7

The comparison of (2.5) and (2.6) implies that the prediction improvement by
the additional information of V,_,(#) is given by '

My-v = log{det X1 /det >} 2.7
and that the frequency-wise reduction of the variability from dU(}) to
dU'(2) is given by

My-o(2) = logldet Cov{dU(A)}/det Cov{dT(A)— Fi2(A) F '

(D dVo(M}]. (2.8)
It turns out that { V(#)} does not cause {U(¢)} in the Granger sense if and
only if Mv-y =0. Consequently, in conformity to Granger’s causality
concept, we might call My_, the overall measure of one-way effect (OMO)
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from V to U and My.y(Q) the frequency-wise measure of one-way effect
(FMO). 1t is obvious that Mv.y(A) in (2.8) can also be expressed by

My-o(2) = logldet fi(Q)/det{Ffu(A)— Fia(2) F51(2) Fau(D}]. 2.9)
Then OMO from V to Ucan be expressed by
Myy =5 / "My s(D)d 2.10)

In order to extend this causal analysis of nondeterministic stationary
time-series to nonstationary processes, consider the process {X(#), Y(#)}
which is generated by
xw] _[u®
Y(t)} a {V(t)
where {U(¢t), V(¢), ¢t € Z} is the stationary process defined as before, and

A(L){ :l, (t=1,2 ) (2.11)

the lag polynomial matrix A(L) is a pX p matrix such that

=oAL 0
0 oA, L’ :l

for some positive / where Ao = Ip; and Ao = 2. Suppose in the sequel
that X(¢) and Y(¢) for ¢ < 0 are random vectors which belong to H{U(#),
[ <0} and H{V(s), t < 0} respectively. The process given by (2.11) has the
characteristic that the one-step ahead prediction and the residual of X(¢)
based on H{X(t—j), ;j = I®H{U(t), t <0} and Y(¢), ¢ = 1, based on
H{Y(t—7), j = 1}®H{V(¢t), t <0} are the same as those of U(t) and
V(t) based on H{U(t—j), j =1} and H{V(¢t—j), j = 1} respectively
where @ denotes the sum of vector subspaces. Similarly, the joint predic-
tion of {X(#), Y(#)} based on H{X(¢t—;), Y(t—j), j = 1}PH{U(t), V(¢),
t < 0} is the same as the prediction of {U(¢t), V(¢)} based on H{U(¢—),
V(t—j), j =1}, Therefore the predictional properties of the process
{X(8), Y()} for ¢ = 1 are entirely determined by those of the generating
stationary process {U(¢), V(¢)}. Since the one-way effect structure of

A(L) = [
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{X(¢t), Y(¢)} is determined only by its predictional properties, it follows
that it is given by the corresponding structure of {U(#), V{(¢)}. Namely,
the OMO and the FMO between {X(¢)} and { Y(#)} can be equated with the
corresponding measures between the generating processes {U(¢)} and
{V(#)}. This is the basic idea for the extension of the definitions of OMO
and FMO to nonstationary processes.

It should be noted, however, that the relationship (2.11) is not very well
defined. Suppose that B(L) is another block diagonal matrix given by

BL) = {Bu(L) 0 }

0 B L)

where B),(L) and Bj(L) are lag polynomials such that By, = I, and Basyg
= I, The left multiplication of B(L) to each member of the equation (2.
11) produces a different representation of the process {X(¢), Y(¢)}. Unless
B(L) = I, the resulting generating process {Bu(L)U(¢), Bxn(L)V(#)}
might possibly possess a spectral structure different from that of {U(¢),
V(#)}. In order to retain invariance of the one-way effect structure under
such a multiplication, a certain restriction on the generating mechanism (2.
11) is required. Let fu(2) = 5=A%(e™)A(e™)* and fuld) = 5—{U(8),
Vor-1{ )} AP(e=*) A®(e~*)* be canonical factorizations respectively.
Assumption 2.1. The process (2.11) satisfies either
(i) the zeroes of det A,1(z) and det A:(z) are all on or outside of the unit
disc; or
(ii) There are no common zeroes between detd;(z) and detA(z) and
between detAs(z) and detA®(z).

The preceding consideration leads us to the following extended defini-
tions of the Granger non-causality and of the measures OMO and FMO.
Suppose the process {X(¢), Y(¢), t =1, 2, ---} generated by (2.11) satisfies
Assumption 2.1.
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Definition 2.1 {Y(#)} is said not to cause {X(#)} if and only if the predic-
tion error covariance matrices of X (¢) based on H{U(s), V(s), s < t—1}
and based on H{U(s), s < {—1} are identical.

Definition 2.2 The OMO My.x and the FMO My-x(2) are defined by

My_.x = Mv-vy and MY—X(/U = MV“‘U(/I)

respectively.
Remark 2.1. Note that we have H{U(s), V(s), s < t} = H(X(s), Y(s),
s<t—1; Us), Vis), s<0} and H{U(s), s < t—1} = H{X(s), s < ¢
—1; U(s), s <0}, and also that {Y(#)} does not cause {X(#)} if and only
if {V(#)} does not cause {U(#)}.

