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record (or i t s  extension) or equivalertly zts Hzlbert t rans form.  Also, the model 

lends i t s e l f  to a tracta62e zmplementatzon o f  Monte Car20 a ~ a l y s e s  because o f  

the ease wi th  whzch zts  sample functzons are generated. 

CHAPTER 1 PNTBQDUCTION 

The analysis of structural response to various types of random dynamic 

loadings has long been of interest to engineers. An elaborate theory has 

been derived for the spectral analysis of stationary random processes and 

has applied extensively to engineering problems. An increasing number 

of attempts have been mabe in recent years to extend the concepts associ- 

ated with classical spectral analysis to certain cases where nonstationarity 

is the essential feature of the processes involved. Examples are those non- 

stationary random processes with the instantaneous spectrum, the double 

f repuency spectr urn, the evolutionary spectr um, the physical spectrum and 

the locally time averaged spectrum. 

It is the purpose of this study to introduce the data- based nonstationar y 

random processes and to indicate their potential applications in engineer - 
ing , particularly in those cases where efficient generations of their sample 

functions are needed for the purpose of Monte Car lo and other investiga- 

tions The nonstationary processes to be introduced are called "data- 

based" because they are constructed primarily on the basis of the observed 
( 1 ) , ( 2 )  

record. 

The data - based nonstationar y random processes are simple to construct 

and possess a convenient analytical form for the generation of their sample 

functions, particularly as compared with other nonstationary random process 

representation such as those mentioned earlier. 

In the following, an effort is made in Chapter 2 to place the data- 

based nonstationary model in a proper perspective against the technical 
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background involving the nonstationary random process models currently 

available. In Chapter 3, we construct the model and examine its character - 
istics in detail. Chapter 4 then provides numerical examples where the 

model is applied to a number of observed records of practical interest. 

Finally, Chapter 5 delineates the findings of the present study. 

CHAPTER 2 TECHNICAL BACKGROUND 

2. 4 Introduction 

It is well recognized that the lack of ergodicity is the most significant 

characteristic of nonstationar y random processes in terms of their engineer - 
ing applications, since it considerably obscures the reliability of the esti- 

mates of such key statistical parameters as mean value and autocorrelation 

function when the number of sample functions is limited to only a few, 

if not just one. Unfortunately, this smallness of the sample size is usually 

the case when we wish to apply nonstationary random process theory in the 

field of structural engineering and engineering mechanics. Indeed, it 

would be a rare occasion for us to be in possession of a large number of 

sample functions on which the statistical analysis can be performed to 

reproduce the ensemble characteristics of, and further to develop the model 

of, their population nonstationary process. In the present study, however, 

we are primarily concerned with the method of constructing nonstationary 

process models but not specifically with estimating the characteristics of 

statistical parameters. It is pointed out, however, that the nonstationary 

model to be proposed later in this study has a unique feature in that its 

construction requires only a straightforward evaluation of the Fourier 

transform of the observed record and related quantities (hence the name 
( 1 ) . ( 2 )  

of "data- based" nonstationary random process) . Thus we are often able to 

eliminate theoretically awkward and numerically cumbersome efforts for 
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statistical estimation involving sample functions of nonstationary random 

processes. 

Examination of the nonstationary random process models proposed so 

far indicates that they may be classified into two general categories. One 

category consists of a class of models that might be termed as time domain 

models while the other as frequency domain models. 

2. 2 Time Domain Models 

Although the present study places its emphasis on frequency domain 

models, the following brief description seems to be appropriate with respect 

to some typical time domain models either in the form of the filtered Poisson 
( 3 )  (4) 

(or shot noise) process or in the form derived from the filtered white 

noise process. 

The filtered Poisson or shot noise process model was originally used 

to simulate some of the physical phenomena observed in the field of elec- 

tric and electronic engineering and more recently was found to be useful 
( 5 ) , ( 6 )  

also in the fields of structural engineering and engineering mechanics. 

In its general form, the filtered Poisson process is written as 

N(t) 
~ ( t )  = C A,w(t, r,) 

n=-w 
(2. 1) 

where w(t, r) = shape function representing the  effect at time t of a 

signal arriving at time r and therefore w(t , t) = 0 for t 5 r ,  N(t) = 

Poisson process with arrival times Z-I<TO<TI ".. and &=an identi- 

cally distributed random variable representing the magnitude of the signal 
( X  1) 

arriving at t = 7 , .  This process is easy to construct and can be made 

nonstationary by assuming, for example, that the mean arrival rate of the 
( 3 ) > ( 5 )  

Poisson process is a function of time. Analytical expressions for the mean 

value. variance , autocor r elation function and characteristic function are 

(*I) Throughout the present paper, stochastic quantities shall be boldfaced. 
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( 3 )  
generally available. The probability density and autocorrelation functions 

can be obtained a t  least in principle as the inverse Fourier transforms of 

characteristic and generalized spectral density functions, respectively. Also 

of practicaI importance is the fact that the sample functions of this process, 

whether stationary or nonstationary, can be generated in the time domain 

by making a direct use of Eq. 2. 1. 

