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ABSTRACT

The purpose of the present study is to introduce the data-based nonstationary
random process model and to indicate its potential applications especially in
engineering, particularly in those cases wheve efficient generations of its sample
Functions are needed for the purpose of Mo}zte Carlo and other investigations.
The nonstationary process model fo be developed is called “data-based” since it
is constructed primarily on the basis of the observed vecord. In fact, the
model can be written in the form of the inversion of the Fourier fransform
of the original record (the first kind) or of its symmetric-periodic extension
(the second kind) with vandomly shifted bhase angles, Its construction is a

straightforward task requiring only the Fourier transform of the original
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record (or its extension) or equivaleutly its Hilbert tvansform, Also, the model
lends itself to a tractable implementation of Monte Cario analyses because of

the ease with which its sample functions are generated.

CHAPTER 1 INTRODUCTION

The analysis of structural response to various types of random dynamic
loadings has long been of interest to\engineers. An elaborate theory has
been derived for the spectral analysis of stationary random processes and
has applied extensively to engineering problems. An increasing number
of attempts have been mabe in recent years to extend the concepts associ-
ated with classical spectral analysis to certain cases where nonstationarity
is the essential feature of the processes involved. Examples are those non-
stationary ’ random processes with the instantaneous spectrum, the double
frepuency spectrum, 'lche“ evolutionary spectrum, the physical spectrum and
the locally time averaged spectrum.

It is the purpose of this study to introduce the data-based nonstationary
random processes and to indicate their potential applications in engineer-
ing, particularly in those cases where efficient generations of their sample
functions are needed for the purpose of Monte Carlo and other investiga-
tions. The nonstationary processes to be introduced are called “data-
based” because they are constructed primarily on the basis of the observed
record<.1 e

The data-based nonstationary random processes are simple to construct
and possess a convenient analytical form for the generation of their sample
functions, particularly as compared with other nonstationary random process
representation such as those mentioned earlier,

In the following, an effort is made in Chapter 2 to place the data-

based nonstationary model in a proper perspective against the technical
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background involving the nonstationary random process models currently
available. In Chapter 3, we construct the model and examine its character-
istics in detail. Chapter 4 then provides numerical examples where the
model is applied to a number of observed records of practical interest.

Finally, Chapter 5 delineates the findings of the present study.
CHAPTER 2 TECHNICAL BACKGROUND

2. 1 Introduction

It is well recognized that the lack of ergodicity is the most significant
characteristic of nonstationary random processes in terms of their engineer-
ing applications, .since it considerably obscures the reliability of the esti-
mates of such key statistical parameters as mean value and autocorrelation
function when the number of sample functions is limited to only a few,
if not just one. Unfortunately, this smallness of the sample size is usually
the case when we wish to apply nonstationary random process theory in the
field of structural engineering and engineering mechanics. Indeed, . it
would be a rare occasion for us to be in possession of a large number of
sample functions on which the statistical analysis can be performed to
reproduce the ensemble characteristics of, and further to develop the model
of, their population nonstationary process. In the present study, however,
we are primarily. concerned with the method of constructing nonstationary
process models but not specifically with estimating the characteristics of
statistical parameters. It is pointed out, however, that the nonstationary
model to be proposed later in this study has a unique feature in that its
construction requires only a straightforward evaluation of the Fourier
transform of the observed record and related quantities (hence the name
of “data-based” nonstationary random pr'ocess)<.1 >’(’i‘)hus we are often able fo

eliminate theoretically awkward and numerically cumbersome efforts for
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statistical estimdtion involving sample functions of nonstationary random
processes. '

Examination of the nonstationatry random process models proposed so
far indicates that they may be classified into two general categories. One
category consists of a class of models that might be termed as time domain
models while the other as freqﬁency domain models.

2. 2 Time Domain Models

Although the present study places its emphasis on frequency domain
models, the following brief description seems to be appropriate with respect
to some typical time domain models either in the form of the filtered Poisson
(or shot noise) proces<s3 )£)<r4‘)in the form derived from the filtered white
noise process.

The filtered Poisson or shot noise process model was originally used
to simulate some of the physical phenomena observed in the field of elec-
tric and electronic engineering and more recently was found to be useful
also in the fields of structural engineering and engineering mechanic(ss.) (®

In its general form, the filtered Poisson process is written as

N
x(@)= ¥ Aw(, cx) @2. 1

ne—e
where w(f, )= shape function repr'ese‘nting the effect at time ¢ of a
signal arriving at time r and therefore w(f, z)=0 for <+, N(f)=
Poisson process with arrival times- - -z_1<lto<lzy---» and A,=an identi-
cally distributed random variable representing the magnitude of the signal
arriving at £ = ;Zl ’ This process is easy to construct and can be made
nonstationary by assuming, for example, that the mean arrival rate of the
%)

(5)
Poisson process is a function of time. Analytical expressions for the mean

value, variance, autocorrelation function and characteristic function are

(x1) Throughout the present paper, stochastic quantities shall be boldfaced.
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generally avai]able.(s) The probability density and autocorrelation functions
can be obtained at least in principle as the inverse Fourier transforms of
characteristic and generalized spectral density functions, respectively. Also
of practical importance is the fact that the sample funétions of this process,
whether stationary or nonstationary, can be generated in the time domain
by making a direct use of Eq. 2. 1.

The filtered white noise process in the present study refers to the
process £(#) which satisfies the following equation:

LEE®) =no(t) @. 2)
in which L[ - )J=a linear operator and n.(f) =a (stationary) Gaussian white
noise with a constant spectral density So. The Gaussian assumption coupled
with the assumed linearity of the operator in general makes it relatively
easy to evaluate the mean value, variance, autocorrelation function, spec-
tral density SSSC“’) of the resulting stationary Gaussian process &(£).
Due to the conceptual simplicity and the analytical familiarity, this model
has so far been quite popular among those in the areas of structural engi-
neering and engineering mechanics. In particular, in its application to -
the earthquake-related research, linear differential operators with constant
coefficients are often used for the operator L( -). In this case the
frequency response function H(w) associated with the operator can easily
be evaluated and, as is well known, the mean square - spectral density of
() is given by SES(w) =S | H(w) | 2. Derivation of the mean value,
variance, autocorrelation function, etc. then becomes a straightforward
task of algebraic manipulation and evaluation of the integrals involved.

We can now intr‘oduce the amplitude modulated nonstationary random
process defined as .
x(t)=g® @ @. 3

where g(¥) is a deterministic function of time such that it is equal to zero
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outside of the interval (0, 7o) while it varies slowly within the interval.
If the variation of g(#) is much slower than that of the sample functions
of the process §(¢), the spectral content of &(¢) is expected to prevail in
approximation for the process x(Z) as well., Again, it is of g;'actical im- “
portance to note that the nonstationary random process x (t} can be con-
structed easily and that its sample functions can be generated directly in
the time domain with the aid of Eq. 2. 3. For this purpose, however, we
suggest the use of a technique that generates sample functions of €(¥), a
stationary Gaussian process with zero mean in terms of the sum of cosine
functions basically involving only the mean square spectral density func-
tion. A specific reference will be made to this technique later in this
study.
2. 3 Frequency Domain Models

In the present study, those stochastic models are called frequency do-
main models if they can produce nonstationary random processes and cor-
responding sample functions which can reproduce the specified nonstationary
spectral density. There are,however, a number of 'definitions of nonsta-
tionary spectral density in the literature. Most (well known are the gen-

7)—(10)

eralized spectrum (or double frequency spectrum), the instantaneous spec-

(1)~ (16) . (16) . an
trum, the physical spectrum, the locally time averaged spectrum and the

evolutionary spectrurgf)_mfz‘rom the viewpoint of application, particularly
in the fields of structural engineering and engineering mechanics, any
(nonstationary) spectrum should have the following features: (@) It is
physically meaningful, (b) a simple transition from nonstatioinary to sta-
tionary spectrum is possible, (¢) dealing with a linear system, the input-
output relationship can be described in a simple manner in terms of the
input and output nonstationary spectra (under the same definition) and the

system transfer functoin, (d) it can be obtained by an integral transorma-
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tion, preferably by the Fourier transformation, from the nonstationary
autocorrefation function and finally (e) its estimation on the . basis of
observed records is not too difficult. Each of the nonstationary spectra
listed abov_e satisfies these requirements to a varying degree of success,
although none satisfies all the requirements completely. The following
observation is in order at this point: These spectra can be used to char-
acterize and sometimes conveniently estimate the nonstationary spectral con-
tents of given time records. However, they are, with the exception of
the evolutionary spectrum, not particularly suited for being incorporated
into a stochastic model in such a way that the model produces a nonsta-
tionary random process characterized by one of these nonstationary spectra
and at the same time generates their sample functions with practical ease.

On the basis of the observation above, we examine below thes stochastic
model that incor‘por"ates the evolutionary spectral density.

For this purpose, we first consider the following spectral representa-
tion of a stationary random process x(£); » '

xt)=[ “exp Got) dF (w) | @. 9
whete F(»), called the spectral process, is orthogonal in the sense that
the increments dF(w:) and dF(wz) are uncorrelated when wis=wz. By
employing the orthogonal condition of F(»), we can show that the auto-
correlation R,.,.(z) of x(¥) is
Rux(®= | ~_exp Gioe) B | dF(a) | 7} @. 5)

Assume that the spectral density function So(w) exists. Then E{ | dF(w)

| % =Ss(w)dw, and Eq. 2.5 reduces to the well-known Wiener-Khintchine

relationship. For the case where x(£) is real,
x(®) = [:’[cos wtdU (&) +sin wtd V(o)) 2. 6

where U(o) and V(o) for any o=0 are two mutually orthogonal pro-
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cesses, both real and with orthogonal increments such that
E{dU(0)? =E{d V()2 =S1{w)dw @ N

Construct now the following process
x(8) = kazl (St (o) deo} ¥ Cos (et +Br) @. 8

where or=~kdw, w,=ndo is the upper cut-off frequency beyond which
S1(w) 1is either actually or approximately zero, and @x's are statistically in-
dependent random phases uniformly distributed between —= and =. If we
define in Eq. 2.6 that

AU (o) = (2 S1(0r) dw) ¥ cos @y

d V(wk) = [2 St (cok) Aw] % sjn (/8

then all the conditions imposed on U'(w) and V{(w) are satisfied, and x(t)

@. 9

in Eq. 2.8 is basically consistent with and approximate to its spectral rep-
resentation given by Eq. 2.6.