Now consider the p-dimensional process Z(#) = {X(¢#)* Y(#)*}* re-
presented by a finite g-th order VAR model

Z(6) = BMG)Z(t=)+elt) (£=0,1, ), 2.1

where the II(;)’s are pXx p matrices, {&(#)} is a p-dimensional white noise
process such that E(e(¢)) = 0, Cov(e(t)) = 2, and rank>) = p. Set A(L)
= [,—2%I(j)L’, where the zeros of det A(z) are assumed to be either on
or outside of the unit disc. Denote by C(L) the adjoint matrix of A(L) so
that

C(LYA(L) = D(L),

where D(L) is the diagonal matrix having d(L) = detA(L) as the common
diagonal element, (L) = 2%.,d;L’ be a lag polynomial with scalar coeffi-
cients such that ¢, = 1 and the zeros of 3)%..d;z’ are either on or outside the
unit circle. Left-multiplying C(L) to the members of the equation (2.12),
we have
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d(L) 0 ‘

0 (;‘du:) ‘d(L)" | [BE8] = cwem =LY,

0 (L)

(2.13)
where we set W(¢) = [U(#)*, V{(¢)*]* for p, and p, vectors U(¢) and V{(¢).
It follows from the above construction that {U{¢), V(¢)} is a stationary
MA process and that the process {X(¢), Y(#)} satisfies the condition (2.8)
and Assumption 2.1 (i). Therefore, in view of Definition 2.2 above, all the
measures of one-way effect for the possibly nonstationary processes { X(#),
Y(¢)} are determined by the corresponding measures of the stationary
processes {U(t), V(£)}.

Moreover, since the zeros of detC(z) are either on or outside the unit
circle, the covariance matrix of the one-step ahead prediction error of
W(t) is equal to 3} and if the spectral density matrix of {W(¢#)} is denoted
by 7(A), it has a canonical factorization

£ = 5=Alem ) Ale™)*, (2.14)

where A(e™*) = C{e~*)31V2 for the Cholesky factor 31% of 37 such that 33
= W22 Then the causal measures can be calculated in view of (2.9)
and (2.10) by means of the spectral density f(¢) and a feasible A(e™*).

A variety of causal measures can be derived on the basis of the OMO
and the FMO between {X(#)} and {Y(¢)} for the purposes of the long-run
or short-run characterization of their causal relationships. In case My.x #+
0, for example, the contribution of a long-run effect in the overall one-way
effect is given by

Dy-x(e&) = % / "My x()dA[My-x,

for a certain low frequency band [ — ¢, ¢]. In some cases, one might be more
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interested in the contribution of the relative effect for a given period band
[#, £)(2 < t < 1), which is defined by

1 27/t
Dy.x(t, &) = 7£ﬂ/t2 My-x(A)dA/My-x,

where we used the relation ¢ = 2x/A between period ¢ and frequency A(4 >
0). Since the measure of one-way effect is nonnegative, those causal
measures Dy-x(e) and Dy_x(#, £)(2 < t < &) take values in the interval
[0, 1], if My-x < oo.

The long-run effect may be measured in another way, for example, by
the mean FMQO which is given by

D—Yax(&‘) = —Zlé"/_’:My—'x(/’()dA,

where ¢ is a certain small positive number. In order to summarize the one
~-way effect in a period band [#, ],

_ _ Ifltz 2n/ty
Dr-x(ty, &) = m 2/ta My-x(N)di

may be more useful. A small value of Dy_x(¢) indicates no substantial long
-run effect from Y to X, and small Dy.x(#, ) implies that there is no
notable one-way effect from Y to X for the period band (#, #). In any
case, in order to interpret those quantities based on empirical data, we
need a statistical testing theory.

Remark 2.2, The existence of the Nyquist frequency seems often ignored
in exclusively time-domain oriented causal analyses. The discernible
highest frequency is A = x, which corresponds with two periods (¢ = 27/A
= 2); namely, half a year for quarterly data. The economic implication is
that we cannot discern the one-way effect shorter than half a year for
quarterly data.
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3. Testing Causality in Cointegrated VAR Processes

This section considers the Wald tests for testing hypotheses on the
measures of one-way effect based on the ECM given by (3.1) below, provid-
ing the computational procedure and also applying the test statistics to
construction of confidence-sets of those measures.

Let {Z(1)} = {X(£)*, Y(¢)*}* be generated by a cointegrated p-vector
AR model which is represented in the error-correction form

AZ(t) = aB*Z(¢ —1)+§F(;‘)Az(t—;">+ﬂ+q>P(t)+e(t), 3.1

where ¢ and 8 are pXx» matrices (» < p), and g is a constant p-vector.
Also in (3.1), P(¢) is a column (s,—1)-vector of centered seasonal dummy
variables, where s, is the seasonal period so that for quarterly data, s, =
4 ; suppose also that {e(#)} is a Gaussian white noise process with mean 0
and with positive definite non-degenerate variance-covariance matrix 2.
Let 8 be a (#-p)x 1 vector consisting of the elements of £ such 4 = vecf*.
Denoting #y = p-(r +p-(a—1))+p(p+1)/2, let ¢ be the nyX1 vector
which consists of the elements of ¢ and T'(j)(j =1, -, «—1) and the
elements in the lower triangular part of 3; namely ¢ = vec(vec(a, T)*,
(), where I' = {T'(1), -, T(a—1)} and »(2}) denotes the (p-(p+1)/2) X
1 vector.

The spectral density matrix # and its canonical factor /A derived for the
joint process {Z(¢)} by the relation (2.15) are given respectively by

16, §) = 5—Ale 0, $Ale16, 9)*, (32)

and
Ale 16, ¢) = C(e ™6, )7,
where C(e |4, ¢) is the adjoint matrix of the complex-valued polynomial

matrix
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L= (U ) ~ ST () (e~ — e~ 0"1%),

It is important to note here that the Granger causality is defined only
between non-deterministic time-series and there is no one-way effect
between such deterministic components as the dummy variables and the
intercept which appear in model (3.1); a deterministic component can be
predicted exactly by its past values and there is no improvement in predic-
tion if information of another series is added [see Hosoya (1977) for a
formal proof for non-causality between deterministic processes].

By means of those f and /1, we define My-x(A4, ¢) the FMO from
{Y(8)} to {X(#)}, by (2.11) and the OMO by

G(0, 9) = 5[ Mr-x(2/6, $)di (33)

Note that in these instances, G(8, ¢) is differentiable functions with
respect to (4, ¢).