The filtered white noise process in the present study refers to the 

process g(t) which satisfies the following equation: 

L(E(t)) =no(t) (2. 2) 

in which L ( . 1 =a linear operator and no (t) =a  (stationary) Gaussian white 

noise with a constant spectral density SO. The Gaussian assumption coupled 

with the assumed linearity of the operator in general makes it relatively 

easy to evaluate the mean value, variance, autocorrelation function, spec. 

tral density SEE(@) of the resulting stationary Gaussian process E(t). 

Due to the conceptual simplicity and the analytical familiarity, this model 

has so far been quite popular among those in the areas of structural engi- 

neering and engineering mechanics. In particular, in its application to 

the earthquake -related research, linear differential operators with constant 

coefficients are often used for the operator L[ . ) . In this case the 

frequency response function H(o) associated with the operator can easily 

be evaluated and, as is well known, the mean square. spectral density of 

g(t) is given by SEE(o) =SO I H(o)  1 2 .  Derivation of the mean value, 

variance, autocorrelation function, etc. then becomes a straightfor ward 

task of algebraic manipulation and evaluation of the integrals involved. 

We can now introduce the amplitude modulated nonstationary random 

process defined as 

where g(t) is a deterministic function of time such that it is equal to zero 
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outside of the interval [0, TO] while it varies slowly within the interval. 

If the variation of g(t) is much slower than that of the sample functions 

of the process e( t) ,  the spectral content of e(t) is expected to prevail in 

approximation for the process x( t )  as well. Again, i t  is of practical im- 

portance to note that the nonstationary random process x(t) can be con- 

structed easily and that its sample functions can be generated directly in 

the time domain with the aid of Eq. 2. 3. For this purpose, however, we 

suggest the use of a technique that generates sample functions of $ ( t ) ,  a 

stationary Gaussian process with zero mean in terms of the sum of cosine 

functions basically involving only the mean square spectral density func- 

tion. A specific ~eference will be made to this technique later in this 

study. 

2. 3 Frequency Domain Models 

In the present study, those stochastic models are called frequency do- 

main models if they can produce nonstationary random processes and cor- 

responding sample functions which can reproduce the specified nonstationary 

spectral density. There are, however, a number of 'definitions of nonsta- 

tionary spectral density in the literature. Most well known are the gen- 
(7)-(10) 

eralized spectrum (or double frequency spectrum), the instantaneous spec- 
(11)- (16) (16) (17) 

trum, the physical spectrum, the locally time averaged spectrum and the 
(18) - (23) 

evolutionary spectr um . From the viewpoint of application, particularly 

in the fields of structural engineering and engineering mechanics, any 

(nonstationary) spectrum should have the following features: (a) It is 

physically meaningful, (b) a simple transition from nonstatioinary to sta- 

tionary spectrum is possible, (c) dealing with a linear system, the input- 

output relationship can be described in a simple manner in terms of the 

input and output nonstationary spectra (under the same definition) and the 

system transfer functoin, (d) it can be obtained by an integral transorma- 
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tion, preferably by the Fourier transformation, from the nonstationary 

autocorrefation function and finally (e) its estimation on the basis of 

observed records is not too difficult. Each of the nonstationary spectra 

listed above satisfies these requirements to a varying degree of success, 

although none satisfies all the requirements completely. The following 

observation is in order at this point: These spectra can be used to char - 
acterize and sometimes conveniently estimate the nonstationary spectral con. 

tents of given time records. However, they are, with the exception of 

the evolutionary spectr um, not particularly suited for being incorporated 

into a stochastic model in such a way that the model produces a nonsta- 

tionar y random process characterized by one of these nonstationar y spectra 

and at the same time generates their sample functions with practical ease. 

On the basis of the observation above, we examine below thn stochastic 

model that incorporates the evolutionary spectral density. 

