Arrow's Impossibility Theorem and ways out of the impossibility

H. Reiju Mihara

Outline

* Examples
* Impossibility theorem
* Ways out of the impossibility

A Beauty Contest

* Individual rankings (preferences)
* 3 judges: cba
* 2 judges: bac
* Plurality rule elects c.
* Condorcet's pairwise comparison also chooses c (majority winner):
* c beats both a and b by a majority of 3 to 2 .
*Looks like c is the "right" choice...

The Borda Rule

3 judges: cba
2 judges: bac

* Each voter (judge) gives
* 2 points to the 1 st alternative in his preference,
* 1 point to the $2 n d$,
* 0 point to the 3 rd.
* Total scores:
* a gets $3^{*} 0+2^{*} 1=2$ pts.
* b gets $3^{*} 1+2^{*} 2=7$ pts.
* c gets $3^{*} 2+2^{*} 0=6$ pts.
* The Borda ranking: bca.
* b is the Borda winner.
* But a majority prefer c to b .

The paradox of Voting

* 3 voters' preferences:
* Voter 1: abc ($\mathrm{aP}_{1} \mathrm{~b}, \mathrm{bP}_{1} \mathrm{c}, \mathrm{aP}_{1} \mathrm{c}$)
- Voter 2: bca
* Voter 3: cab
* Majority preferences form a cycle.
- No maximal ("best") alternative.

An aggregation rule

* For the moment, suppose there are 3 alternatives and 3 voters.
* A (preference) aggregation rule is a method for aggregating individual rankings into a single consensus ranking.

The case of 3 alternatives and 3 voters

* Each voter has $3!=6$ possible preferences R_{i} : * abc, acb, bac, bca, cab, cba.
* (Okay to allow preferences such as [ab]c, a[bc], [abc]. 7 more possibilities.)
* So, there are $6^{3}=216$ inputs (profiles).
* An aggregation rule must specify a preference R for each of the 216 profiles $\left(R_{1}, R_{2}, R_{3}\right)$.
* R can be any of $6+7=13$ preferences, because disallowing ties is too restrictive.
* There are many (13^{216}) aggregation rules, including terrible ones.

Arrow's Theorem

* Assume there are at least 3 alternatives and 2 voters.
* Arrow (1951). There is no aggregation rule that satisfies the three conditions:
* Unanimity. If every voter prefers x to y, then the group must rank x above y.
* (Pairwise) Independence. Whether the group ranks x above y depends only on voters' preferences between x and y .
* Nondictatorship. There is no voter whose preference always determines the group preference.

How about the rules we mentioned?

* Pairwise majority voting
* satisfies Independence, Unanimity, and Nondictatorship;
* is not an agregation rule.
* The voting paradox gives a cyclic group preference, not one of the 13 rational preferences.
* The Borda rule
* is an aggregation rule, satisfying Unanimity and Nondictatorship;
* violates Independence (next slide).

The Borda rule violates Independence

* Before:
* 3 judges: cba
* 2 judges: bac
* Borda rank: bca
* After:
* 3 judges: cab
* 2 judges: bac
* Borda rank: cab
* The group ranked b above c before.
- Individual preferences between b and c is the same as before.
* If Independence is satisfied, the group should rank b above c after the change.
* But it doesn't.

Ways out of Arrow's impossibility

1. Infinitely many voters

- There are rules satisfying Arrow's conditions (Fishburn, 1970).
- Mịhara (1997 ET; 1999 JME; 2004 MSS) reinterprets "individuals" and considers computational issues.

2. Group choice instead of group preference

- Nondictatorial functions are manipulable (Gibbard 1973; Satterthwaite 1975).
- Mihara (2000 SCW; 2001 SCW) considers group manipulation.

3. Restricting profiles of preferences

- Single-peaked preference: Black's Medial Voter Theorem in one dimension (1958).
- McKelvey's Chaos Theorem (1976) in higher dimensions.

4. Relaxing rationality of group preference

- Assuming acyclic (not cyclic) preferences is enough for maximization.
- A "simple" aggregation rule is acyclic iff the number of alternatives is less than the Nakamura number (Nakamura, 1979).
- Kumabe and Mihara (2008 JME; 2008 SCW) extend Nakamura's theorem and obtain conditions for a large Nakamura number.

5. Restricting the number of altenratives to 2

- Only simple majority rule satisfies anonymity, neutrality, and monotonicity (May, 1952).
- Mihara (1997 SCW; 2004 MSS) considers anonymity and neutrality without restricting the number of alternatives.

References

* Papers by H.R. Mihara http://econpapers.repec.org/RAS/pmil93.htm
* H. Reiju Mihara’s website http://www5.atwiki.jp/reiju/