Johansen (1988, 1991) showed that, if (4, ¢) is the true value and (4,
¢) is the ML estimate, 7(4 — @) tends to have a mixed multivariate
normal distribution and y7(¢ —¢) tends to have a multivariate normal
distribution as 7—o0, whence G(§, ¢)is a T consistent estimate of G(8,
¢). By the stochastic expansion, we have

JT{G(8, §)—G(8, 9)} = (DeGI*VT(§— )+ 0x(D),
where DyG is a my-dimensional vector of the gradient of G(8, ¢). It
follows that y7T{G(d, ¢)—G(8, ¢)} is asymptotically normally distributed
with mean 0 and variance

H(8, ¢) = D,G(8, $)*¥(8, $)D.G(0, ¢), (3.4)
where W(4, ¢) is the asymptotic variance-covariance matrix of y7(¢ —¢).
Note that the first-order asymptotic distribution of G(d, ¢) is completely
determined by ¢ and the nonstandard limiting distribution of 4 is not
involved, the sampling error of & being negligible in comparison with that
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of ¢. Consequently, the test for G(8, ¢) and the confidence-set construc-
tion can be conducted based on the Wald statistic
W= T{G(8, $)—G(4, $)Y/H(E, ¢), (3.5)

which is asymptotically distributed as x? distribution with one degree of
freedom if (4, ¢) is the true value.

As regards evaluation of D,G at §, ¢, the numerical differentiation is
practical in view of the complexity of the exact analytic expression.
Specifically, the gradient of G(8, ¢)

9G . 9G >*
3’ Odn

is evaluated by

DsG =

9 (-G8, G+h)=G(D, §—hIH(@), (36)

for sufficiently small positive % where %, is the #n,X1 vector with the 7-th
element % and all the other elements zero; namely, 4, = (0, -, %, 0, -,
0O* i =1,2, -, 7

The numerical computation of ¥(4, ¢) in (3.4) can be conducted as
follows. We set ¢ = pec{a, T}, ¢® = vec(y, ®) and ¢ = p(32), and
also we set ¢%? = pec(¢®, ¢@). Then the log-likelihood function of the
parameter ¢%? and ¢ based on observation Z(1), ---, Z(7T) can be given
as

(g2, $91Z) = —-L(plog 2n+log det )35 Vi,
where
Vi = ZVOVO*,
and
V(t) = AZ(t)—aB*Z(t——l)—:g}:l"(j)AZ(t—j)—/,z—@P(t)h
Let D be the #* by p(p+1)/2 duplication matrix and let D* be the Moore-
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Penrose inverse of matrix D [see Magnus and Neudecker (1988), p49].
Denote by ¢ and ¢® the ML estimators of ¢“® and ¢® respectively,
then the asymptotic variance-covariance matrix of /7{¢ @ —¢"?} and y7T
($®—¢®) is equal to
2RQ™ 0
( 0 2D*(S@I)DS
where Q@ = lim7-«(1/7)281S(8)S(H*,
S(t) = vec(B*Z(t—1), AZ(¢t—1), =, AZ(t—a—1), 15, P(1))
[see Magnus and Neudecker (1988), p321]. The asymptotic covariance of
VT(§P—¢M), which is denoted by W,uya is then constructed from
S®Q! by eliminating the rows and columns corresponding to J7(¢®
~¢@®). Infact we can write the symmetric (p-(» +p-{a—1))+ p- s4) dimen-
sional matrix 2I®Q™! into pX p partitioned matrix in the form of
ou@™' 0@t o 0,,Q7
Q™" 02Q' - 0@

G.7)

0@ 0p2Q" - 0pp@Q7!
where all of the submatrices 6,Q7'(z, 7 =1, =, p) are (r+p-(a—1)+sa)

dimensional squared matrix. The covariance matrix ¥ ¢, ¢, is construct-
ed by eliminating all the last s, columns and the last s, rows of the

submatrices 6,Q7", 7, j =1, =, p.
As for the estimation of >} and @ in (3.7), we set
S = WD Z(VD T()), (39)
Q= WNZSWHS@, (39)
where

V(1) = A2(1) - af*Z(t—1)~ SE(AZ(—)— E~BP(1),
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and
S(t) = vec(B*Z(t—1), AZ(t=1), -, AZ(t—a~1), 1p, P(2)).
In view of the consistency of ¢ and @, if ¥ ¢y, ¢a, denotes the variance-
covariance matrix of J7T(¢®—¢®) evaluated at (4, ¢), then
Vg day 0
0 2DY(E®)D

Therefore we can use the first right-hand side member of (3.10) as a

(4, ¢) = ( )+o,,(1)., (3.10)

consistent estimate of ¥(4, ¢).

By (3.4) and (3.10), we then get a variance estimate H = H(4§, ¢).
Denote Gy the given scalar, for the purpose of testing the null hypothesis
G(8, ¢) = Go, we evaluate the test statistic W defined by (3.5). In order
to test no-causality in Granger’s sense, we set the null hypothesis as Go; =
0 and the test statistic is given by

W =T{(G(8, $)P/H(G, §). (3.11)
If W = x%1), for x&(1) the upper a quantile of the »? distribution with one
degree of freedom, we may reject the null hypothesis of non-cansality from
Y to X. On the other hand, in view of (3.5), the (1— @) confidence interval
of th causal measure G(8, ¢) is provided by

(G(8, §)—H., G(8, §)+H,), (3.12)

Where H, = (1/ T)H(8, $)2(1)
Remark 3.1. Note that our algorithm for evaluating the Wald statistic and

the confidence set does not depend upon the kind of measures of one-way
effect so that it applies also to Dy-x(e) or Dy.x(#, %), given in Section 2.