For this purpose, we first consider the following spectral repr esenta- 

tion of a stationary random process x ( t )  ; 

x( t )  = 'kxp ( i d )  dF(w) 
-ee 

(2. 4) 

where P ( o ) ,  called the spectral process, is orthogonal in  the sense that 

the increments dF(o1) and dF(o2) are uncorrelated when ol#wz.  By 

employing the orthogonal condition of P ( o )  , we can show that the auto- 

correlation R,,(r) of .x(t)  is 
- 

R,(T) = 1 exp (iwr) E{ 1 d ~ ( w )  1 ' 1  - ee (2. 5) 

Assume that the spectral density function SO ( o )  exists. Then EI [ d F ( o )  

1 2, =SO (w)dw, and Eq. 2.5 reduces to the well -known Wiener -Khintchine 

relationship. For the case where .x(t)  is real, 

x ( t )  = J r!cos wtd(i(o) +sin otd v ( u ) ~  (2. 6) 

where U(w) and V ( o )  for any 02 0 are two mutually orthogonal pro- 
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cesses, both real and with orthogonal increments such that 

E{dU(o)') =E{dV(w)'} =Sl(o)do (2. 7) 

Construct now the following process 

.X (t) = 1/' 25 {Si (wn) Am) ' cos (mnt ,+ @n) 
k-1 

(2. 8) 

where on= kAw, m,=nAo is the upper cut-off frequency beyond which 

Sl(o) is either actually or approximately zero, and @k's are statistically in- 

dependent random phases uniformly distributed between - n  and n. If we 

define in Eq. 2.6 that 

dU (wn) = [ 2 SI (on) A@) H cos @n 

d V(ok) = [ 2 Sl (wk) do) sin @r, 

then all the conditions imposed on U(W) and V(o) are satisfied, and r ( t )  

in Eq. 2.8 is basically consistent with and approximate to its spectral rep- 

resentation given by Eq. 2.6. 

Due to the fact that @k's are statistically independent and uniformly 

distributed between - n  and n, the process x(t) in Eq. 2.8 tends to 

Gaussian with zero mean as n-00 by virtue of the central limit theorem. 
(24). (25) 

In fact, this process .x(t) is the form which has been extensively used, 

together with the FFT (Fast Fourier Transform) technique, to generate 

sample functions of Gaussian processes with zero mean and given (one- 

sided) spectral density Sl (o) 

Eq. 2.6 indicates that a stationary process can be additively "built 

up" by orthogonal oscillations with random amplitudes. This concept of 

orthogonal components can be extended to that of the evolutionary process 

.x(t) expressed as 

x(t) = \ r ~ ( t ,  W) [COS w ~ ~ u ( w )  +sin wtd v ( w ) ~  (2.10) 

where B(t, w) is a real deterministic modulating function characterizing 

the nonstationarity of the process, and U(o) and V(o) are the same as 
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defined in Eq. 2.9. By using the orthogonal conditions of U(o) and 

I V(o) , the mean square of x(t) is found to be 

E{x2(t)} = j ;~ ' ( t ,  w)S~(w)dw= j y ~ ~ ( t ,  o)dw (2.11) 

where Sl (t , a )  = B2(t, o)S1 (0) is defined as the evolutionary power spec, 

tral density function. 

With respect to the requirements mentioned earlier which a desirable 

nonstationary spectral density is supposed to satisfy, we observe that the 

evolutionary spectr um defined above indeed satisfies some of them com - 
pletely while others reasonably well: (a) The evolutionary process can be 

interpreted as a process "built up" by orthogonal oscillations with time. 

varying random amplitudes, (b) the evolutionary spectrum reduces to the 

standard mean square spectral density when B(t, o) becomes independent 

of time, (c)  the input-output relationship is not as simple as in the sta- 
(23), (26) 

tionary cases but can be established, (d) the relationship between the 

evolutionary spectr um and the autocor r elation function can also be estab - 
(27) 

lished although it does not result in a form as elegant as the Wiener - 
Khintchine relationship in the stationary cases, and finally (e) it appears 

that reasonable estimations of the spectrum on the basis of observed data 
(22) 

are possible particularly when B(t, w) varies slowly with time. 

Corresponding to Eq. 2. 8, we have 

x ( t ) = v ' ~ k { ~ ~ ( t ,  o~)SI(W~)AO)WCOS (wktf @ k )  
Ic=1 

(2.12) 

which is an approximation to the evolutionary process x(t) in Eq. 2.10 

with dU(o) and d V(w) defined by Eq . 2.9. Eq . 2.12 can be conveniently 
(27), $28) 

used to generate sample functions of the evolutionary process if Sl(o) and 

B(t, o) are specified although in this case the FFT technique cannot be 

utilized. 

At the present time,the process .x(t) in Eq. 2.10 together with its 
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practical version given in Eq. 2.12 appears to be the most useful non- 

stationary process model in the frequency domain. 