Due to the fact that @'s are statistically independent and uniformly
distributed between —z and =, the process x(¢) in Eq. 2.8 tends to
Gaussian with zero mean as n—oo by virtue of the central limit theorem.
- In fact, this process x(#) is the form which has been extensively (1348)6(30,)
together with the FFT (Fast Fourier Transform) technique, to generate
sample functions of Gaussian processes with zero mean and given (one-
sided) spectral density Si(w). _

Eq. 2.6 indicates that a stationary process can be additively “built
up” by orthogonal oscillations with random amplitudes. This concept of
orthogbnal components can be extended to that of the evolutionary process

x(?) expressed as
x() = f:B(t, ) (cos wtdU () +sin wtd V(o)) (2.10)

where B(¢#, ») is a real deterministic modulating function characterizing

the nonstationarity of the process, and U(w) and V(w) are the same as
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defined in Eq. 2.9. By using the orthogonal conditions of U(w) and
V(»), the mean square of x(f) is found to be

E{(x?(t)} = [ B, )Si(0)do= j “Sit, w)do 2.11)
whete Si1(f, »)=B%*(t, »)Si1{w) is defined as the evolutionary power spec-
tral density function. .

With respect to the requirements mentioned earlier which a desirable
nonstationary spectral density is supposed to satisfy, we observe that the
evolutionary spectrum defined above indeed satisfies some of them com-
pletely while others reasonably well: (a) The evolutionary process can be
inter’pfeted as a process “built up” by orthogonal oscillations with time-
varying random amplitudes, (b) the evolutionary spectrum reduces to the
standard mean squére spectral density when B(f, ») becomes indépendent
of time, (¢) the input-output relationship is not as simple as in the sta-
tionary cases but can be establishgi):(%)(d) the relationship between the
evolutionary spectrum and the autocorrelation function can also be estab-
lishéil?) although it does not result in a form as elegant as the Wiener-
Khintchine relationship in the stationary cases, and finally (e) it appears
that reasonable estimations of the spectrum on the basis of obser‘vegl. data
are possible particularly when B(#, o) varies slowly with ti:ﬁ:i

Corresponding to Eq. 2. 8, we have
x($) = v’”z_ki1 {B2(t, wr)Si(wr)dw}* cos (wrt+Pr) (2.12)

which is an apprdximation to the evolutionary process x(¢) in Eq. 2.10
with dU (&) and d V(o) defined by Eq. 2.9. Eq. 2.12 can be conveniently
used to generate sample functions of the evolutionary pr’océzsg'?fs)sl (») and
B(#, ») are specified although in this case the FFT technique cannot be
utilized. ’

At the present time,the process x(¢) in Eq. 2.10 together with its
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practical version given in Eq. 2.12 appears to be the most useful non-

stationaty process model in the frequency domain.

CHAPTER 3 DATA-BASED NONSTATIONARY RANDOM
PROCESSES

3. 1 General Remarks

Virtually all of the analytical models of nonstationary random processes
investigated to date can be classified into one of the categories discussed
eatlier, Emphasizing the frequency ‘domain ‘models in genéral and the
evolutionary process in particular, however, we find that two major diffi-
culties are associated with these models from the viewpoint of engineering
applications, First, these models characterize the nonstationarity in terms
of appropriately modified forms of the mean square spectral density. Un-
fortunately, however, the mean square spectral density is a notion that is
not particularly amenable to nonstationary conditions. Second, the intrinsic
1ack of the ergodicity in the nonstationary process prevents us _from re-
constructing its probabilistic nature on the basis of a single sample func-
tion. Such a reconstruction, if if is fo be performed reasonably well,
would require a large number of sample functions. This is a requirement
which is totally unrealistic in most practical applications in the field of
structural engineering. In fact, dealing with earthquake accelerations,
wind-induced pressures on structures, dynamic flight loads on spacecraft,
etc., we would be fortunate to have a few, if not one, sample funcﬁons
purported to be extracted from'the same population. :

In spite of the difficulties indicated above, the need of nonstationary
process models for these and other physical phenomena germane to struc-
tural engineering has been increasingly recognized as modern engineering

analysis and design demand further sophistications. In particular, the
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nonstationary process models whose sample functions can easily be gener-

ated with the aid of a high speed electronic computer, are extremely use-

" ful. They can be incorporated in the time and space domain analysis in

conjunction with Monte Carlo techniques to obtain such vital information
as first passage time distribution, random response of severely nonlinear
structures, et(és.> The frequency and wave number domain analysis is at
best awkward for these purposes,

In this chapter, we introduce another frequency domain model that
produces the “data-based’”’ nonstationary random processes, derive their
basic characteristics and investigate how they can alleviate most, if not
all, of the difficulties described above.

3. 2 Data-Based Nonstationary Random Processes of the First Kind
3. 2. 1 Univariate and one-dimensional precesses

Let x0(#) be an observed record of duration To. Throughout the pre-
sent study, we consider that the record beginé at t=0 and ends at {=To
and that it is equal to zero outside the domain (0, Zo). Writing Xo(w)

for the Fourier transform of x0(¢), we obtain the following Fourier trans-

form pair:
w()=1/(27) [ T_Xo(o) exp Got)do @. D
Xo(@)= [~ xo(t) exp (—ivt)dt 3. 2

" where ¢ is the imaginary unit. The phase angle {o(w) of Xo(w) is given,

if Re (Xo(w)] 540, by

£o(w) = — Eo(—w) —arc tan {Im({Xo(w)) /Re(Xo(w)] ) 6.3
while, if Re(Xo(w))=0, it is given by
tolw)y=%n/2+ 2kr (B=0,%1,742, ) 3. 4)

where Re(Xo(v)) =Re(Xo(—w)) = real part of Xo(w) and Im{Xo(w) ;=
—Im(Xo(—wo)) =imaginary part. Using the phase angle, Xo(w) and xo0(%)



319 DIGITAL SIMULATION OF NONSTATIONARY RANDOM -~ 55 —
PROCESSES AND ITS APPLICATIONS ’

can then be expressed as

Xo(o) = | Xo(w) | exp olw) . (8. 5)
w@®=1/(2m [~_| Xow) | expilot+ti(o) } do 3. 6
where | Xo(w) | = | Xo(—w) | =Fourier (amplitude) spectrum of xo(#).

Now construct a nonstationary random process x(¢) on the basis of
the observation xo(#):
*®)=1/(2m) [~_] Xo@) | expi {ot+to(@)+6 (@) } do
. 3.7—a)
with the sample functions x°(¢) in the form: ‘
2B =1/(2m) [T Xo() | expi (ot +£0() +6® ()} do
(3.7—b)
where the most general definition of o™ (w) is such that it ié a sample
function of 'a random process ¢(w) in w. A comparison between Eq. 3.7
—b and Eq. 3.6 indicates that x® () is obtained from xo(#) by replacing
its phase angle £o(w) by )

5% (@) =to(w) +¢% () 6.8
we choose the following form for the function ¢(w),

$(0)=0 + sgn (») 3.9
Where @= a random variable and sgn (0)=—1 for w<0, =0 for =10

and = 1 for «=>>0. The sample function ¢ (») is then given by
% (0) =@ « sgn (v) (3.10)
with ®™® indicating a sample value of @. The fact that x*(¢) is a real
function requires that ¢ (w) be odfi; thus the use of the sign function
sgn(w).
The Fourier transforrh of the simulated precess x(Z) can then be given
as the inverse Fourier transform of Eq. 3. 7—a in the following form:
X(w)= | Xo(w) | expi {{o(w) +P(w) }
=Xo(0) expid () B.11) -
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Throughout the present study, we assume that the random variable @

distributes in accordance either with the uniform distribution function with

the density
fe®)=1/(2a) p—asr=p+a (@>0)
=0 ' otherwise (3.12)
where p= expected value and 2a = width of distribution, or with the
Gaussian distribution with the density
fe®)=1/(v270) exp{—(x—mw? (207} —ocoa<oo (3.13)
where p= expected value and o= standard deviation.

At this point, the following heuristic observation is noted for theoretical
interest:  Formally, we have do=27/To and | Xo(w) | =1/ 272T0Se(w)
(as To—c0) for a stationary random process with a mean square spectral
density So(w). Hence, 1/(27)+ | Xo(») | dw in Eq. 3.7—a becomes
V(27/Te)Sy(w)=1'Se(®)dw. Assuming that ¢(w) is a Gaussian white -

noise with zero mean for positive » and that ¢(w)=—@(—w), we can

reduce Eq. 3.7—a into
x()= V?kﬁl VS lan dan cos { ot -+ (en) } ' (3.14)

where Si(w) = 2 So(w) defined for positive w=one-sided mean square spec-
tral density; ws==kdw and nde=w,=upper cut-off frequéncy beyond which
Si(w) is either actually or approximately zero(.2 9)1,*3(210 ) 3.14 is identical to Eq.
2.8 with @r=¢(ws) often used to simulate a stationary Gaussian process
with mean zero and spectral density function So(e). In the process of
transforming Eq. 3.7—a into Eq. 3.14, {o(») has been absorbed into ¢(w)
which is now a white noise. The comparison of Eq. 3.7—a with Eq.
3.14 indicates that the essential difference between these stationary and
nonstationary simulations lies in that the function ¢(w)=—@(—w) is a

white noise for positive » in the stationary case while, in the nonsta-
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tionay simulation, it is a random variable multiplied by the sign function
sgn (w) as shown in Eq. 3.9 (thus its sample value is not a function of
» but a constant for positive w).

In view of the fact that {o(w)+@(w) is an odd function of o with
¢(w) defined by Eq. 3.9, we can rewrite x(¢) in Eq. 3.7—a as:

©(®)= 177 [ | Xo(w) | 05 {at +5(0) + @} do (3.15)
or equivalently,
” x(#)=xo(£) cos Om;c'o(t) sin @ (3. 16)
where
w(®)=1/x [ | Xo(o) | c0s {wt+£0(0) } do (3.17)

is obviously the observed record (see Eqgs. 3.1 and 3.2) while

Fo(t)=1/z || Xo(w) | sin{at+{(w) } do (3.18)
The process given by Eq.3.16 is referred to as “data-based nonstation-
ary process of the first kind.” In this case, the process is obviously
univariate and one-dimensional. »

We can show that }o(t) defined in Eq. 3.18 is the Hilbert transforrh

of xo(8):

BB =1/n [~ w(e)/t=2) de

=x0(£)x(1/ (=)} ' (3.19)
where the symbol # indicates a convolution integral.