4. Preliminary Analysis

The test theory of the causal measures developed in the foregoing
sections is applied in this section to macroeconomic data of Japan, in order
to examine the performance of our Wald test in practice. The data used
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are the quarterly observations of
GDP (Y), M2+CD (M), Call Rates
(R), Exports (Ex), Imports (Im) in
Japan during the period of the first
quarter of 1975 through the fourth
quarter of 1994. For the same
period, the exports to China (Ex-
JC or Exports-JC) and the imports
from China (Im-JC or Imports-JC)
are also investigated. The data
of GDP, M2+CD as well as Call
Rates are based on ‘Economic
Statistics Monthly’, by Research
and Statistics Department, Bank
of Japan. The Exports and
Imports data are in U.S. Dollar
and are based on ‘Balance of Pay-
ments Monthly’, by International
Department, Bank of Japan.
The Ex-JC and Im-JC are the sum
of monthly data (which is origi-
nally based on The Summary
Report on Trade of Japan MOF)
from Nikkei NEEDS Macro
Database. Both of the Ex-JC and
the Im-JC are in U. S. Dollar. All
the variables are nominal and,
except for the Call Rates, are
given in logarithmic scale. Figure
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4.1 depicts the original data in levels and in differences. All the seven time
series appear, to a reasonable extent, non-stationary with stationary differ-
ences.

In the following study, we apply the common lag-length ¢ = 5. The
lag-length of autoregressive process delimits the range of possible configu-
ration of the FMO. In order to avoid the lag-length playing a part in
differentiation of the configuration, we do not use information criteria
which are rather suited for identification of individual models. As is seen
below, the uncorrelation and the Gaussianity hypotheses seem mostly
supported for the residuals derived by fitting the lag-length ¢ = 5. The
fitted model we used is the cointegrated p-dimensional AR(5) in ECM form
represented by

AZ(t) = IZ(1—1)+ kZ:}lF(k)AZ(t—k)-l— LA DP(E)+e(t), 1)

where e(t)’s (¢ =1, -, T) are Gaussian white noise with mean 0 and
variance-covariance matrix 3, and we choose P(t) the 3x1 vector of
centered seasonal dummies so as not to produce seasonal trend effects in the
level of Z(¢). The first 5 observations of Z(¢) are kept for initial values.
We summarize Johansen’s ML test for cointegration rank [for the
details see Johansen (1988, 1991, 1995)]. The hypothesis of independent »
cointegration vectors is
H(y) Il = aB¥%, 4.2)
where ¢, f are pX» matrices (» < p) such that rank (Il) = ». If » =0,
(4.1) reduces to a full-rank unit root process. If » = p, then II is full rank
and the process Z(t) is stationary. Denote by Ro(¢) and Ri(¢) the residuals
obtained by regressing AZ(¢) and Z(¢—1) on AZ(t—1), -, AZ(t—k+1),
15, P(t) respectively. Define a pX p matrix S; by

Sy = T ZRIORAL", (1, j =0, D). (“.3
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Under the hypothesis (4.2), the ML estimator of I is found by the following
procedure [see Johansen (1995), Theorem 6.1] :

(1) First solve the equation

I/iSu“SloSo_olSml = (, (4.4)

which produces the decreasing sequence of eigenvalues 1 > A, > -+ > f, >
0 and the matrix constituted by the corresponding eigenvectors V = (¥4,
«-. V), which is normalized so the V*S,V = I.

(2) Given #, the ML estimator of g is g = (V;, -+, V,), for which

R (H () = |Sul LA~ «5)

The likelihood ratio test statistic for the hypothesis H(r») against H(p) is
given by the ‘trace’ statistic r,qc(#) (abbreviated as z(r)):

(r) = — Tizéﬁln(l - 4. (4.6)

The asymptotic distribution of r(#) is nonstandard and quantile tables are
given by Osterwald-Lenum (1992) based upon Monte Carlo simulations. In
the case of there is no or little prior information about #, we might estimate
» as follows ; Denote by 7(i|1—a) the (1—a) quantile of z(z) and by 7(z)
be the observation of z(i). If 7(0) < r(o|l—a), we chose 7 =0. For »
=1, ~ p—1, let # be the first » such that
7(r—1) > r(r—1j1—a), and 7(r) < t(r{l—a),

and if there is no such », then set 7 = p.

The estimates of the other parameters are obtained by OLS by setting
Il = ¢f* in the equation (4.1). A variety of aspects of the identification
problem are discussed by Johansen (1995), but we choose in our analysis the
least restrictive model specification.
Remark 4.1. The numerical computations of the paper were conducted by
FORTRAN programs [see Yao (1996a)]. By applying those programs to
the seven macroeconomic series, we investigated bivariate, trivariate as
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well as four-variate models. Since the size of twenty-year quarterly data
cannot be regarded as large, to be conservative, we use T —n, instead of
the sample size 7 in (3.8), (3.9) and (3.11).

The estimated eigenvalues and the corresponding eigenvectors of the
bivariate and trivariate as well as four-variate in ECM are given in tables
411, 412, 4.2, 43, respectively. The variables of the models are indicat-
ed in the tables. The observed trace statistics are also listed in the tables.
The 90 and 95 percent quantiles in Table 4.3 for cointegrating rank » = 1,
2, 3, 4 are from Table 1 in Osterwald-Lenum (1992). We estimate # in this
paper based not only on the r(#) statistic but also on the consideration of
other aspects of data and the corresponding model. Consider for example
the process of determining the cointegration rank # for the case of four-
variate model where the necessary quantiles are listed in Table 4.3. It shows
that 7(0) = 48.73>43.95 = ¢(0/0.9) and #(1)=25.38<26.79 = z(1]0.9).
According to the above procedure we select # = 1, which is listed in figures
5.1 (c1) and (c2). Consider for another example the determination of the
cointegration rank » for bivariate model Z = (Y, R)* where the necessary
quantiles are listed in Table 4.1.2. Even though the observed test statistics
indicate two cointegrated relations, considering the obvious nonstationary
nature of the nominal GDP, we chose # = 1. The parameters ¢ and I'(%),
which will be used in the following causality analysis, are then estimated by
the OLS method and denoted by &, T'(k), (£ =1, 2, 3, 4), respectively.