CHAPTER 3 DATA-BASED NONSTATIONARY RANDOM 

PROCESSES 

3.  1 General Remarks 

Virtually all of the analytical models of nonstationar y random processes 

investigated to date can be classified into one of the categories discussed 

earlier. Emphasizing the frequency 'domain models in general and the 

evolutionary process in particular , however , we find that two major diffi - 
culties are associated with these models from the viewpoint of engineering 

applications. First, these models characterize the nonstationarity in terms 

of appropriately modified forms of the mean square spectral density. Un- 

fortunately, however, the mean square spectral density is a notion that is 

not particularly amenable to nonstationary conditions. Second, the intrinsic 

lack of the ergodicity in the nonstationary process prevents us from re- 

constructing its probabilistic nature on the basis of a single sample func- 

tion. Such a reconstruction, if i t  is to be performed reasonably well, 

would require a large number of sample functions. This is a requirement 

which is totally unrealistic in most practical applications in the field of 

structural engineering. In fact, dealing with earthquake accelerations, 

wind-induced pressures on structures , dynamic flight loads on spacecraft, 

etc, we would be fortunate to have a few, if not one, sample functions 

purported to be extracted from the same population. 

In spite of the difficulties indicated above, the need of nonstationary 

process models for these and other physical phenomena germane to struc- 

tural engineering has been increasingly recognized as modern engineering 

analysis and design demand further sophistications. In particular , the 
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nonstationary process models whose sample functions can easily be gener 

ated with the aid of a high speed electronic computer, are extremely use- 

ful. They can be incorporated in the time and space domain analysis in 

conjunction with Monte Carlo techniques to obtain such vital information 

as first passage time distribution , random response of severely nonlinear 
( 2 5 )  

structures, etc. The frequency and wave number domain analysis is at 

best awkward for these purposes. 

In this chapter, we introduce another frequency domain model that 

produces the "data - based" nonstationar y random processes, derive their 

basic characteristics and investigate how they can alleviate most, if not 

all, of the difficulties described above. 

3. 2 Data-Based Nonstationary Random Processes of the First Kind 

3. 2. 1 Univariate and one-dimensional processes 

Let x o ( t )  be an observed record of duration TO. Throughout the pre- 

sent study, we consider that the record begins at t=  0 and ends at t=To 

and that it is equal to zero outside the domain (0 ,  TO)  . Writing X o ( w )  

for the Fourier transform of xo ( t )  , we obtain the following Fourier trans- 

form pair : 

x o ( t ) =  1 / ( 2 n )  \ X O ( W )  exp ( i w t ) d w  
-w 

( 3 .  1 )  

X o ( w )  = x o ( t )  exp ( - i w t ) d t  
-m 

( 3 .  2 )  

where z is the imaginary unit. The phase angle 50(w)  of X o ( w )  is given, 

if Re ( X o ( w ) )  #0, by 
U 

P O ( ~ )  = - P O ( - w )  =arc tan { I m [ X o ( o ) ) / R e i X ~ ( w ) )  } ( 3 .  3) 

while, if Re ( X O  ( w ) )  = 0 ,  it is given by 

where Re l X o ( w ) l  =Re l X o  (,- w ) )  = real part of X o  ( w )  and I m ( X o  ( w )  ; = 

- Im ( X O  ( - ,w) )  =imaginary part. Using the phase angle, X O  ( w )  and xo ( t )  
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can then be expressed as 

Xo(w) = I X O ( W )  1 exp z ~ ; o ( o )  (3. 5) 

= 2 - - 1 X O ( W )  I e x p i i ( w t + i o ( w ) } d ~  (3.  6) 

where / Xo(o) 1 = I Xo(- w) 1 =Fourier (amplitude) spectrum of xo(t). 

Now construct a nonstationary random process x ( t )  on the basis of 

the observation .XO  ( t )  : 

= 2 - - 1 Xo(w) I expi (ot+g0(w)+q5(w)}dw 

(3.7-a) 

with the sample functions xCk)( t )  in the form: 

where the most general definition of +(k)(w) is such that it is a sample 

function of a random process @ ( a )  in w . A comparison between Eq. 3.7 

-b and Eq. 3.6 indicates that xCL)( t )  is obtained from xo(t) by replacing 

its phase angle 50(o) by 

5 '" ( (w)  = 5 o ( w )  + 6") ( w )  (3.  8) 

we choose the following form for the function q5(o), 

4 ( o )  = (0 sgn ( o )  (3.  9) 

where @ = a random variable and sgn ( o )  = - 1 for w<O, = 0 for o = 0 

and = 1 for w>O. The sample function +(k)(o)  is then given by 

+cu (o) = sgn ( o )  (3.10) 

with aCk) indicating a sample value of (B. The fact that xCk)(t)  is a real 

function requires that +(k)(o)  be odd; thus the use of the sign function 

sgn(o) - 
The Fourier transform of the simulated precess x ( t )  can then be given 

as the inverse Fourier transform of Eq. 3.  7-a in the following form: 

X ( a )  = / Xo (w) I exP 2 { 5 0  ( 0 )  + 9 (0) 
= X O  ( 0 )  exp iq5 ( a )  (3.11) 
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Throughout the present study, we assume that the random variable 0 

distributes in accordance either with the uniform distribution function with 

the density 

f&= 1 / ( 2 a )  p - a S x 5 p - t  a (a>O) 

= 0 other wise (3.12) 

where p= expected value and 2 a = width of distribution, or with the 

Gaussian distribution with the density 

f a (%)=  1 / (1 /%a)  exp{ - ( ~ - p ) ~ / ( 2 ~ ~ )  1 -m<x<m (3.13) 

where p= expected value and a = standard deviation. 