We can also show under these conditions that the Fourier transform X o(w)

~ (%2)
of xi(#) is given in terms of the Fourier transform Xo(w) of xe(£) as
Xo(w)=—i sgn (©)Xo(w) (3.20)

(*2) | Xo(®) | is even, while sin{wf+¢,(@)} is odd with respect to @. Hence,
Eq. 3. 18 can be rowritten in the following form:

=2 "] X(0) | sinfot-+E(w)}do

=2_17rzj‘:° | Xo(@) | sgn (@) exp i {0t +o(@)}dw
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From the definition of #o(£) given by Eq. 3.19, it follows that, al-

=~2—17 s :o{‘—‘z'sgn (0)Xy(w)} exp iwt do

The last expressin of the right-hand side of the above equation shows us that

th_e Fourier transform of ‘%(t) should be in the form of Eq. 3. 20, that is,
Xo(w)=—1 sgn (©) X, (@)

Further, as is well known, time convolution theorem states that the Fourier
transform of the convolution of two functions equals the product of the Fou-
rier transforms of these two functions. Therefore if we decompose ﬁo(w) into
two components X,(@) and {—i sgn (@)}, then ‘go(t), the inverse Fourier trans-
form of )/fo(co), can be given as the convolution of the inverse Fourier trans-
forms of Xo(w) and {—¢ sgn (@)}, respectively. It is straightforward to show
that the inverse Fourier transform of X,(w) be #,(¢#). However, to obtain the
inverse Fourier transform of {~i¢ sgn(®)} is a little bit cumbersome task.

To this end, we first consider the Fourier trnsform Fs an (w) of the sign
function sgn (¢) as follows:

Fsgn(m) = I _.sgn (¢) exp—iwt dt
= [ :o sgn(?) {cos wf—i sin wt}dt
=—2i I: sin of dt

The above integral obviously does not converge in the ordinary sense; how-
ever, if it is considered as a distribution, D then

Py (@ =lim[—2i [ oTsin ot dt

sgn Pevoo
s 2 (1L —coswT) v_ 2
hm( SR =ge (0%0

At this point, taking inverse Fourier transform of F (@), we can express

gn
sgn (¢) in terms of Fsgn(w) as

=1 (" ;
sgn <t>'—fz7z—,{ ﬂ‘wFsgn(w') exp twt dw
. By replacing ¢ with —¢ and interchanging ¢ and », we get
27 sgn (—o)=—27sgn (@)
= J " Fygn(t) exp—iot dt
= [ - ﬁz—exp—-i‘wt dt
J —oo 3t
Hence,
1

—isgn (@)= [ jw;t—exp——z’wt dt

This shows that the inverse Fourier tramsform of {—isgn (»)} is equal to
1/(=t). ,

Finally, we can see that the Hilbert transform :?o(t) of the original record
%,(¢) can be given as the convolution of two functions x,(#) and 1/(##),
which is exactly of the same form as in Eq. 3. 19.
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though xo(#) is by definition zero in the domains (—c0, Q) and (T, o),
.;o(t) is usually not equal to zero in these domains and therefore the sam-
ple functions of the data-based nonstationary random process given by Eq.
3.16 are not necessarily equal to zeto outside the domain (0,7%). It also
follows from Egs. 3.16 and 3.19, that x(#) is not necessarily equal to
zero at =0 and 7T, even if xo(f) is at these time instants. As we shall
see later in dealing with earthquake acceleration records, however, Aa?o(t)
may be considered approximately zero outside the domain [0, 7o) if the
record xo(#) oscillates rapidly and more or less symmetrically with respect
to the base line within the domain (0, 7Zo].

The following expression alternative to Eq. "3.16 can be written for

x(t):

x(£)=Ao(?) cos {@+0o )} (8.21)
where A¢(¢) is the envelope functiésri)

Aule) =/ 5D +3D) 3.22)
and . »

0o(t) = arc tan {xo(£)/x0(2)} CE)

We now consider the ensemble averages and other characteristics of
x(¢t). In particular,the f‘ollowing quantities are investigated; expected
value, autocorrelation function, mean square value and variance, maxi-
mum and minimum values, probability density‘and distribution function
and generalized spectra,

Expected Value: - With the aid of Eq. 3.16,

E{x(£) }=2x0(¢) » E{cos @ }—xo(t) - E{sin @} (3.24)
If @ is uniformly distributed (see Eq. 3.12), ,
E{x(£)}=(sin a/a) #(£) cos p—ro(#) sin p} (3.25)

which reduces, with z=0, to
E{x()} =(sin a/a)x:(t) (3.26)
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In addition, if a=mz (m= an integer); then

E{x(®)}=0 ' ' 3.27)
If @ has a Gaussian distribution (see Eq. 3.13),
B{x(8) }={x0(£) cos p—xe(t) sin p} exp (—a?/2) (3.28)
which reduces with x=0 to
E{x(®) }=x(t) exp (—0c?/2) (3.29)
Furthermore, if o approaches infinity, then |
E{x()}=0 (3.30)

The following comments are in order at this point: The assumption that
® is Gaussian with mean p and standard deviation approaching infinity is
equivalent to the assumption that @ is uniform between p—7 and p+7.
This is due to the fact that exp @ is a periodic function with the period
27, )

We observe from the above that the data-based process can offer a
convenience in terms of various forms of the expected value function we
can choose.

Antocorrelation Function: The autocorrelation function Ryx(fi, £2)
of x(t) is defined as _
Rx(h, ) =E(x(i)x(t)) (3.3D)
Substituting Eq. 3.16, we obtain
Rucxc(B1,£2) = Yo #o(£1) %0 (f2) +0(£1) %o(£2) }
Yol xo(tr) w0(E2) — Fo(t)Fo(t2) } + Blcos 2 B}
—Lh{ mo(8) %o (H2) +2o(Fr)x0(2) } + E{sin2 @} (3.32)
If @ is uniformly distributed, »
Rt ) =Ll zo(t1)%0(t2) + Ho(£2)Fo(f2) }
+3h{sin 2a/(2 @) Hxe(F)o(t2) — %o(t1) To(t2) } cOS 2 o
—3h{sin 2a/(2 @)} (xo(F)70(t2) +%0(21)2a(£))} sin 2 o
(3.33)
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With »=0,
Ryx(t1, £2) = Yl £0(t1) 20(t2) + Zo(t1) 2o (F2)}
+14 {sin 2a/(2a)} (Bo(t)20(E2) — (D %e(H2)} (3.34)
Under the further assumption of ¢=mnr/2 (m= a positive integer),
Ryxe(tr, £2) =" (ro()ao(£2) + Ro(t1) #o(E2)} (3.35)
If @ is Gaussian,
Rucx(F1,£2) =Y {wo(£1) %0(22) -+ Ho(£1) Ho(£2)}
+ exp (— 20%) [{B(f)m(Fe) —Fo(t)%o(F2)} cOS 2
~ {mo(t)3(t2) + 2o (#1)o(£2) } sin 2 ) (3.36)
With =0, ,
| Rty 1) =36 so(t)00(t2) + Ro(£1)Ro(ts)
+3% exp (— 200 {m(B)e(t) —Zo(DF0(t) ) (3.37)
If, in addition, o approaches infinity,
Rux(f, £2) =Ya{ xo(t1)x0(t2) +0(£1)%0(£2) } (3.38)
Mean Square and Variance Functions: The mean square function
Rxx (%, £) of x(¢) can be obtained from the autocorrelation function Ryy
(¢1, £2) by setting f,=%:=f while the var-'iance function G.zx (®) as Ryx
(¢, H—[E{x($)}?.  Hence,using the results derived above, the mean
square and variance functions can be written explicitly in terms of xo(#)
and }o(t) under various assumptions with respect to the random variable
®. Avoiding lengthy writing that would be required for listing’all these
functions of rather obvious form, we only list at this time the following
expr'essio‘n for the variance function
o2 () =Vh{x5(t) + 25(2)) : (3.39)
This interestingly simple result can be obtained under either the assumption -
that @ is uniformly distributed with p=0 and e¢=mr or the assumption

that @ is Gaussian with x=0 and oc—co,
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Extreme Values: The maximum and minimum values that x(£) can as-
sume at time ¢ may be evaluated from Eq. 3.21 and these extreme values
depend on how the random variable @ distributes. Indeed, if the distr'iv-‘
bution of @ is such that cos {@+00(¢)} can take values of +1(e. g. @ is
uniform between —z and n‘),’ then_-__

max{ | x(#) | }=A()= 5D +3() (3.40)

It is of great practical interest that the extreme value above is equal to

the standard deviation o, (#) multiplied by 1/ 2 under those conditions
through which Eqs. 3.39 and 3.40 are derived:
max{ [ x(¥) | }=v2 ox(® (3.41)

When @ distributes in any other way,the extreme value must be
evaluated accordingly reflecting the characteristics of its distribution., One
example of such a case where @ distributes uniformly between —z/2 and
7/ 2 will be considered later,
Probability Density and Distribution Fnnetions: The density func-
tion and therefore the distribution function of x(#) at time ¢ depends also
on how the random variable @ distributes. Assuming that @ distributes
uniformly between —mn and mmw (m= a positive integer), we can show
that the density function fy,(%) of x(#) is symmetric ‘about Zero mean

and given by

frao(®=1/( B2 > x| <A®
=0 | x| >A:(H) (3.42)
The corresponding distribution function Fy,(%) can then be shown to be
Fywy(x)=0 2<—Ao(t)
"=%%+(1 /xyarc sin (x/A:(8)]) | x| ZAE)
=1 ’ x>Ao(2) (3.43)

We can also show that the expression in Eq. 3.43 also serves as the dis-

tribution function of x(¢) when @ is Gaussian provided that its standard



327 DIGITAL SIMULATION OF NONSTATIONARY RANDOM — 63 —
PROCESSES AND ITS APPLICATIONS

deviation o approaches infinity and p=0.