A criterion for the lag length selection is that the resulting residuals are
uncorrelated to a reasonable degree. This is checked by Portmanteau
tests. In this paper, in stead of using the Ljung-Box test statistic [Ljung
and Box (1978)] which is given by

LB(s) = T(T+2)Z}sl Tl—/' 1r{Co; i Cos* Cid,

we use the following modified form given by Hosking (1980), which has
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Table 4.1.1 The Eigenvalues and the Eigenvectors and the Trace Statis-
tics for Bivariate Models

Eigenvalues Eigenvalues

(0.077 0.028) (0.113  0.000)

Eigenvectors | p-» T Eigenvectors | p-r» T
M 0.583 -0.319 1 2.13| R 0.601 -0.105 1 0.01
Ic  ~0.812 0.948 2 8.14| Ic 0.799 0.994 2 8.97

Edgenvalues Eigenvalues

(0.094 0.004) (0.145 0.013)

Eigenvectors | p-» 7 Eigenvectors | p-» T
Ec  7.405 7.691 1 029 R 0.902 0.991 1 1.01
Ic 0.286 0.286 2 7.69| Ec  0.432 -0.137 2 12.78

Eigenvalues Eigenvalues

(0.183 0.047) (0.152 0.049)

Eigenvectors | p-» 7 Eigenvectors | p-#» T
Y -0.766 0.993 1 364 M 0.840 0.968 1 3.80
Ec  0.643 -0.115 2 18.78| Ec -0.543 -0.251 2 16.12

1. Y GDP M : M2+CD, R: Call Rates, Ex & Exports, Im . Imports,
Ec : the Exports to China, Ic : the Imports from China.

2. v is the cointegration rank.

3. The notations ave also used for the following tables.

better performance for small sample size :

He(s) = T*3}—tr(Co.Cic' Cor* G, *.7)

when

Coy=T7 3} E&ct

Under the null hypothesis of uncorrelation, the distribution of this test
statistic is approximated for large T and for s > g by . distribution with
degrees of freedom f = p*(s — a) where ¢ is the lag length of the model. For
our cases of bivariate, trivariate and four-variate models, we choose s =
18 and the observed statistics are listed in Table 4.4. The results in Table

4.5 support that all the residuals in the models are reasonably uncorrelated.
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Table 4.1.2 The Eigenvalues and the Eigenvectors and the Trace Statis-
tics for Bivariate Models

Eigenvalues Eigenvalues
(0.146 0.035) (0.112  0.055)
Eigenvectors 7 Eigenvectors 7
Y 0.834 -0.713 66 Y 0.986 0.997 4,28
M -0.551 0.702 46| R 0.166 -0.075 3.16
Eigenvalues Eigenvalues
(0.152  0.049) (0.119 0.034)
Eigenvectors 7 Eigenvectors 7
Y 0.840 0.968 3.80] Y -0.620 0.902 2.60
Ex -0.543 -0.251 6.12| Im  0.784 -0.432 2.12
Eigenvalues Eigenvalues
0.152 0.051) (0.204 0.036)
Eigenvectors 7 Eigenvectors 7
M 0.911 0.999 395y M -0.735 0.909 2.77
R 0.413 0.018 6.33| Ex  0.678 -0.417 9.90
Eigenvalues Eigenvalues
(0.145 0.032) (0.126 0.015)
Eigenvectors 7 Eigenvectors T
R 0.262 0.259 1 2.45| R 0.316 -0.077 1 1.18
Ex  0.965 ~0.966 2 14.19| Im  0.949 0.997 2 11.27
Eigenvalues
(0.146 0.036)
Eigenvectors | p-» T
Ex -0.574 0.866 1 271
Im  0.819 -0.499 2 14.53

The Gaussian assumption of the disturbance term is checked by apply-
ing the omnibus test for multivariate normality given by Doornik and
Hansen (1994) to the residuals of the estimated models [see, for technical
details, Shenton and Bowman (1977) and Doornik and Hansen (1994)]. Let
R* be the pX T matrix of the residuals with sample covariance matrix F
= (f;;). Create a matrix D with the reciprocals of the standard deviations
on the diagonal,
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Table 4.2 The Eigenvalues and the Eigenvectors and the Trace Statistics for
Trivariate Models

The Eigenvalues The Eigenvalues
(0.303 0.128 0.020) (0.242 0.141. 0.033)
The Eigenvectors p-r T The Eigenvectors p-r 7
Y 0.829 0.88 0.788 | 1 151 |M -~0.746 -0.591 0.845 | 1  2.52
M -0.560 -0.462 -0.615 | 2 11.75| R -0.012 0.069 -0.017 | 2 13.93
R -0.007 0.021 0.010 | 3 38.83|Ex 0.665 0.804 -0.535 | 3 34.70
The Eigenvalues The Eigenvalues
(0.201 0.131 0.031) (0.258 0.134 0.031)
The Eigenvectors p-r 7 The Eigenvectors p-v T
M  0.749 -0.508 0.820 | 1 2.371Y -0.794 -0.844 0.932 | 1 2.39
R 0.111 0.004 0.016 | 2 12.93/Ex 0.596 0.346 -0.147 | 2 13.15
Im -0.653 0.861 -0.572 | 3 29.77{Im -0.120 0.409 -0.331 | 3 35.53
The Eigenvalues The Eigenvalues
(0.164 0.106 0.034) (0.169 0.115 0.032)
The Eigenvectors p-r 7 The Eigenvectors p-r T
M 0934 -0.797 0.919 | 1 259/ M 0.749 -0.508 0.820 | 1 2.44
R 0.358 -0.018 0.012 { 2 10.99|Ec -0.388 -0.365 0.069 | 2 11.58
Ic 0.021 0.603 -0.394 | 3 24.42|Ic 0.331 0.773 -0.443 | 3 25.48
D = diag(fi'?, -, fan"), (4.8)