At this point, the following heuristic observation is noted for theoretical 

interest: Formally, we have do = 2 n/To and / Xo(w) 1 = v' 2 ZTOSO (w) 

(as TO->m) for a stationary random process with a mean square spectral 

density SO ( w )  . Hence, 1 / ( 2 z) * 1 XO ( o )  I do in Eq . 3.7-a becomes 

1/ ( 2 z/ TO) So (w) = d.90 ( o )  do.  Assuming that gl ( o )  is a Gaussian white 

noise with zero mean for positive o and that gl ( o )  = - q5 ( - o) , we can 

reduce Eq. 3.7-a into 

x ( t )  zs d~ 5 J S I  (wk) do cos { o k t  -t gl (ma) ) 
k=l  

where SI  ( w )  = 2 SO(W)  defined for positive o = one - sided mean square spec - 

tral density; o k =  kdw and nAo =o,=upper cut-off frequency beyond which 
(291, (30) 

Sl ( o )  is either actually or approximately zero. Eq . 3.14 is identical to Eq . 
2.8 with @ k = i ( ~ k )  often used to simulate a stationary Gaussian process 

with mean zero and spectral density function So(o). In the process of 

transforming Eq . 3.7-a into Eq. 3.14, 50(o) has been absorbed into gl(w) 

which is now a white noise. The .cornpar ison of Eq . 3.7-a with Eq. 

3.14 indicates that the essential difference between these stationary and 

nonstationary simulations lies in that the function @(w) = - @( - o )  is a 

white noise for positive w in the stationary case while, in the nonsta- 
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tionay simulation, it is a random variable multiplied by the sign function 

sgn ( o )  as shown in Eq . 3.9 (thus its sample value is not a function of 

w but a constant for positive o ) .  

In view of the fact that So(o) t $ ( o )  is an odd function of o with 

$ ( o )  defined by Eq. 3.9, we can rewrite x ( t )  in Eq. 3.7-a as: 

x ( t ) =  1 / z j ;  1 X O ( W )  1 m s { ~ t + { ~ ( w ) + @ } d o  (3.15) 

or equivalently, 

x ( t )  =.xo(t) cos @ -^xo(t) sin @ (3.16) 

where 

xo(t)= 1 /n 1 I X O ( ~ )  1 cos {ot  +{o(w) } dw (3.17) 

is obviously the observed record (see Eqs. 3.1 and 3.2) while 

;o(t)= 1 /s \ ; I X O ( ~ )  I sin { a t  +iu(o)  1 d o  (3.18) 

The process given by Eq.3.16 is referred to as "data-based nonstatzon- 

ary process of the fzrst kznd." In this case, the process is obviously 

univar iate and one - dimensional. 

We can show that % ( t )  defined in Eq. 3.18 is the Hilber t transform 

of .xo(t) : 

;o(t)= l / z I m  -- xo(r ) / ( t -T )  dr 

=xo(t)*[ 1 / ( z t ) !  (3.19) 

where the symbol * indicates a convolution integral. 

We can also show under these conditions that the Fourier transform i o ( o )  
( X 2 )  

of & ( t )  is given in terms of the Fourier transform Xo(o) of xo(t) as 
A 

Xo(o) = - i sgn (o )Xo(o)  (3.20) 

(42) 1 X o ( w )  I is even, while ~ i n ( w t + ~ ~ ( o ) }  is odd with lespect to w .  Hence, 
Eq. 3. 18 can be ~cwritten in the following form: 

A 

zo( t )  =-$I a I Xo(w) I sin{wt+t(w) }dm 

I X o ( w )  I sgn ( a )  exp i {ot+50(o))do 
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From the definition of &(t)  given by Eq. 3.19, it follows that, al-  
" 

=-?- \ -_ {  - i sgn (o)Xo(w)} exp iwt d o  2~ 
The last expressin of the right-hand side of the above equation shows us that 
the Fourier transform of G(t) should be in the form of Eq. 3. 20, that is, 

^Xo(o) = - i sgn (w)Xo(w) 
Further , as is well known, time convolution theorem states that the Fourier 

transform of the convolution of two functions equals the product of the Fou- 
A 

rier transforms of these two functions. Therefore if we decompose Xo(w)into 
A 

two components Xo(o) and { - i sgn (o)} , then xo(t) , the inverse Fourier trans- 
A 

form of Xo(o), can be given as the convolution of the inverse Fourier trans- 
forms of Xo(o) and { - i sgn (o)} , respectively. It is straightforward to show 
that the inverse Fourier transform of Xo(o) be xo(t). However, to obtain the 
inverse Fourier transform of { -  2 sgn (o)} is a little bit cumbersome task. 