Generalized Spectra: The generalized (power) spectral density Syx(@1,
wz) of a nonstationary random process is defined as the (double) Fourier
transfor;ﬁ 3<))f its autocorrelation function Ryx(f1, f2):

Sex(or,00)=(1/277 [ TRyx(h, 1) exp (—iCorts —oste)} dhidts

(3.44)
By means of inverse transformation,
Ryxx(t1, t2)= J :, I :S.xx(wx, o2) eXp {1 (w1t wts) } dordos
| " (3.45)
Using Eq. 3.15 in the definition of the autocorrelation function Ryx(%1,22)
=E{x(f1)x(¢:)}, we obtain

Rxx(ti, t2)=1/(2=)* f O:w I ;Xo(wx)XS‘(wz)E{ exp P [sgn (w1)

—~sgn (w2)] } » exp{i(wif1—wel2) } dordoz (3.46)
where .the superscript * indicates a complex conjugate, Comparison of
Eq. 3.46 with Eq. 3.45 leads to

Sxx(wr, @2)= 1/(2%)*Xo(o) X§(02)E expi @[ sgn (w1) —sgn(ws)) )

| “ 3.47)

If @ follows either the uniform bistribution with ¢=m= and p=0 or
the Gaussian distribution x#=0 and c—oco, the generalized spectrum above
reduces to

Sxx(w1,02) :(—ZlngO(wx)XBk(wz) 0 <wiwz; wr1=wz=10
' = “otherwise (3.48)

Equations 3.47 and 3.48 clearly indicate how the spectral characteristics

(¥3) Similar to the Wiener-Khintchine relationship between the autocorrelation
function and the corresponding power spectral demsity for a stationary random
process, the constant 1/(27)% is to be placed in the transform from time
domain into frequency domain. .
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of x0(f) appear in the expressions of the generalized spectrum of x(#).
In particular, the simplicity of Eq. 3.48 is of significant practical interest.
Fourier amplitude: The most notable feature of x(#) and its sample
functions 2 (#) is the fact that the Fourier amplitudes of x®(¢) as well
as x(¢) are always equal to | Xo(w) |+ ‘The Fourier amplitude of the
observafion x0(?) is preserved intact in the proposed data-based nonsta-
tionary random process of the first kind and its sample functions(tk“

In deriving the symmetric density function (Eq. 3.42) for x(¢), we
have assumed that @ has either a uniform density between —mz and m=z
or a Gaussian density with mean zero and stanciard deviation approaching
infinity. While the physical phenomena in which we are interested can
often be idealized as nonstationary random processes with symmetric distri-
butions as in the case of earthcjuake acceleration, such symmetiy assump-
tions are obviously not always valid, For example, field measurements of
wind-induced pressures on building structures and recorded histories of air-
craft acceleration under pilot maneuvers clearly suggest that asymmetric
distributions with non-zero mean values are definitely more realistic as-
sumptions. The proposed data-based nonstationary processes can easily
simulate such asymmetric observations. If, for example, we assume that
B is uniform between —z/2 and 7/2, it follows from Eqs. 3.26 and 3.33
that

E{x(8)} =(2 /m)xo(t) : (3.49)

Ryex(t1, £2)="b% {xo(£1)20(f2) + Zo(£1)%o(£2) } (3.50)
In this case,the distribution function of x(#) becomes asymmetric and is,
for =/ 2 <<60<< 3 =/2, given by v

Fxw (@) ={z/2+ | o | — arc cos (x/Au(#)]} /n (8.51)

(%4) It follows from Eq. 3. 11 that ) ’
| X(@) | = | xo(w) expig(o) | =] X(@) | « | expiglo) | = | Xo(w) |
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for —Ao(#) cos (/2 + | 6o | )=x=—Ac(#)cos (z/2 — | o |) and
Fywy(x)=1 — 2 {arc cos [x/Ac(2)) }/7 (3.52)

for —Ao(t) cos (/2 — | 0o | Y==ax=—A0(¢) where 6o is as shown in Eq.
3.23. The assumption of ¢ being Gaussian with a finite value of standard
deviation also produces an asymmetric distribution of x(t). It appears
considerably cumbersome and not particularly of practical value to derive
the explicit analytical expression of such an asymmetric distribution func-
tion, however,

Unfortunately, if the observation x.(¢#) exhibits a highly asymmetric
behavior, its Hilbert transform a/c\o(t) is not equal to zero,not even in ap-
proximation, in the intervals (—oo,0) and (7o, ). Note that these
intervals include =0 and =7, even when xo(#) is zero at these two
time instants(?e '5)Under these conditions, neither can the process x(#) be
equal to zero even in approximation in the intervals (—oo, 0] and (7o,
o), while some physical processes of practical importance require that’
they be equal to zero at the beginning (¢#=0) and at the end (¢=T0).
Indeed, it is this difficulty that motivates the later introduction of Zhe
data-based nonstationary process of the second kind which always satis-
fies the requirement.

3. 2. 2 Multi-variate and one-dimensional processes

The definition of the data-based nonstationary random processes is now
extended to the case of multi-variate, but still one-dimensional nonsta-
tionary processes. We first consider a set of records xo:;(#) (3=1,2, -,
q) all observed in the timeinterval (0, 7o) describing a temporal observa-
tion of a one-dimensional vector quantity xo(#) consisting of ¢ component

processes (e. g., EW, NS and vertical components of earthquake accelera-

(x5) Note that the Hilbert transform x,(f) of the original record x0(#) ;is igiven
as the convolution of #,(¢) and the function 1/(=¢),as shown in Eq. 3.19.
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tion records). On the basis of the records xo:(¢{), we then construct a
g-variate data-based nonstationary process x(#) as
x(#) = (0 () x2(8) -+ xg()T (3.53)
with
x(H) =1/(2m) | Xolo) expilat + i)} do
= %0i(£) * cos Di—%0:i(£) + sin @; (3.54)
#i(0)=0; « sgn (o) . (3.55)
where Xo:(w)=Fourier transform of xoi(t), ;ai(l‘): Hilbert transform of
" x0:(t), @;= random variable, not necessarily independent of @;(i=%5) and
superscript T indicates a transposition.

The expected value (vector) of x(#) is given by

E(x(£)}=(E{x:()} E (x2(t) ) Bz (O NT (3.56)
for which the expressions similar to Egs. 3.25 —3.30 follow depending on
he type of distribution function assumed for the random variables @;'s.

One of the most important characteristics of multi-variate random pro-
tcesses is the correlation among the component processes, which in the pre-
sent case finds its origin in the statistical dependence among (D{/s. Pri-
marily for brevity, we assume here that the marginél distribution func-
tions of @;'s are either all identical with a uniform density between —mz
and mr or all Gaussian with zero mean and possibly different values of
standard deviation,

For those @/s distributed uniformly, two extreme modes of their
statistical dependence are considered. One of these represents the state of
complete independence where all @;s are independent of each other while
the other represents a special form of total dependence-in which all @/s
are identical (@;1=@s= - ~w=¢q=¢). Intermediate modes of dependence
are not considered since the joint density functions which involve @;'s énd

produce uniform marginal distributions for @;s appear to be extremely



331 DIGITAL SIMULATION OF NONSTATIONARY RANDOM — 67 —
PROCESSES AND ITS APPLICATIONS

difficult to obtain. However, when all @;s are Gaussian, arbitrary de-
grees of dependence (including those cases of complete independence and
total dependence described above) can easily be introduced through the
wellknown Gaussian joint density functions involving @;s. This fact is
one definite advantage the Gaussian assumption can enjoy over the assump-
tion of uniform distribution.

The crosscorrelation function matrix Ryx(#1, #2) of x(¢) is by defini-

tion

Ry (b1, £2)  Rigyxp(fr, #2) oo Ry, (1, £2)
Riox, (£, t2)

Rgx(hi,t2)=

Ry, (B, f2)oveeessemeenssscnmnnnn R oo () 1)

(3.57)
where the crosscorrelation functions inxj(tl, t2) are in turn defined és
Ry,x; (1, 22 =E{x:(8)x;(22) } (3.58)
Obviously, Eq. 3.58 gives the autocorrelation function whén i=j7. As
two alternative forms (Eqgs. 3.32 and 3.46) exist for the autocorrelation
function Ry (%1, £z) in the uni-variate case, we have the following two
equivalent expressions for inxf(tl, t2):
inxi (21, t2)=20s(£1)%05(22) * E{cos @; » cos @;}
+oe(8) %0s(£2) « Efsin @; « sin &)
'—‘.;C\Oi(t}.)‘xo‘j(tZ) « E{sin @; » cos @;}
— 0 (1) %0;(£2) * E{cos @; « sin @;} (3.59)

and
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Rixoe, (i 89 =1/C2) [~ {7 Xoi(o X0
- XE{exp i[(D;sgn (w1)—@;sgn (w2)}} » exp {i(wit1— wzfz) }dwirdws
(3.60)
Equations 3.59 and 3.60 take various forms similar to Egs. 3.33-—3.38
depending on whether the distribution functions of ®@/s are uniform or
Gaussian,

If we assume that all @/s are uniformly distributed between —mr and
mz and independent of each other, then the expected value E{x;({)}=0
and the crosscorrelation function sz;xf(tl, t2)= 0 (is=j) while the auto-
correlation function Ry, .y, (%1, £2) takes the form of Eq. 3.35 with x0i(#)
replacing xo(#). In this case, therefore, the crosscorrelation matrix Ry

(#1, t2) becomes diagonal. On the other hand, if @; ‘s are all fully corre-

lated (@1=0z=----=0y=®), the expected value E{x;(£)}=0 while the
aﬁtooorrelation function ({=7) and crosscorr_elation function (i=%j5) are both
given by '

Ry, (B, 1) =t ani(tn) 0y (20) +Fou($1) 70y (82) } (3.61)

If we assume that all @/ s are Gaussian with zero mean, the joint
density function can be written as
fow, (5 9)=1/(27) 1 ~Plow))
x exp (—%%{(%/0)*~ 2 pisxy/ (o) +(3/a)*}/ (1 —p;))
(3.62)

where ¢;= standard deviation of @; and p;;= coefficient of correlation be-

tween @; and @;. Then, thé expected value E{x;(¥)} is given by Eq.
3.29 and the autocorrelation function inxi(tl, t2) by Eq. 3.37 with xo:(£)
and o; respectively replacing x0(#) and ¢, while the crosscorrelation func-
tion inxj(tl,tz) (i=%47) takes the form:

Ry ,x (b1, t2) =Yk Foa(E1) %o (£2) + Foa(£1) Fos (£2) ¥
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xexp { —(ol— 2 pijois;+o5)/ 2 }
+¥o{ x0i(£1) %05 (£2) — ;Oi(tljgo‘i<t2> }
X exp { — (24 2 pijoi0; +-o‘§)/ 2} (3.63)
If we impose the assumption that P;;= Q (is~j) or equivalently that @'s
are independent of each other, the expected value E{x;(#)} and the auto-
correlation function Ry, (#1, £2) remain respectively of the form of Egs.
3.29 and 3.37, while the crosscorrelation function inxf(tl, t2)(i5~7) be-
comes
Ry (1, 82) = xoi(E1) %05 (22) exp { —(0f+o%)/ 2} (3.64)
Furthemore, if we let o; (4=1,2, - , ¢) approach infinity, it follows
that the expected valué E{x:(?)}=0, the crosscorrelation function Ryxx;
(t1, t2)= 0 (4547) and the autocorrelation function Ry, x,(t1, £2) is given by
Eq. 3.38 with x0:(¢) replacing xo(#). Therefore, as in the case of uni-
form @s, the crosscorrelation function matrix becomes diagonal when @;s
are Gaussian with p;;= 0 (4557) and op>o0 (G=1, 2, = ,q).