and form the correlation matrix C = DFD. Define the transformed
matrix of R, by

R.= HL V*H*DR}, 4.9)
where [ is the diagonal matrix with the eigenvalues of C on the diagonal.
The columns of H are the corresponding eigenvectors, suchthat H*H = I,
and I. = H*CH. Then we compute univariate skewness +/5;; and kurtosis
by, of each vector of the transformed R}, : =1, ---, p, where we follow the
notations by Doornik and Hansen (1994). Under the null hypothesis of
multivariate normal distribution of the residuals, the test statistic is
asymptotically distributed as:

Ep = Z¥ I+ Z5 2o~ X (2p), (4.10)
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Table 4.3 The Eigenvalues and the Eigenvectors and the Trace Statistics
for Four-Variate Models

The Eigenvalues
(0.268 0.163 0.124 0.028)

The Eigenvectors pr 7
M 0.735 0.083 —0.382 0.864 1 2.13
R 0.015 —0.021 0.047 0.006 2 12.07
Ex —0.677 —0.584 0.781 -0.096 3 25.38
Im 0.041 0.808 —0.492 —0.495 4 48.73
The Eigenvalues
(0.241 0.162 0.093 0.032)
The Eigenvectors p-r 7
M 0.369 —0.477 ~0.518 0.110 1 2.42
R 0.566 —0.069 0.781 —0.508 2 9.73
Ec —0.731 0.871 —0.342 0.854 3 22.97
Ic 0.097 0.097 —0.074 0.021 4 43.65
Trace Statistics: r-statistic
b—r 80% 90% 95%
1 1.66 2.69 3.76
2 11.07 13.33 15.41
3 23.64 26.79 29.68
4 40.15 43.95 47.21
1. The Trace statistic quantiles ave from table 1 in Osterwald-Lenum

(1992).
2. These quantities are also used for Tables 4.1.1, 4.1.2, 4.2.

where Z¥ = (zn, -, z1p) and ZF = (zm, -, 2») are determined by (4.11)
and (4.12) given below in Remark 4.2. The observed test statistics E, for
all the models used in this paper are listed in Table 4.5. Those test
statistics seem to indicate that there is no significant departure from
Gaussianity. The results in tables 4.4 and 4.5 ensure us that we may
proceed to the discussions on the one-way effect measurement on the basis
of the proposed ECM’s.

Remark 4.2. (i) For; =1, -, p, the transformation for the skewness /5,
into z; is due to D’Agostino (1970) :
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Table 4.4 The Hg-Statistics and the p-values
Hg-Stat.  p-value Hg-Stat. p-value
Y&M 55.8605 0.3319 | R&Im 51.3962 0.4976
Y&R 56.9648 0.2956 | Ex&Im 68.1974 0.0653
Y&Ex  62.9925 0.1413 | Y&Ex&Im 141.7412  0.0596
Y&Im 58.3853 0.2524 Y&M&R 129.4265 0.2037
M&R 42.1847 0.8325 | M&R&Im 116.0028  0.5087
M&Ex  61.1332 0.1808 | M&R&Ex 133.3932  0.1427
R&Ex  59.6746 0.2168 | M&R&Ex&Im 229.2855  0.1492
Y&Ec  60.6232 0.1928 | Ec&lc 62.4273  0.1525
M&Ec  50.4564 0.5348 | M&Ec&lc 125.2771  0.2836
Mé&lce 58.1883 0.2581 | M&R&Ic 122.7860  0.3338
R&Ec 63.3306 0.1349 M&R&Ec&lc 250.1354 0.0242
R&lc 58.1436 0.2595

1. Hg-statistic is defined by (4. 7).

2. The degree of freedom of the Hg-Statistic is 4, 6 or 8 for bivariate
model, trivariate model and four-variates models respectively. This
is also true for the next Table 4.5.

Table 4.5 Testing Normality of Residuals

Ep-Stat.  p-value Ep-Stat.  p-value
Y&M 0.0940 0.9989 R&Im 0.1067 0.9986
Y&R 1.1102 0.8927 | Ex&Im 0.8692 0.9289
Y&Ex 2.2849 0.6835 | Y&Ex&Im 0.5600 0.9970
Yé&Im 0.6071 0.9623 | Y&M&R 5.0317 0.5398
M&R 5.6457 0.2272 | M&R&Im 10.3059 0.1123
M&Ex  2.7026 0.6088 | M&R&Ex 8.9454 0.1767
R&Ex 7.6296 0.1061 M&R&Ex&Im 12.5157 0.1296
Y&Ec 2.6474 0.6184 | Ec&lc 0.5454 0.9689
M&Ec 2.5871 0.6291 | M&Ec&lc 3.5588 0.7361
Mé&lc 1.1489 0.8864 | M&R&Ic 1.4793 0.9609
R&Ec 7.5628 0.1090 | M&R&Ec&Ic 0.5714 0.9998
R&lc 0.1205 0.9983

1.