To this end, we first consider the Fourier trnsform F ( o )  of the sign 
sgn 

function sgn ( t )  as follows : 
m 

Fsgn(o) = J' --sgn ( t )  exp- io t  d t  

= J' >gn(t) {COB wt- 8 sin wtldt 

= - 2 i  l m  s i n o t d t  

The above integral obvib;sly does not converge in the ordinary sense; how- 
ever, if it is considered as a dist~ibution,(~l) then 

At this point, taking inverse Fourier transform of F (o), we can express 
sgn 

sgn (t) in terms of Fsgn(o) as 
- 

1 " sgn (t)=-- J - m ~ s g n ( ~ )  exp io t  d o  
2 n  

By replacing t with - t  and interchanging t and o, we get 
2 z  sgn( -o)=-  2nsgn(w) 

m 
= 1 - m~sgn( t )  exp-iwt dt 

- - 
- I - _ + e x p - - i w t  d t  

Hence, 
" 1 - 2 sgn (a)  = j -exp-iwt d t  
-m nt 

This shows that the inverse Fourier transform of 1- i sgn (u)) is equal to 
1 / ( a .  

Finally, we can see that the Hilbert transform $(t) of the original record 
xo(t) can be given as the convolution of two functions xo(t) and l / ( n t ) ,  
which is exactly of the same form as in Eq. 3. 19. 
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though xo(t) is by definition zero in the domains ( - oo , 0 ) and ( T O ,  oo) , 
,, 
xo(t) is usually not equal to zero in these domains and therefore the sam- 

ple functions of the data- based nonstationary random process given by Eq. 

3.16 are not necessarily equal to zero outside the domain (0, T O ] .  It also 

follows from Eqs. 3.16 and 3.19, that .x ( t )  is not necessarily equal to 

zero at t=  0 and T O  even if .xo(t) is a t  these time instants. As we shall 

see later in dealing with earthquake acceleration records, however, &t)  

may be considered approximately zero outside the domain [O, T O ]  if the 

record xo(t) oscillates rapidly and more or less symmetrically with respect 

to the base line within the domain (0, T O ] .  

The following expression alternative to Eq. 3.16 can be written for 

x ( t )  : 

~ ( t )  =Ao(t )  cos {Q) + 00(t )  } (3.21) 
(32) 

where Ao(t)  is the envelope function 

Ao(t) = d,x;( t )  4- ; ~ ( t )  

and 

& ( t )  = arc tan {"x(t)/.xo(t) ) (3.23) 

We now consider the ensemble averages and other characteristics of 

x ( t )  . In particular ,the following quantities are investigated; expected 

value, autocor r elation function, mean square value and variance, maxi - 
mum and minimum values, probability density and distribution function 

and generalized spectra. 

Expected Value: With the aid of Eq. 3.16, 

E { x ( t )  } = xo(t) E{cos Q)}  - & ( t )  E{sin Q,} (3.24) 

If Q, is uniformly distributed (see Eq. 3.12), 

E{ x ( t )  } = (sin a l a )  (xo(t) cos p - & ( t )  sin p } (3.25) 

which reduces, with p = O ,  to 

E{ x ( t ) )  = (sin a / a )  xo(t) (3.26) 
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In addition, if a=mz (m= an integer) ; then 

E{ ~ ( t )  ) = 0 (3.27) 

If @ has a Gaussian distribution (see Eq. 3.13), 

E{x(t) )={xo(t) cos p- hX~(t) sin p )  exp (-02/ 2 ) (3.28) 

which reduces with p= 0 to 

E{x(t) )= xo(t) exp ( -a2/ 2 ) (3.29) 

Furthermore, if a approaches infinity, then 

E{x(t) I =  0 (3.30) 

The following comments are in order at this point: The assumption that 

@ is Gaussian with mean p and standard deviation approaching infinity is 

equivalent to the assumption that @ is uniform between p - n and p f n. 

This is due to the fact that exp zO is a periodic function with the period 

2 z. 

We observe from the above that the data- based process can offer a 

convenience in terms of various forms of the expected value function we 

can choose. 