If all @/s are Gaussian but fully correlated (@i=@z=- . =@;=@)
and hence oi=o:=:=0,=c¢, the following crosscorrelation functions
are obtained from Eq. 3.63 with p;; being replaced by unity:

R, (1, 2) = Yol aai(82) 205 (£2) + Foi (11 %0i(£2) )

+% exp (— 2 02){ 20i(1) %oj (F2) — %0 ($1) %0; (£2) }
' (3.65)

In this case, the expected value and the autocorrelation function take the
same forms as those for the completely independent case: Eq. 3.29 for
the expected value and Eq. 3.37 for the autocorrelation function with xo;(£)
replacing x0(t). If, moreover, o approaches infinity (¢=1, 2, «,q),
‘ the expected value E{x;(#)} = 0 and the autocorrelation function Ry, (21,
t2) is given by Eq. 3.38 with x0:(¢#) replacing x0(#) while the crosscorrela-

tion function becomes
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Rigye,(F1s 2) =Yo{ 20(E:) 20y (£2) + Hos(£1) 00 (2) } (3.66)
Note that the last equation is identical to Eq. 3.61.
Extending now the definition of the generalized spectrum Syx(e1, w2)
into the case of multi-variate brocesses, we define the generalized cross-

spectral density matrix Sgg(wi,w2) as

Sxix (01, w2) Sy (w1, 02) Sx1xg(w1, wz).

Sxx(wi,w2)= Swara(s 2 |
quxl@l, 02) e Sy (01, 02)
(3.67)

where the (generalized) cross-spectral density function Sxix7<w1, wz) is

given as the double Fourier transform of inxj(tl, t2):

Sxse (ot, w2)=1/(2m)2 [ N j " Rayy(on, w2) exp { —i(wrti—awsts) dtudts
(3.68)

which produces the generalized spectral density Sxixi<w1,w2) of x;(¢) when

i=j. By means of the inverse Fourier transform, we obtain

Ry, (tr, 02)= j " [ " Sk (o1, 02) exp {i(wrts—oste) } dendos
‘ (3.69)

Comparing Eq. 3.69 with Eq. 3.60, we conclude that

Sxox(01,02)=(1/2 7)2X 0i(01) X#,(02) * Elexp i{ @:sgn (1) — Py sgn(ws) })
(3.70)

Again depending on whether @; is uniformly distributed or Gaussian, var-

jous forms of the cross-spectral density function will emerge from Egq.

3.70. As mentioned earlier, the appropriate joint density functions with

uniform marginal densities appear to be unavailable at this time, There-

~fore, we concentrate in the present study on the case where @,s are joint-



335 DIGITAL SIMULATION OF NONSTATIONARY RANDOM — 71 —
PROCESSES AND ITS APPLICATIONS

ly distributed as Gaussian. As before, we further fassume that the mean
value and the standardideviation of @; are respectively zero and o; ((=1,
2,--+,¢). This gssumption makes the cross-spectral density function re-
latively simple as shown below without sacrificing its usefulness in appli-
cations,
Sxix; (01, 02)=(1/27)*Xoi(01) Xf(wz) * exp { —Vo (el + 2 8pijoio;+0h) }
(3.71)
where 8= — 1 if wiw:>>0 and 8= 1 if wiw<0. Eq. 3.:71 is valid also for -
i=7g if we set p;;=1. )
In the special case of the complete independence (p;;= 0 for i==j),

we have

Sxx,(01,02) =(1/27) Xu(0)X§;(wz) » exp { —Vo(ci+0%)}
(3.72)
and for ¢=j7, we have p;;= 1 and hence
Sxp(01,02) =(1 /27 X(0) X (02) exp { —16(1 +8)%0F}
(38.73)

Therefore, the following diagonal cross-spectral density matrix follows

from the further assumption of o;—>co(i=1, 2, -+, q)}
Xoplo)XFlw) e 0
v 0 Xu(oXf(e) 0
§xx(¢°1, w2>=‘§%% | . , .
(? .:.M...."‘...qu<wl')X(>)l;(w2)
(3.74)

We note again that Eq. 3.74 is valid under p:;;=0, oy—>00, §=—1 for

w1w2>0, and §=1 for w102<0.
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In the case of full correlation where @1=@z=----=@,=® and hence
o1=og==gg=0, the cross-spectral densities are
S xi; (@1, w2) =(1/27) 2 X0:(01) X§;(w2) * exp { —%2(1 +8)%*}
(8.75) -

which is valid whether i=j or i==j. If, furthermore, o->c0, we obtain

Xo(o) X (0r) Xor(on) K@)+ Xor(on) X (w2)
Kog(@n) X (ws) ~rrmommesenreesinss: Xog(on) Xy ()
(3.76)

- The mean square and variance functions, extreme values, probability
density and distribution functions of the component process x:(#) can be

evaluated in the same way as those of the univariate process x(Z).

3. 3 Data-Based Nonstationary Random Processes of the Second
Kind
3. 3. 1 Introduction
Some physical processes of engineering importance initiate and termi-
nate with zero values as exemplified by earthquake acceleration records.
Unfortunately, as pointed out earlier, when the record x:(#) observed in
the interval (0, 7o) does not oscillate rapidly and at the same time more
or less symmetrically with respect to the base line, again as exemplified
by earthquake acceleration records,the data-based nonstationaty random
processes of the first kind and their sample functions fail to satisfy the
zero initial and terminal conditions even in approximation. We can show

however that a relatively simple modification alters the characteristics of
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these processes of the first kind leading us to a family of nonstationary
random processes whose sample functions alwayé satisfy the initial and ter-
minal conditions rigorously, This family is referred to as #he data-based
nonstationary random processes of the second kind. It is pointed out
however that the modification is nbt achieved without penalty, Indeed,
the processes of the second kind and their sample functions can observe
the preservation of the Fourier amplitude | Xo(w) | of the original record
xo(#) only in approximation. Nonetheless, in view of the fact that in
practice we often deal with the processes which either by nature. or by
definition must have zero initial and terminal values, the data-based non-
stationary random processes of the second kind are introduced and their
characteristics examined in the following, restricting, however, our atten-
tion only to the uni-variate cases in the present study.
3. 3. 2 Preliminary Analysis

A record x0(¢) of duration 7o is again considered. By definition,
the record begins at £= 0 and terminates at =7, with its value being
identically equal to zero outside the interval (0, 7o). We then construct
the symmetric extension yo(#) of xo(#):

Yo(8) = x0(8) + 20(—2) 3.77

We further construct the periodic extension of zy(Z) of y(#):
N
zv () jEN.yO(f*' 2RT) (3.78)

Three functions x0(¢), yo(¢) and 2zx(#) are schematically illustrated in
Figs. 1, 2 and 3 respectively. ’Note that ,yo(t) and zx(#) are symmetric
with respect to the origin. The Four'ier transforms Yo(w) of y(¢) and
Zn(w) of zw(2) can be shown as
 Yo(@)=Ye(—0) =Xo(0)+X§(0) = 2Re (Xo(o)) (3.79)
Zy(w)=Zy(—w)=Yo(o)pr(w) (3.80)
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%o (t) Yo (t)
t t
o 1, ~Ty 0 Ty
Fig.?1 A record x,(f) Fig. 2 Symmetric extension »,(¢) of x,(2)
zN(t)
-(2N+1)Ia *ZNXO >313 -210 —XC) 2 T:) T_IO 3'[0 2N10 (ZN&l)'ID

Fig. 3 Periodic extension zn(¢) of yo(#)

where pn(w) is a periodic function (with period wo=7/7y) known as the

Fourier -series kernel:

pr(w) L;:lewexp (12kTow)={sin (2 N+ 1 )Tow}/sin (Tow)

=pN( ___Lw) . (3.81)
We can show that as N—>oco and for (B—14)wi<e="(k+1%)wo
lim prv(w)=wid(w—Fkwvr) ‘ (3.82)
N—roo

(%6)
Therefore, we obtain, as N—co, from Egs. 3.81

(#6) Since pn(@) is periodic with period wy==/T,, if we show that, in the in-
terval (—@o/2, @/ 2), pn(®) tends to w8(w), it will follow that
lim py(@)=w, 3 §(w—kw,)
N—roo f=—oo
From Eq. 3. 81 we have
sin(2N+1)Too _sin(2N+1)T0 | T

(@)= sin(Tow) 7w sin (Tow) " @

But we see® that
},im sin (2 N;o—) 1)7T0 —5(@)

and since Tow/sin (Tow) is bounded in the (—&,/2, wo/ 2 ) interval we conclude
that for | o | <wo/2
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lim pw,):wo_i 8Ceo— ko) (3.83)

N->oo G=

and from Eq. 3.80,

Zo(0) = lim Zy () = w03 Yo(kao)3(w ko) ERCE T
Defining 2,(¢) as

20() =lim. é 9o(t—2RT) (3.85)

we observe that 2z0(¢) and Zo(w) constitute a Fourier transform pair. It
is noted that Zo(w) is a real and even function of o.
Introducing a temporal filter of the form
v()=U@)~-Ul—To)=1 0 <t<<To
‘ : (3.86)
=0 t<<0; t>To
with U(%) inicating the Heavyside unit step function, we may write
xo() =20(¥) « v(¥) (3.87)

(% 7)
The Fourier transform Xo(o) of x0(Z) can then be written as

Xo(@) =1/(27) [~ Z(OV(o=2) dr
=Po(e) +Qo(w) , (3.88)
where V(o) is the Fourier transfor‘m of the temporal filter v(%),
V(o) = ] " o(t) exp (—iwt)dt=( 2 /) sin (Too/ 2 ) + exp (—iTow/ 2 )
= <‘1 /o) (sin 0To— 2 sin2(wTo/2)) (3.89)

7w

nyzopN(Q))=wo . W M 8((0)
=y o Ta, ! .
=®g m | w=0 8((")
=a3(@)