Ep-statistic is defined by (4. 10)
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B =3T*+21T =700 T+INT+3)/(T—=2)(T+5XT+7)(T+9),

w* = —1+{2(8—D}"",

8 = 1/{logv/?}*, (4.11)

y = Jou[(*—1I)(T+1)T+3)/{12(T —2)}]"*,

21 = Slog{y +(y*+1)"}.
(ii) For ¢ = 1, -+, p, the kurtosis &, is transformed from a gamma distribu-
tion to ¥%, and then transformed into standard normal z; using the Wilson
-Hilferty cubed root transformation :

§ =(T—3T+1)T*+15T —4),

a=(T—=2XT+5T+7)(T*+27T-70)/68,

¢ =(T—=I(T+5(T+7)(T*+2T—5)/68,

b= (T+5(T+7(T+37T*+11T—-313)/125, (4.12)

a=at+bhic,

x = (b2i—1—b1,)2k,

2 = {(2/20)"* =1+ (1/92)H9a)"

5. Empirical Measurement of One-way Effect

In order to illustrate the performance of the Wald test, we apply the
Wald test in this section to the study of the causal relationships of Japanese
macroeconomic time series. The following analyses are conducted on the
model (4.1). The empirical examples would characterize the recent
Japanese macroeconomy in view of the one-way causality.

For the model (4.1), let C(e™*) be the adjoint of the matrix

L—(I+ aBf*)e *— éf‘(j‘)(e—m_ A

as given in Section 3. Then the measures of one-way effect from Y to X
are estimated on the basis of the frequency response estimate A(e™#) =
Cle—™312 and the spectral density estimate (1) = %E/T(e'“)/f(e‘“)*”
As for the numerical evaluation of D,G in (3.6), we choose % = 0.0001;
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(21) M2+CD to GDP (22) GDP to M2+CD
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1. 7 : Identified cointegration rank

2. W . Wald statistic given by (3.11)

3. CI : The 95% confidence interval of OMO (in case the non-causality null
hypothesis is rejected).

4. Exports-]JC means the exports to China, Imporis-JC means the imports from
China.

Figure 5.1 Estimated measures of one-way effect, identified cointegration
ranks, Wald statistics and confidence intervals

after having conducted evaluation of the Jacobian matrix for numerous
choice including smaller %, we found that the results were sufficiently
stable for 5 = (0.0001.

Figure 5.1 lists 26 plots of the estimated FMO. There, plots(al)
through (al5) show bivariate cases, and plots (bl) through (b7) show trivar-
iate cases, while plots (cl) to (c4) are for four-variate. The estimates of
cointegrating rank () and the OMO (M) as well as the Wald test statistic
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(b5) GDP & Call Rates to M2+CD
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W defined by (3.11) are also presented in the figures. The 95 per cent
confidence intervals of the OMO, in case the null hypothesis of non-causal-
ity is rejected, are also listed in the corresponding figures. The OMO
estimates are obtained by numerical integration of the estimated FMO’s by
dividing [0, #] into 200 equal intervals. For each of the models we calculate
FMO for frequency points A; = /200, i =1, 2, -, 200. As for the num-
ber of division of [0, x], we checked many cases of interval division up to
1200, and we found that the 200 equal-division of the interval [0, x] is fine
enough.

Although similar computations were conducted on possible combina-
tions and pairing of the seven variables, only a few are exhibited in the
paper to save the space. In view of Figure 5.1, notable findings are as
follows :

« The estimated OMO from M2+CD to nominal GDP is about three times
of that in the reverse direction, but both of the two measures are not
significant at 0.05 critical level [see plot (al)]. Since the p-value of the
Wald test for testing the one-way effect from money supply to GDP is
0.08, even though the effect is small, but significant at 10 per cent signifi-
cance level. Plot (al) also shows that there is no one~way effect in the
frequency band [0.47, x], or in a period band shorter than one year and
a quarter. The estimate of the FMO from money to GDP has a peak in
the interval of [0.257, 0.47], suggesting that it possibly takes about one
yvear and a quarter for the effect to appear. The second peak near the
origin indicates the existence of long-run effect.

In general, Call Rate has conspicuous one-way effects to the other

variables. In contrast, the effects in the reverse direction are small and
not significant. [see plots(a3)to (a8)in Figure 51]. The one-way
effects of Call Rates to GDP, to M2+CD and to Imports are very steady
in all the frequency region. The plots (a5) and (a8) show that the effects
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of Call Rates to Exports and to Imports-JC are not long-run. The one
-way effect in frequency domain of Call Rates to Exports has a peak at
frequency 0.557 [see plot (a5)], implying that the highest effect comes at
the 3rd quarter period. The presence of one-way effect from interest
rates would seem rather conformable to the conventional understanding
of macroeconomic activities. Also this role of interest rates seems to be
consistent with what Sims (1980) found in the macroeconomic data of U.
S.

The plot (a9) shows that the one-way effect from Exports to GDP is
significant. The exports to China has one-way effect to GDP and the
causal measure is comparatively large [OMO =7.09, see plot (al5)]. The
corresponding one-way effect in the frequency domain shows that both of
the two effects are not long-run. The estimate of the OMO from
Imports to GDP is 2.61 and W=2.79 with a p-value 0.095 [see plot (al0)].
It is only significant at 0.1 critical level. The one-way effect from
Exports and Imports to GDP is 3.82 and W=3.27 with a p-value 0.07. The
effects from GDP to Exports and to Imports are not significant. The
significant one-way effects from GDP to the exports to China and to the
imports from China are not obseved. On the whole, it shows that during
the period we analyzed, the Japanese economic growth can be thought
derived by the external trades.