Antocorrelation Function: The autocorrelation function Rxx(tl, tz) 

of x( t)  is defined as 

RXx(tl, tz) =E{x(tl)x(tz) (3.31) 

Substituting Eq . 3.16, we obtain 

Rxx(tl,tz) =%{ xo(tl)~o(tz) -I- Xho(tl)io(tz) } 

+%{ ~o(tl)~o(tz) - ~o(t l )~o(tz)} E{cos~@} 

- %{ ~o(tl)%(tz) + ;o(tl) xo(tz) 1 E{ sin 2 0 )  (3.32) 

If @ is uniformly distributed, 

RXx(tl, tz) =?I${ ~o(tl)~o(tz) +.&(tl).G(tz) ) 

t %{sin 2 a/( 2 a) ){ xo(t~).xo(tz) - ;~(tl);~(tz) ) cos 2 p 

-%{sin 2 a/( 2 a)) {.xo(tl);o(t2) f .&(tl).xo(t~)} sin 2 ,u 

(3.33) 
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With p=O, 

Rxx(tl ,  t 2 )  =1/2{ ~ ~ ( t l )  xo(t2) + ;o(tl) ; o ( ~ z ) )  

t % {sin 2 a/ (  2 a )  J {xo(tl)xo(tz) -^xo(tl);0(tz)} (3.34) 

Under the further assumption of a = mn / 2 ( m  = a positive integer), 

RXx(t l ,  t 2 )  =1/2 { ~ ~ ( t l )  ~o( t2)  + Go(t1) io(t2)J (3.35) 

If @ is Gaussian, 

Rxx(tl,t2)=1/2 ( ~ ~ ( t l )  xo(t2) + i ~ ( t l ) ; ~ ( t z ) J  

-t- 1/2 exp ( - 2 c2 )  ( {xo(tl)x~(tz) - x^o(tl)x^o(tz)j cos 2 p 

- {xo(tl);o(tz) -t po(tl)xo(t~) sin2 p)  (3.36) 

With p=O, 

Rxx(t l ,  tz) =%{ X O ( ~ I ) X O ( ~ Z )  +;o(tl)hXo(t~) ) 

t 1/2 exp ( - 2 a2){ xo(tl)xo(tz) - Go(tl)x^o(tz) (3.37) 

If, in addition, c approaches infinity, 

Rxx ( t i ,  t ~ )  = ~ / ~ { x o ( ~ I ) x o ( ~ z )  + $ ( t l ) i o ( t~ )  ) (3.38) 

Mean Square and Variance Functions: The mean square function 

RGXx(t, t )  of x ( t )  can be obtained from the autocorrelation function Rxx 

( t l ,  t z )  by setting tl = t 2  = t while the variance function c i  ( t )  as Rxx 

( t  , t )  -- [E{ x ( t )  )) ' .  Hence ,using the results derived above, the mean 

square and variance functions can be written explicitly in terms of xo(t) 

and ^xo(t) under various assumptions with respect to the random variable 

(D. Avoiding lengthy writing that would be required for listing all these 

functions of rather obvious form, we only list at this time the following 

expression for the variance function 

a i ( t )  =%{ x,Z(t) t 2(t) J (3.39) 

This interestingly simple result can be obtained under either the assumption 

that @ is uniformly distributed with p= 0 and a=mn or the assumption 

that @ is Gaussian with u = 0 and c+ 00. 
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Extreme Values : The maximum and minimum values that .x(t) can as-. 

sume at time t may be evaluated from Eq. 3.21 and these extreme values 

depend on how the random variable O distributes,. Indeed, if the distri- 

bution of @ is such that cos { @  + 00(t) } can take values of zt 1 (e. g . @ is 

uniform between .-,z and n) ,  then 

It is of great practical interest that the extreme value above is equal to 

the standard deviation a,x(t) multiplied by d2 under those conditions 

through which Eqs. 3.39 and 3.40 are derived: 

ma4  I ~ ( t )  I )=  ~ ' T a . ~ ( t >  (3.41) 

When @ distributes in any other way ,the extreme value must be 

evaluated accordingly reflecting the characteristics of its distribution. One 

example of such a case where @ distributes uniformly between - n /  2 and 

n/ 2 will be considered later. 

Probability Density and Distribution Fnnctions : The density func- 

tion and therefore the distribution function of x(t) at time t depends also 

on how the random variable @ distributes. Assuming that O distributes 

uniformly between - mz and mz (m= a positive integer), we can show 

that the density function fxct,(x) of x(t) is symmetric about zero mean 

and given by 

f,(t)(x) = 1 / (n I ~ i ( t )  -.x2 I x I <Ao(t) 1/ 
= 0 I x 1 >Ao(t) (3.42) 

The corresponding distribution function F,,(t)(x) can then be shown to be 

FX(r)(.x) = O X< - Ao (t) 

= 1/2 f ( 1 /z) arc sin [x/Ao(t)) I x I SAo(t) 

We can also show that the expression in Eq. 3.43 also serves as the dis- 

tribution function of x ( t )  when 0 is Gaussian provided that its standard 
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deviation CF approaches infinity and p= 0. 