(#7) It follows from the frequency convblution theorem that the Fourier transform
F(w) of the product fi(#)f2(¢) of two functions equals the convolution F;(w)
xF,(®) of their respective transforms Fi(w) and Fy(®») divided by 2x.
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Po(w)=1/(27) f ‘ :zm) Vio-+0) dr (3.90)

Q(e)=1/(27) j ' “Zo(\) Vo= d (3.91)

The Fourier transform pairs listed below are useful in the analysis that

follows (see also footnote (%2 )):
(@) w(H)=UQG+To)—U(—To) (see Fig. 4)

; (8.92)
Welw)=We(—w)=(2/w)sin oTo (real)
Fig. 4 An even temporal filter w,(#) Fig. 5 An odd temporal filter wo(?)
() we(t)=w.(t) » sgn (&) (see Fig. 5)
: (3.93)
Wolw) =~ Wo(—w)=—(4i/w)sin® (oTo/2) (imaginary) -
(&) U@)=Y%-+Y%sgn (¥ (unit step function)
__ T (3.94)
, U(w)=78(w)+ 1 /(o) ‘ :
@ Ui()=1%8()— 1/ (=)
(3.95)
U(w) =Y+1% sgn (») (unit step function,real)
(@) Ux()=%(8()+ 1 /(int))
(3.96)

U(~o)=1—Ysgn () (real)
Substituting the last member of Eq. 3.89 into Eq. 3.91 and using
Wo(w) and W,(w). défined in Eqs.’ 3.92 and 3.93, we obtain

Q@) =1/C4m) [~ ZOIUG)I Wela—n) dr
+1/C4m) [~ _ZOITO) Wolo—2) dn (@.97)

=1/C2m [T 200U Va—r) dr
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or equivalently
Qo(0)=%(1/(2m){ Zo()U () }xWe(e)]
+35(1/(2m){ Ze(0)U(w) b Wo(w) (3.98)
= 1/(272){Zo(@)U(w) }x V()
where the asterisk indicates a convolution integral. The inverse Fourier
transform of Z.(w)U(w) is given by the convolution of z0(#) and TU.(®)
=16{8(¢)— 1 /(int)} (see Eq. 3.95):
gor(8) =20(8)*(15{8(2) — 1 /(izt) }] .
=1h{20(£)+i2(1) ) (3.99)
whete the fact has been used that the Hilbert transform é\o(t) of z(¥) is
given by ,

() =20()* (1 /(=) | (3.100)
Similarly, with the aid of Eq. 3.96, we obtain the inverse Fourier trans-
form of Zy(0)U(—w)as

o) = 2o(E)% (Yo{ 8(8) + 1 /(in8) ) = Yol 2 (§) —izo(£) }  (3.101)
Recognizing that Eq. 3.97 also consists of two convolution integrals in-
volving ¢oi1(£), qo2(t), w.(£) ahd w,(¢), we conclude that the Fourier in-

verse transform ¢,(#) of @Qo(w) is

00 () =% 20(®) +i2(®) Jo (&) (3102
Similarly, the Fourier inverse transform po(#) of Py(w) is

Do) =Ya{ 2(8) —i2o(£) o (£) (3.108)
Writing Po(w) in a form similar to Eq. 3.98, and comparing, we can
show that '

Py(—0) =Qf(0), Q(—w)=Pf(w) (8.108

3. 3. 3 Construction of the Processes of the Second Kind
Now construct a nonstationary random process z(Z) on the basis of
2,(2) which is the symmetric-petiodic extension of the original record x,(¥)

as introduced in the preceding section:
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2®)=1/(2%) [~ Zy(w) expifot+Psgn (@)} do  (3.108)
The similarity between the process x(¢) of the first kind defined by Egs.
3.7—a and 3.9 and the process z(¢) above is selfevident. Similar to Eq.
3.16, the following expression can then be derived for z(¢#) from Eq.
3.105: |

2(8) =2,(F) cos O—2(£) sin @ ©(3.106)
where on(t)' is the Hilbert transform of 2z,(¢#). The Fourier transform of

Zy(0) of 2o(#) is obtained (see Eq. 3.20) as

Zo(0)=—1 sgn(w) » Zy(w) (3.107)
and therefore ‘
2t =1/(2m [~ Z(o) exp Got) do (3.108)

ot equivalently (see Eq. 3.18), ‘
a®=1/n [ Zy) sinot do (3.109)

We can also show that the process z(£) and its sample functions preserve
the Fourier amplitude | Zy(w) | of the extended record 2z,(¢) just as the
process. x(f) of the first kind and its sample functions have preserved
| Xo(w) | .

The data-based nonstationary random process x(¢) of the second kind
is now defined as ' '

x(B)=2z() v(t) =.xo(?) cos @— o (2) sin @ (3.110)

where x,(¥) =20(¢) « v(¢) is the original record and
To(&) =2(£) + v(2) ©(3.11D)

Thus, the process x(¢) of the second kind is nothing but that segment of
z(t) which extends over the interval [0, 7y). The Fourier transform
Xo(w) of %y(f) is obtained (see Eq. 3.107) as
Xo(@)=1/(27)Zy(@)x V() = —i/(2m).lsgn (o) » Zo(w) )5 V(w)
(3.112)
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which aff:er some algebraic manipulation becomes
Xo(0)=i{ Po(@) — Qo) } (3.113)
With respect to x(£) of the second kind, the following observation is
of crucial importance: From the time domain definition of the Hilbert trans-
formation (Eq. 3.19), it follows that the Hilbert transform z/;)(t) of zo()
and therefore x, (t) are equal to zero at = 0 and ¢= T since 2,(¢) is a sym-
metric function of time with respect to these time instants (see Fig. 3). In
addition, if' the original process x(#) is equal to zero at f== (0 and =Ty,
~then, by virtue of Eq. 3.110, x(#) is also equal to zero at the same time
instants. Comparing Eq. 3.110 with Eq. 3.16 and realizing that in both
cases the randomness is introduced through @, we conclude that the ex-
pressions for the expected value, autocorrelation function, mean square and
variance functions, extreme values, probability density and distribution
functions derived for the process of the first kind are also valid for the
process of the second Kind if we replace .a?o(z‘) by 7o(£) in those expres-
sions. However, the expressions for the generalized spectra and the Fou-
rier amplitude must be modified.
The Fourier transform X(w) of the processes of the second kind is
obtained from the second member of Eq. 3.110 as
- X(@)=1/(2m) (Z()xV(w)] (3.114)
This equation, with the aid of Eq. 3.105, can be rewritten as
X(0)=1/(2m)[Z(w) exp {iPsgn (o) })5V(w)
=(1/(2m){Zy()U(w) }xV(w)]} exp (iP)
+(1/(22){Zy(0)U(—0) }xV()] exp (—i®) (3.118)
which, with the further aid of Eq. 3.98 for Q,(w) and corresponding ex-
pression for Py(w), finally becomes
 X(0) =Py(w) exp (—i®) +Qy(w) exp (i0) (3.116)
- The result éhown in Eq. 3.116 can also be arrived at by taking the Fou-
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rier transform of the third member of Eq. 3.110
X (@) =X,(w) cos @— Xy () sin @ (3.117)
and using Egs. 3.88 and 3.113 for Xo(») and Xo(w) . Comparison of Eq.
3.116 with Eq. 3.88 unfortunately indicates that for the process of the
second kind, no identity exists either between the Fourier transforms,
Xo(w) and X (o), nor between the Fourier amplitudes, | Xo(w) | and | X
(@) ]:
Xo(w)#X (o), | Xo(@) | | X(@) | (3.118)
More specifically, using Egs. 3.88, 3.104 and 3.116, we obtain
| Xo(0) | 2= | Po(w) | *+ | Qo(@) | 2+ 2 Re(Po(w@) Po(—0)]
| (3.119)
and
| X(@) | 2= | Xo(w) | 2=Po(@)Po(~w){ 1 —exp (—i2D)}
—Qu(0)Q(—w){1 —exp (2@} (3.120)
The expected values of X(0) and | X(») | 2 are evaluated below first
under the assumption that @ is uniformly distributed between —a and a

(a=>0).

E{X(0) }=Xo() (sin a/a) (3.12D)
E{ | X(0) | 2}= | Po() | 2+ | Q@) | *+2Re(Po(w) Py(—)){2a/ (sin24) }
(3.122)
For example, if a=n/2
E{X (o)} =2Xi(0)/ (3.123)
Ef | X(0) | *}= | Po(@) | 2+ | Qo(w) | * (3.124)
and if a==/4, ‘
E{X(0)}=(2V 2/m)Xo(0)=X,(o (8.125)
E{ | X(o) | 2}=| Po(@) | 2+ | Qo(@) | 2+ 4 Re(Po(0) Po(—w)])/=
(3.126)

If we assume that @ is Gaussian with zero mean (u= 0) and standard de-
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viation o,
E{ X(0) }=Xo(w) exp (—0?%/ 2 ) = [Po(w) + Qo(w)] exp (—o?/ 2)
(3.127)
E{ | X(0) | *}= | Xo(®) | #— 2Re(Po(@)Po(—w)J{1 —exp (— 20¢%)}
(3.128)
As o—>o00, these equations approach the following values:
E{X(e)}=0 (3.129)
E{ | X(0) [ ?}= | Po(®) | 2+ | Qo(w) | (3.130)

As to the relationship between the autocorrelation function Ry, (71,
¢2) and the generalized spectrum Sy (w1, wz) of the processes of the second
kind, Eq. 3.45 is still valid whether we deal with the processes of the
first kind or of the second kind. At the same time, the autocorrelation

function of the process x(#) can generally be written as

Rux(h, t9=1/(20°["_[7 BEX (o) X))
X exp {i(wif1—wsots) } don dwz - (3.131)
Therefore, comparing Eqs. 3.131 with 3.45, we obtain
Sxx (1, 02) =E(X(0) X*(02))/(27)* (3.132)
Sgbstituting Eq. 3.116 into the above, we further obtain
Swwx(@1, 09) = Xo(@) X§ (@) = Poon) Po(—02) (1 —E{exp(— 20) )

~Qu(e)Qo(—0s) (1 ~E{ exp (2i0)) |/ (2m)*
(3.133)

Hencé, if @ is uniformly distributed between —¢ and a (¢>0),
Sxx (w1, 02) =[Xo(w1)X3‘(w'2) —P1(01)Po(—w2) {1 —sin (2a)/(2 a)}

~Qo(@)@(—a){ 1 —sin (20)/(2@)} ]/(27)*
(3.1349)

In particular, if a=mn/2 (m= a positive integer), we can show that

Sxx (w1, wz) = [Po(wl)Qo('—'wz) +Qo(w1) Po(—ws2) ]/( 27)%(3.135)
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and if a==/4,

Sxx (@1, 2) ==[Xo(w1)X8k(w2) —~{(m— 2 ) /7 }{ Po(@1)Pe( —wz)

+ Qoo @(—02) } [/ (27)* (3.136)
In the cases where @ is Gaussian with zero mean (u= 0 ) and stand-

ard deviation o, we can show that

Sex (w1, w2) = {Po(wl)Qo('—‘wz) +Qo(01) Po( —wz)

+{Pow1) Po(—wz) +Qo(w1) Qu(—~wz) } exp (— 2 ¢%) ]/( 2n)*
(3.137)

which, as o—>co, reduces to

Sxx (o1, wz2) = [PO(COOQOC* wz) +Qo(w1) Po(—w2) ]/( 27)?  (3.138)
Note that Eq. 3.135 and 3.138 are identical, In all these expressions that
appear above, the functions Po(w) and Qi(w) play a major role, We sug--
gest that these functions be evaluated as the Fourier transforms of po(#)

and ¢o(?) as defined in Egs. 3.103 and 3.102 respectively.