The estimated one-way effect from Exports-JC to M2+ CD is significant
[see plot(all), OMO=6.85, with a 95 percent confidence region (5.73,
7.96)]. The FMO is very low around the frequency 0.32z. The OMO of
Imports-JC to M2+CD is 4.06 [Wald-statistic W = 105.04, see plot
(al2)]. The effect is comparativelly stedy in the lower frequency band
and is not long-run. Plot (b1l) shows that the one-way effect of Exports
-JC and Imports-JC to M2+CD is significant (OMO =641, W=16.98).
The three plots (all), (al2) and (bl) show that Japanese money supply is
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partially effected by the trade between Japan and China.
The OMO from Imports-JC to Exports-JC is significant but very small
[OMO =005, W=17.17, see plot (al4)]. The one-way effect is only long
—run. The reverse of the OMO, the one-way effect from Imports-JC to
Exports-JC, is comparativelly large but not significant. Plot (al3) implies
that, in a short frequency band including the frequency 0.5z, the OMO
may be significant (the work of statistical test will be left for the next
paper). The emperical results show that at 95 confidence level there is
no significant one-way effects between Exports and Imports. A further
investigation can tell us that at a compararively large critical value,
there exists a comparatively weak one-way effect from Exports to
Imports, and the one-way effect may be only long-run.
The one-way effect of M2+CD and Call Rates to Imports-JC is signifi-
cant and comparatively short-runt [see plot (b2)]. The OMO of M2+
CD and Imports-JC to Exports-JC is 0.3 with a 95 confidence region (0.04,
0.55). Plot (b3) shows that the one-way effect are only concentrated to two
short frequency bands including 0.257 and 0.657. The one-way effect
from M2+CD and Call Rates to GDP is significant and the corresponding
one-way effect in the frequency domain has a peak at frequency 047

[see plot (b4)], implying that the highest effect comes from about one
year and a quarter period. Both of the one-way effects from M2+CD and
Call Rates to Exports and to Imports are not significant at 0.05 signifi-
cance level. These findings seem to indicate that money supply is ineffec-
tive to the Japanese external trades in this period of the floating exchange
-rate of Japanese Yen.
Our Wald test shows that both of the effect from interest rates and
exports, and that from interest rates and imports to money supply are
significant at 0.05 critical value. The former effect is greater than that
of the latter [see plots (b6), (b7)]. The one-way effect of interest rates
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.

and imports to money supply is very stable in all the frequency region [0,
7). The evidence also indicates that the one-way effect of exports to
money is not significant and we have
My = 0.03, Mp-yu = 4.53, Mes-u = 1.89
whereas
MY+R—-M - 7"77, MR+E.x—~M = 5.86.

These results imply that for some cases a policy mix is needed and is
perhaps more effective than pursuing a single policy objective.
The effect from Exports and Imports to M2+CD and Call Rates is strong
and significant [see plot (c1)]. The effect in the reverse direction, the
effect of M2+ CD and Call Rates to Exports and Imports [see plot (c2)],
is comparatively large in value (OMO =4.82) but not significant (W= 1.15
with a p-value=0.23). The effect from Exports-JC and Imports-JC to
M2+CD and Call Rates is strong and significant [see plot (c3), OMO=
5.60, W = 25.26]. The effect of M2+CD and Call Rates to Exports-JC
and Imports-JC [see plot (c4)], is comparatively large in value (OMO =
5.77) but not significant (W = 1.26 with a p-value=0.26). The magnitude
of the estimated OMO itself does not tell us whether a one-way effect is
statistically significant or not, and a test is needed in judging the signifi-
cance. As a whole, the findings imply that in the recent Japanese econ-
omy, the external trades have a significant one-way effect on the
monetary side of the Japanese economy.

To summarize, the above empirical analyses show that there is no

significant one-way effect from income to money, but the reverse effect is

significant at size 0.1 but not significant at size 0.05. The interest rates in

general cause the other variables but not the other way around. In general,

the external trade causes monetary economy but not in the other direction.

Even so, the monetary economy causes the imports from China. As for the

effects of external trades to Japanese economic growth in the period we
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dealt with, the cause is mainly from exports but it is not long-run. The
emperical result of the imports from China does not affect Japanese eco-
nomic growth. This may support the comman understanding that the
economy of Japan and that of China are cooperative, especially in the field
of external trade. The empirical results also indicate the cases for which
policy mix might be more effective.

6. Concluding Remarks

In this paper we show the one-way effect causal measure for cointe-
grated relations and show that causality hypotheses can be tested by
standard asymptotically y* distributed Wald statistics. Not only testing
causality in cointegrated relationships by overall one-way effect measure,
we also discussed inference on the long-run and short-run effects between
pairs of vector-valued time series in the frequency domain. The proposed
method includes testing Granger’s non-causality as an instance of its
multiple applications.

We presented how the theory of the one-way effect is put into practice
and how to interpret empirical evidence in view of the theory. The empiri-
cal analyses were conducted indetail for seven quarterly macroeconomic
series for the period of the first quarter of 1975 through the fourth quarter
of 1994 in Japan. Our Wald test shows that money causes income mildly
but not vice versa [see also Morimune and Zhao (1997), where mainly the
standard F test and the Wald test presented by Toda and Phillips (1993) are
used]. The one-way effects from interest rates to the other variables are
comparatively strong and significant in general but not in the reverse
directions. Our findings seem to indicate that monetary policies is ineffec-
tive to the external trades of Japan and that the growth of Japanese
economy is driven by exports. The emperical results also support the
comman understanding that, in the period we discussed, the relationship of
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international trade between Japan and China is cooperative.

In this paper, we did not pursue sophistication with respect to model
specification and inference procedures. Although the cointegration model
and the accompanying inference method of the paper is mainly based on
Johansen’s, they are not essential to our causal analysis at all and could be
relaxed in many directions. As for other extensions of the paper, a model
which allows breaks in the deterministic trend might be more realistic. By
means of the integral of the FMO on specific frequency bands, the long-run
and short-run causal relationships should also be tested. Moreover,
although the analysis of this paper relies entirely upon “simple” causal
relations, ignoring interaction with a third series, “partial” causal mea-
sures, which explicitly take into account the presence of a third series
effect and its elimination, might be more desirable if we start from a well
-defined full model of a macroeconomy. The problem of eliminating a third
-series effect has been discussed in Granger (1969), Geweke (1984), Hosoya
(1998), and recently in Hosoya and Yao (1999). Statistical inference and
empirical studies based on these approach will be dealt with in the forth-

coming papers.
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