KING SOLOMON'S DILEMMA: A SIMPLE SOLUTION

H. Reiju Mihara

http://www5.atwiki.jp/reiju/

KING SOLOMON'S DILEMMA

- Problem
- Solution
- Comparison

PROBLEM

Giuseppe Cades: Judgement of Solomon; altered

THE JUDGMENT OF SOLOMON

MODEL

- n agents,1,..., n
- k indivisible objects, where k<n</p>
- At Stage 0, God announces (v, H),
 v = (v_1,..., v_n); v_i is agent i's valuation
 i ∈ H if v_i is among the top k valuations
- The problem is to allocate the k objects to the agents in H.

INFORMATIONAL ASSUMPTION

The planner (King) does not observe (v, H).
The planner and the agents know: if i ∈ H and j ∉ H, then v_i - v_j > δ >0.
[Incomplete Info] Each agent i observes:
v_i, own valuation,
whether i ∈ H or not.

SOLUTION

10-14

A FIRST ATTEMPT

and the second second second to the second second

An auction?

- For example, the (k+1)st-price auction, e.g., 2nd-price auction:
 - If i is among the k highest bidders, i gets the object but pays the (k+1)st bid.
 - Always best for i to bid b_i = v_i, true valuation. Why?
- No-good----The goal is to give the object without taking away or giving money.

A FIRST ATTEMPT

and the second of the

Second-price auction Suppose your valuation of a good is \$100. Let b_j be the highest bid other than yours. lf b_j > 100, say 109, . . . lf b j < 100, say 96, . . . without taking away or giving money.

"SIMPLE" MECHANISMS

- But the (k+1)st-price auction is useful for constructing a mechanism that solves the problem.
- E.g., Olszewski's mechanism (2003) uses a 2nd-price auction, modified by adding an extra payment from the planner:
 - If b_1 > b_2, then

 $u_1 = v_1 - b_2 + (b_2 - \delta) = v_1 - \delta$ $u_2 = 0 + (b_1 - \delta) = b_1 - \delta$

A bit strange? More later.

NOW, 3000 YEARS AFTER SOLOMON . . .

MIHARA'S MECHANISM

- Stage 1
 - Each agent either claims the object or not.
 - If at most k agents claim, they get the object.
 - Otherwise, go to Stage 2.
- Stage 2
 - The (k+1)st-price auction with entry fees δ

That's it!

HOW IT WILL WORK

- Each agent i bids b_i = v_i in Stage 2.
- i ∈ H claims the object since she enjoys a surplus of
 - v_i > 0 (if an auction not held) or
 - $v_i b(k+1) \delta > 0$ (if held),

where b(k+1) is the (k+1)st highest bid (by someone not in H).

• $j \notin H$ does not claim it since she has to pay δ if she claims it.

COMPARISON

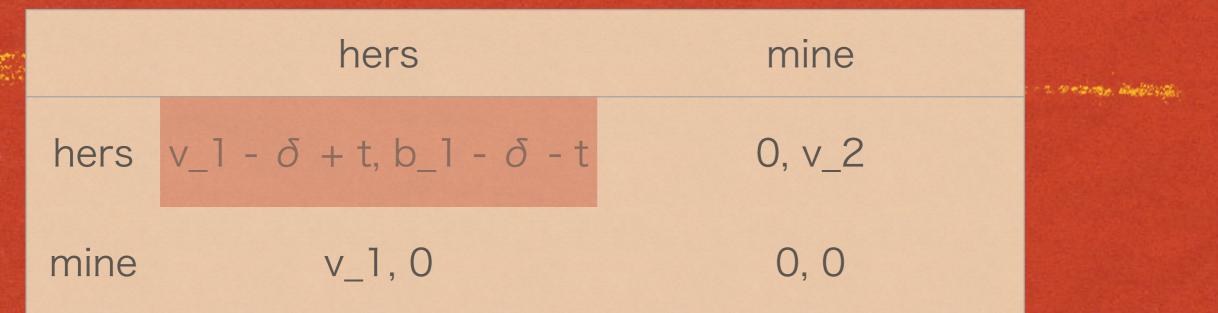
OLSZEWSKI'S MECHANISM

the second s

Each i bids b_i = v_i in Stage 2.
Given that, Stage 1 payoffs (assuming b_1 > b_2) are:



BRIBE FROM 2 TO 1



- Suppose $v_1 = 100$, $v_2 = 50$, $\delta = 20$. Euilibrium payoffs are (100, 0).
- 2 bids b_2 = 0 and gives t = \$1000 to 1. In return, 1 bids b_1 = 2,000.
 The payoffs are (1080, 980)!

 A pair of agents can gain in Olszewski's mechanism by bribing each other.

 No pair of agents can gain in this way in Mihara's mechanism.

REFERENCES

 H. R. Mihara, The second-price auction solves King Solomon's dilemma. Available from http://econpapers.repec.org/RAS/pmi193.htm

 H. Reiju Mihara's website http://www5.atwiki.jp/reiju/