CHAPTER 4 NUMERICAL EXAMPLES AND DISCUSSIONS

4. 1 Introduction

The data-based nonstationary random process models proposed- in the
preceding chapter are applied to three different sets of observed data. The
first is a set of the NS and EW vcomponents of the ground acceleration
recorded at the time of the Niigata earthquake (1964). Their nonstationary
characteristics are conspicuous in temporal variability not only in intensity
but also in spectral content, While it is undoubtedly of vital importance to
examine the physical significance that such a nonstationarity might sug-
gest (for example, the effect of liquefaction), these records are simulated

(without considering physical implications) by the process of the first kind
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assuming in one case that the two components are independent and in the
other that they are statistically dependent, The second set of data con-
sitst of a stretch (360 sec) of a wind pressure record measured at a loca-
tion on the wall on the leeward side of a buildings.) The record exhibits
a considerable asymmetry dominated by negative pressures caused by tur-
bulence in the wake behind the building. The process of the first kind is
applied to this record of wind pressure. Finally, the process of the sec-
ond kind is used to simulate the temporal vériations of a normal load
factor (in terms of g, acceleration due- to gravity) recorded during fighter
maneuver actions, The observed data consist of two stretches of actual
records of such variations, marneuver load A with a duration of 31.0 sec
and maneuver load B with a duration of 69 sec. The process of the sec-
ond kind is used here to ensure that at the beginning‘ and at the end of 2
maneuver, the normal load factor is unity since we assume an ideal level
flight before and after the maneuver. ‘
4. 2 Earthquake Acceleration

In Figs. 6 and 7, the original record .xo(t), with a duration of 34
sec, the Fourier amplitude | Xo(e») | and phase angle &o(w) are plotted re-
spectively for the NS and EW components of the ground acceleration of
the 1964 Niigata earthquake. The sharp change in the oscillatory char-
acteristics of these records is apparent at around # = 9 sec. Fig. 8 plots
both the original record xe(¢) of the NS component and its Hilbert. trans-
from #s(£) in the time inferval (0, To) with To=34 sec, while Fig. 9 com-
pares the original record xo(#) with two sample functions < (#) and x®(¥)
chosen out of the five hundred generated from the data-based nonstationary
process of the first kind having a Gaussian @ with mean px=0 and
standard deviation o=50z, The standard deviation of 50~ is practically

large enough to approximate the limiting case of o—co, In Fig. 9, we
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Fig. 8 Original record x,(#) of NS component of }\he Niigata
earthquake (1964) and its Hilbert transform x,(2).
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Fig. 9 Original record of NS component of the Niigata earthquake
(1964) and sample functions (first kind; Gaussian distribution
of & with p=0 and o=507).

ohserve that sample functions faithfully reproduce the temporal variations

of the intensity and the frequency content exhibited by the original rec-
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ord. In Fig.10, the Fourier amplitude | Xo(w) | of the original record is
compared with those of the sample functions, and we observe that these

Fourier amplitudes are practically identical,
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Fig. 10 Fourier amplitudes of original record of NS component
of the Niigata earthquake (1964) and of sample functions
(first kind; Gaussian distributior; of & with p=0 and
o =507).

While it is not explicitly illustrated in Fig. 8, the Hilbert transform
;o(ﬂ of the original record xo(#) is actually close to zero for the time
domains #=0 and {==7, (=34 sec) due to the fact that the original record
fluctuates symmetrically in approximation and rapidly. This is the reason
why the sample functions shown in Fig. 9 also have approximately zero
initial and terminal values. At the same time, this is respénsible for thg
fact that the Fourier amplitudes of the original record and of ;che sample
functions are all practically identical as shown in Fig. 10, a confirmation
of the theoretical assertion that the process of the first kind and its sam-

plé function preserve the Fourier amplitude of the original record.
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The mean value E{x (%)}, standard deviation a-x(t), maximum value
max {x(#)}, minimum value min {x(#)} and empirical density functions
are evaluated by means of the Monte Carlo simulation technique computing
the ensemble average on the five hundred sample functions generated.
These statistical quantities, except for the empirical density functions,
are shown in Fig. 11 (a)~(d), as functions of time. The empirical
density functions at £ =4 sec, 9 sec and 20 sec are plotted in Fig. 11(e).
In Fig. 11, these quantities based on the ensemble averaging coincide
so closely when plotted together with the corresponding theoretical values
that it is difficult, and therefore no effort is made, to distinguish them

except for the density functions.
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Fig. 11 (a)~(d) Original record x,(#) of NS component of the Niigata
earthquake (1964), mean value, standard deviation, max-
imum, minimum and empirical density functions (first

"kind; Gaussian distribution of @ with #=0 and o=507;
sample size=500).
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(e-3) empirical density function at t = 20 sec.
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Similar results are shown in Figs. 12~15 for the EW component rec-
ord with the same comments applicable as for the case of the NS compo-

nent. It is pointed out, however, that the sample functions in this case

c09 08
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-206.00—
.00 8.20 16 .00 24 20 32.09 49 9

t(sec)
Fig. 12 Original record x,(¢) of EW component of /’Ehé Niigata
earthquake (1964) and its Hilbert transform #,(¢).
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o=507).
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{e-3) empirical density:function t = 20 sec.
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are generated under the assumption that the nonstationary >proc%s con-

structed for the EW component is completely independent of the process



357 DIGITAL SIMULATION OF NONSTATIONARY RANDOM — 93 —
PROCESSES AND ITS APPLICATIONS

constructed for the NS component. This implies that two entirely inde-
pendent sequences of realizations of the random variable @ are used; one
for generating sample functions of the EW component and the other for
the NS component. ‘

If we wish to introduce a statistical dependerice between the processes
x:(#) and x:(#) respectively representing the NS and the EW components,
they must be assumed to form a bivariate process x(#) = (x:(#) x2:(ENT
with the component processes Xx:(Z) and x:(#) (both of the first kind)
constructed with the aid of Egs. 3.54 and 3.55. In the present study,
we further assume that @; and @: in Eq. 3.55 are jointly Gaussian with
zero mean, identical standard deviation o=507 and coefficient of correla-
tion p12=0.999. Then, the expected values are (see Eq. 3.29)

E{x1() }=E{x2(¢) }=0 4. D
the autocorrelation functions are (see Eq. 3.38)
Ry, (t1s 1) =Y5{ x0s(B) 0s(£2) + Fs(B)Z0s(£2) ) (i=1,2)
4. 2
and the crosscorrelation function is (see Eq. 3.63)
Ryxeo(B1, 12) =Vo{ 201 (£1) %o2(£2) o1 (1) %o (£2) } exp (—2.57%)
(4. 3)
The original records xo1(£) and xoz(#) together with their sample functions,
two each out of the two sets of five hundred geperated, are plotted in
Fig. 16. The sample functions of the process x1(#) shown in Fig 16 are
identical with those in Fig. 9 since the same realizations of a Gaussian
random variable, referred to as @ in the case of Fig. 9 and @: in the
case of Fig. 16, are used for both cases. However, this does not apply
to the sample functions of the process x:(¢). Indeed, in this case, the
sample functions shown in Fig. 16 are constructed using . realizations of

the random variable @:. These realizations are generated in accordance
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Fig. 16 Acceleration record of the 1964 Nugata earthquake and corres-
ponding artificial acceleration component. (Correlated bivariate
process; joint Gaussian distribution for @, and &, with °0, =,
=507z and Po.®, =0. 999) Cross-correlation function R (tl,tz)
~1/2{x01(t1)x02(t2)+x01(t )xoz(fz) } exp (—2.57%)

with the “conditional density function of @: given @,” which is derived
from Eq. 3.62. They are therefore different from those used in the con-
struction of the sample functions in Fig. 13 and hence the two sets of
sample functions in Fig. 13 and in Fig. 16 are different. As mentioned
earlier, it is the unavailability of sﬁch conditional density functions for
uniformly distributed @'s that prevents their use in the multivariate simu-
lation. The Monte Carlo evaluation of the mean value. standard devia-
tion, maximum value, .minimum value. and empirical density functions of
the process x2(%) statistically dependent upon the process x:1(#) in the man-
ner described’ above, is performed on the basis of the five hundred sample
functions thus generated. As expected, the results are identical with those
shown in Fig. 15 since the quantities considered here all depend only on
the marginal density function of @: which in this case is the same density

function used independently for generating the results in Fig. 15.
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4, 3 Wind Pressure

In Fig 17, the original record xe(#) of wind pressure, its Fourier
amplitude | Xo(o) | and phase angle £o(o) are plotted. The Hilbert trans-
form Ec\o(t) of xo(t) is then computed and plotted in Fig. 18 in the interval
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g :g gg: [ S L : i IR 3
= L] 7200 144,00 21500 28800 360.00
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5‘;31%% oot Y i 4 2o 1 N ] 2 L
o8 |
N
E s ‘50 wi(mian/seci) 2 o0 e so
. () z,(w)
i 314p »
£ ok SN AN | fadaamh
: AT AT
£ w314 g 1 | R 1 Wy ¥ o\
& %) 5@ 1.00 160 2.00 2.50

. w {radian/sec)
Fig. 17 Original record #,(¢) of wind pressure, Fourier amplitude
| Xo(w) | and phase angle ¢,(®@).
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_500- I 1 A 3 i 1 PR LE |

Wind Pressure (psf)

_sw 1 1 1
T e 72.06 144.00 216,00 288.00  360.00
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Fig. 18 Original /r\-ecotd %0(¢) of wind pressure and its Hilbert
transform x,(¢).
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(0, To] (To=360 sec) together with the original record x0(¢#), While it
is not explicitly illustrated in Fig. 18, the Hilbert transform ;C\o(t) of
xo (?) is not necessarily close to zero in the time domains £=0 and =T
due to the fact that xo(¥) is dominated by negative pressures. Never-
theless, the data-based nonstationary random process of the first kind is
used to simulate the wind pressure, since in this case the condition of zero
initial and terminal values does not necessarily have to be strictly observéd.
The random variable @ is assumed to distribute uniformly between —z/2
and 7/2 to simulate the asymmetric nature of the original record (see
Egs. 3.49—3.52). Fig. 19 plots‘two sample functions (out of the five
hundred generated) together with the original record, while Fig, 20, the
Fourier amplitudes of these two sample functions as well as of the origi-
nal. In this case, in spite of the use of data-based process of the first

kind, we observe that the Fourier amplitudes of the sample functions
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Fig. 19 Original record of wind ipressure and sample functions
(first kind; uniform distribution of @ between —=»/2 and

%/2)
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Fig. 20 Fourier amplitudes of original record of wind pressure
and of sample functions (first kind; uniform distribution
of @ between —=z/2 and =#/2)

are dissimilar not only to each other but also to that of the original record.

