Arrow's Impossibility Theorem and ways out of the impossibility

H. Reiju Mihara

Outline

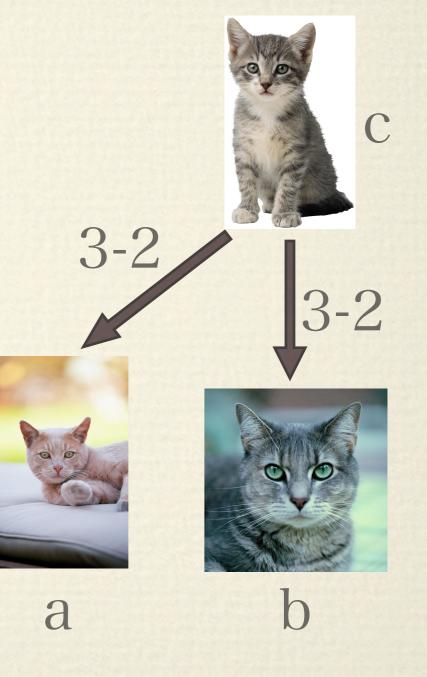
Examples

Impossibility theorem

Ways out of the impossibility

A Beauty Contest

- Individual rankings (preferences)
 - * 3 judges: cba
 - * 2 judges: bac
- * Plurality rule elects c.
- Condorcet's pairwise comparison also chooses c (majority winner):
 - c beats both a and b by a majority of 3 to 2.
- * Looks like c is the "right" choice...



The Borda Rule

3 judges: cba 2 judges: bac

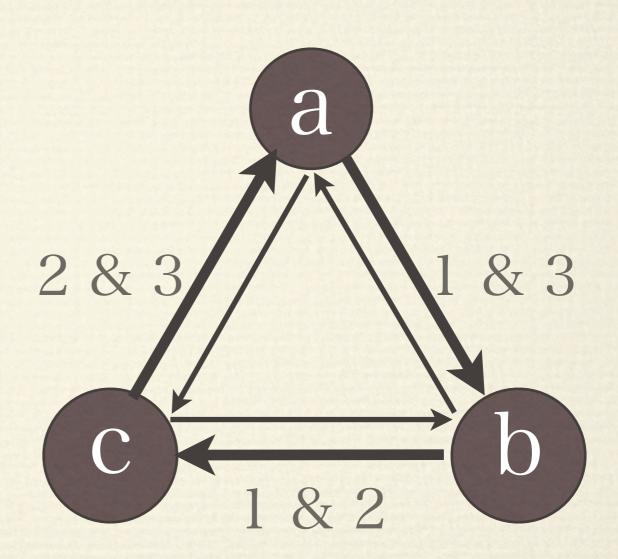
- Each voter (judge) gives
 - 2 points to the 1st alternative in his preference,
 - * 1 point to the 2nd,
 - * 0 point to the 3rd.

- * Total scores:

 - * b gets 3*1+2*2=7 pts.
 - * c gets 3*2+2*0=6 pts.
- * The Borda ranking: bca.
- * b is the Borda winner.
 - But a majority prefer c to b.

The paradox of Voting

- * 3 voters' preferences:
 - Voter 1: abc
 (aP₁b, bP₁c, aP₁c)
 - Voter 2: bca
 - Voter 3: cab
- Majority preferences form a cycle.
 - No maximal ("best") alternative.



An aggregation rule

For the moment, suppose there are 3 alternatives and 3 voters.

 A (preference) aggregation rule is a method for aggregating individual rankings into a single consensus ranking.

profile (R₁, R₂, R₃) of preferences R_i aggregation rule preference R

The case of 3 alternatives and 3 voters

- * Each voter has 3!=6 possible preferences R_i:
 - abc, acb, bac, bca, cab, cba.
 - (Okay to allow preferences such as [ab]c, a[bc], [abc]. 7 more possibilities.)
- * So, there are $6^3=216$ inputs (profiles).
- * An aggregation rule must specify a preference R for each of the 216 profiles (R₁, R₂, R₃).
 - R can be any of 6+7=13 preferences, because disallowing ties is too restrictive.
- * There are many (13²¹⁶) aggregation rules, including terrible ones.

Arrow's Theorem

- * Assume there are at least 3 alternatives and 2 voters.
- Arrow (1951). There is no aggregation rule that satisfies the three conditions:
 - Unanimity. If every voter prefers x to y, then the group must rank x above y.
 - (Pairwise) Independence. Whether the group ranks x above y depends only on voters' preferences between x and y.
 - Nondictatorship. There is no voter whose preference always determines the group preference.

How about the rules we mentioned?

- Pairwise majority voting
 - satisfies Independence, Unanimity, and Nondictatorship;
 - * is not an agregation rule.
 - The voting paradox gives a cyclic group preference, not one of the 13 rational preferences.
- The Borda rule
 - is an aggregation rule, satisfying Unanimity and Nondictatorship;
 - violates Independence (next slide).

The Borda rule violates Independence

- * Before:
 - 3 judges: cba
 - 2 judges: bac
 - Borda rank: bca
- * After:
 - 3 judges: cab
 - 2 judges: bac
 - Borda rank: cab

- The group ranked b above c before.
- Individual preferences between b and c is the same as before.
- If Independence is satisfied, the group should rank b above c after the change.
 - But it doesn't.

Ways out of Arrow's impossibility

1. Infinitely many voters

- There are rules satisfying Arrow's conditions (Fishburn, 1970).
- Mihara (1997 ET; 1999 JME; 2004 MSS) reinterprets "individuals" and considers computational issues.

2. Group choice instead of group preference

- Nondictatorial functions are manipulable (Gibbard 1973; Satterthwaite 1975).
- Mihara (2000 SCW; 2001 SCW) considers group manipulation.

3. Restricting profiles of preferences

- Single-peaked preference: Black's Medial Voter Theorem in one dimension (1958).
- McKelvey's Chaos Theorem (1976) in higher dimensions.

4. Relaxing rationality of group preference

- Assuming acyclic (not cyclic) preferences is enough for maximization.
- A "simple" aggregation rule is acyclic iff the number of alternatives is less than the **Nakamura number** (Nakamura, 1979).
- Kumabe and Mihara (2008 JME; 2008 SCW) extend Nakamura's theorem and obtain conditions for a large Nakamura number.
- 5. Restricting the number of altenratives to 2
 - Only simple majority rule satisfies **anonymity**, **neutrality**, and monotonicity (May, 1952).
 - Mihara (1997 SCW; 2004 MSS) considers anonymity and neutrality without restricting the number of alternatives.

References

* Papers by H.R. Mihara http://econpapers.repec.org/RAS/pmi193.htm

* H. Reiju Mihara's website http://www5.atwiki.jp/reiju/