This is due to the follwing fact: The Hilbert transform ;o(t) and hence

x(t) =x0(¢) cos ¢-§o(t) sinf@ are generally not close to zero but have no

insignificant values-outside

the interval (0, 7o), Therefore, if we con-

struct sample functions, as we do here, by extracting that portion of x(#)

which exsends only over the interval [0, 7o) and evaluate its Fourier

amplitude, we then find that the Fourier amplitude depends on each sam-

ple function and is usually smaller than | Xo(») | corresponding to the

G 8)
original (this is consistent with the Parseval theorem). The Monte Carlo

(x8) Let Fi(w) and Fi(®») be the Fourier transforms of f1(#) and f2(¢), respec-
tively. Then the Parseval theorem states that

[T A®awa=21[" F(-)F) do
If f1(#)=1f2(t)=r(t), with F(») being its Fourier transform and f(#) being

a real function of ¢,

[2. sy ar = [T p—oyr@ido=g2 7 1P |2de

since for a real function f(¢) we have F(—o)=F*(w),
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evaluation of the mean value, standard deviation, maximum value and

minimum value are plotted as functions of time in Fig, 21(a)~(d) while

the empirical density function of x(#) at £=180 sec. is in Fig. 21 (e).

4

2.
-2,

-4

-6.
4,

2

-2
-4

a

Wind Pressure (psf)

~4.
-5

-6,
4.

-2.
-4
-6
4.
2

-2.

00 — -
-] (a) E{x(t)}
gg v e ~ ” 3 L N g —v-w‘w—— ~:
08}
©9
20
m
@0 I
-7
081
00,
(]
Lvd s
.08
%E {c) max{x(t)}
re w L 1 i | L 1 i 1 L
%: (@) min{x(t)} )
.06
pod !“--‘V/“~¢M~ﬂ’-hvﬂ""“~‘ﬂvw/¢\—\4"aﬂ
gg 3 i I A I L ] i I 1
e9 7200 144.69 216 .60 283.90 360.00
- t(sec)

Fig. 21 (a)~(d) Mean value, standard deviation, maximum,minimum

Density

and empirical density function of the simulated wind
pressure process (first kind; uniform distribution of @
between —z/2 and =/2; sample size=500).

2o
18f
16} (e) empirical density function
141 at t = 180 sec.
O
w
&, 12 -
o]
0
I o
[ Empirical Theoretical
4
2
[
-7 =55 -40 -2 - 10 .5

Wind Pressure (psf)

Fig. 21(e) Continued



363 DIGITAL SIMULATION OF NONSTATIONARY RANDOM — 99 —
PROCESSES AND ITS APPLICATIONS

The results in Fig, 21 (a)~(d) also represent the theoretical evaluation of
the same quantities since the Monte Carlo and theoretical evaluations have
been found to be in almost perfect agreement.
4. 4 Maneuver Loads

Two sets (cases A and B) of temporal variations in the- normal load
factor observed during fighter maneuver actions are considered. These
temporal variations, their Fourier amplitudes and phase angles are plotted
in Figs. 22 and 23 respectively for maneuver A (duration 7o=31 sec)
and maneuver B (duration To\=69 sec). Both maneuver loads are domi-
nated by positive values and hence their Hilﬁert transforms are not close
to zero at #=0 and £=T, even in approximation. This implies that the
use of the daté-based process of the first kind will not produce desired
sample functions which begin and end with zero values. Therefore, the
data-based process of the secohd kind is used to simulate these marieuver

loads. In both cases, the random variable @ is assumed to be uniformly
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Fig. 22 Original record x,(¢) of maneuver load A, Fourier
amplitude | X,(w) | and phase angle &(w).
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Fig. 23 Original record x,(¢) of maneuver load B, Fourier
amplitude | X,(@) | and phase angle ¢ (w).

distributed between —z/2 and 7/2,

Dealing first with maneuver load A, the symmetric-periodic extension

2o(¢) of the orig‘inél record xo(£) and the Hilbert transform /2\’o(t> of 2o(%)

S €9
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6 @0

T U170

Normal Load Factor (g}

i 1 1 1 1 i 1 1

-31 00

-18.60 -6 20 6 2@ 18.6@ 31.09
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Fig. 24 Symmetric-periodic extenAsion 2,(¢) of manuever load A
and its Hilbert transform z,(#)
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are plotted in Fig. 24. In Fig. '25, the Fourier amplitude | Xo(w) | of
() is plotted together with the quantities { | Po(w) | 2+ | Qo(w) | 2},
| Po(w) | and | Q(w) | . The quantity { | Po(w) | >+ | Qo(w) | 2} is of

particular importance since this is equal

)
‘80‘%: to (E{ | X(®)|%})% under the current as-
S 60.00 . . .
fc, prs eak sumption of @ and is to be compared
— g0 eop
- oo L S with | Xo(») | . Indeed, if the differ-
> 100.00r _
2 8 x: ence between | Xo(e) {and { | Po(w) | 2
o 69 e .
B ,_:tzE\N + [ Qo) | 2PE= (B | X(o) [ 2% is
%3 oot St e s .
£ 00 oo small, it indicates that the simulated
= o :E process (of the second kind), on the av-
> 40 00 :
=) w§\ . erage with a small alteration, has pre-
”“ 11t t 1! 1
100 oo p served the Fourier amplitude of the o-
8000 F ;
3 2 z: riginal record while ensuring zero initial
O'c =
-l e and terminal conditions, We observe in
0 4 8121620 ) : L ‘
w (radian/sec) Fig. 25 some reduction in the value of

T T 1% i 1 1o 4 for ol

for maneuver load A. ues of w. This is consistent with a fur-
ther observation in Fig. 26 thét all of the three sample functions shown
therein exhibit generally smaller normal load factors than the original
record. This trend exists for most of the five hundréd sample functions
generated and is one of the characteristics of the process of the second
kind, Fig, 27 plots the Fourier amplitudes of the original record and of
the sample functions shown in Fig. 26. The Monte Carlo evaluation of
the mean value, standard deviétion, maximum value and minimum value

are plotted as functions of time in Fig. 28 (a)~(d) while the empirical

density function at {==15.5 sec is plotted in Fig. 28 (e) on the basis of

the five hundred sample functions. Fig., 28 (a)~(d) also serve as the plot )
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of the theoretical values for the corresponding quantities for the same

reasons as repeated above,

Similar results for maneuver load B are obtained in Figs. 29~33 with

the same comments applicable as for the case of maneuver load A.
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" Fig. .29 Symmetric-periodic extension 2,(t) of maneuver load B
and its Hilbert tramnsform 2,(¢)
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CHAPTER 5 CONCLUSION

As one of the nonstationary random process models to be characterized
primarily in terms of the frequency domain behaviors, the data-based non-
stationary random process models of the first and second kind have been
introduced. |

The model can be written as the inversion of the Fourier transform of
the original record (the first kind) or of its symmetric-periodic extensioﬁ
(the second kind) with the phase angle shifted by a random amount @, It
is this shift that introduces the randomness into the model.

The processes of the first kind preserve, in priociple, the Fourier am-
plitude of the original record while those of the second kind do so only in
approximation., The latter however strictly observe the Zero initial and
terminal conditions if the original record does, The vdata-based multi-
variate process model of the first kind is also introduced. '

The construction of the data-based process model is a str'aightfoi'war'd
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task requiring only the Fourier transform of the original record (or its
extension) or equivalently its Hilbert transform: No theoretical or nu-
merical finesse needs to be exercised in the construction of the model,
thus obviating the necessity of the engineer analyzing the data, to be an
expert in random process theory and data analysis,

The following quantities associated with the data-based nonstationary
random process are theoretically evaluated: the mean value, standard de-
viation, maximum value, minimum value, probability density function,
autocor'relatién function, generalized spectrum, crosscorrelation function and
cross-spectral density function (in multi-variate situation). \

The model lends itself to a tractable implementation of Monte Carlo
analyses since it can generate sample functions with easefm_The validity
of such Monte Catlo analyses can be checked by comparing the Monte
Carlo estimation of some of the quantities just mentioned with their cor-
responding theoretical values.

Three sets of observed data are used for nﬁrnerical examples, The
NS and EW components of the ground acceleration of the 1964 Niigata
earthquake are simulated by the processes of the first kind; in one case as
two independent processes (with independent @'s) and in the other as a
bivariate process with a correlation between the component processes (with
dependent @’s). In both cases, we assume that the random variable @ is
Gaussian obtaining the simulated processes of symmetric distribution. The
process of the first kind is also used to simulate a stretch of a wind pres-
sure record with @ distributed uniformly between —z/2 and z/2 to em-
phasize its asymmetric behaviors. Finally, two records of the acceleration
representing the normal load factor for a fighter aircraft during its ma-
neuver actions are analyzed and simulated by the process of the second

kind with @ distributed uniformly between —»/2 and =/2 again to re-
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produce the asymmetric characteristics of the records, A set of five hun-
dred sample functions are generated for each- of the example cases men-
tioned above for the purpose of a Monte Carlo verification of the the-
oretically evaluated mean value, standard deviation, etc, The agreement
between the Monte Carlo and theoretical results has been found to be
practically perfect.
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