Generalized Spectra: The generalized (power) spectral density Sx,x(o~, 

02) of a nonstationary random process is defined as the (double) Fourier 
( X  3 )  

transform of its autocorrelation function Rx,x(tl, t2) : 

~ ~ ~ ( o l ,  ~ 2 )  = ( 1 / 2 n l 2  I 1- J' - - ~ ~ ~ ( t l ,  - tz) exp { - i(oltl  - wztz) dtidtr 

(3.44) 

By means of inverse transformation, 

Rrr(tl, t2) = 1 :- 1 Sxx(wl, 02) exp { ~ ( w t ~  - w2t2)) d ~ ~ d w  -- 
(3.45) 

Using Eq . 3.15 in the definition of the autocorrelation function RXx(tl, t2) 

=E {x(tl).x(t~) } , we obtain 

Rxx(tl, A) = 1 /( 2 n)lJ '  - Xo(wdXl(w2)E { exp z@Isgn ( ~ 1 )  - m 

-sgn (02)) j * exp:{z(o1t~--ozt2) ) doldoz (3.46) 

where the superscript * indicates a complex conjugate. Comparison of 

Eq. 3.46 with Eq. 3.45 leads to 

(3.47) 

If f@ follows either the uniform bistr ibution with a = mn and p = 0 or 

the Gaussian distribution p= 0 and CF-=O, the generalized spectrum above 

reduces to 

X (ol)xg(oz) 0 (0102; 0 1  = w2= 0 SXX(01,02) -- ( 2 ~ ) ~  O - 0 otherwise (3.48) 

Equations 3.47 and 3.48 clearly indicate how the spectral characteristics 

(*3) Similar to the Wiener -Khintchine relationship between the autocorrdation 
function and the corresponding power spectral density for a stationary random 
process, the constant 1/(2 nI2 is  to be placed in the transform from time 
domain into frequency domain. 
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of .xo(t) appear in the expressions of the generalized spectrum of x( t ) .  

In particular, the simplicity of Eq. 3.48 is of significant practical interest. 

Fourier amplitude: The most notable feature of x( t )  and its sample 

functions .x('")(t) is the fact that the Fourier amplitudes of xCk)(t) as well 

as x(t) are always equal to I Xo(w) I : The Fourier amplitude of the 

observation xo(t) is preserved intact in the proposed data-based nonsta- 
( * 4 )  

tionary random process of the first kind and its sample functions. 

In deriving the symmetric density function (Eq. 3.42) for x( t) ,  we 

have assumed that @ has either a uniform density between - mn and mn 

or a Gaussian density with mean zero and standard deviation approaching 

infinity. While the physical phenomena in which we are interested can 

of ten be idealized as nonstationar y random processes with symmetric distri - 

butions as in the case of earthquake acdeleration, such symmetry assump- 

tions are obviously not always valid. For example, field measurements of 

wind-induced pressures on building structures and recorded histories of air - 

craft acceleration under pilot maneuvers clearly suggest that asymmetric 

distributions with non-zer o mean values are definitely more realistic as - 
suniptions . The proposed data - based nonstationar y processes can easily 

simulate such asymmetric observations. If, for example, we assume that 

Q) is uniform between - n/ 2 and n/2, it follows from Eqs. 3.26 and 3.33 

that 

E{x(t)) = ( 2 /n) xo(t) (3.49) 

RxX(tl, tz) =1/2 {~o(tl)~o(tz) +;o(t~);o(tz) ) (3.50) 

In this case,the distribution function of ~ ( t )  becomes asymmetric and is, 

for n/ 2 <8o< 3 4 2 ,  given by 

FX(t)(x) = { R/ 2 .+ I 80 I - arc cos (x/Ao(t))) /n (3.51) 
-- 
(*4) It follows from Eq. 3. 11 that 

I X(w> I = I XO(~) exp 2 I = I Xdo) I I exp zdw) I = I Xdw) I 
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for - Ao(t) cos (z/ 2 f I 00 1 ) Z X ~ -  Ao(t) cos (n/ 2 - I 00 I ) and 

FX,t,(x) = 1 - 2 {arc cos [x/Ao(t)l  )/z (3.52) 

for -Ao(t)  cos (z/ 2 - I 00 I )2x&-Ao( t )  where 00 is as shown in Eq. 

3.23. The assumption of 0 being Gaussian with a finite value of standard 

deviation also produces an asymmetric distribution of x ( t ) .  It appears 

considerably cumbersome and not particularly of practical value to derive 

the explicit analytical expression of such an asymmetric distribution func- 

tion, however. 

Unfortunately, if the observation xo(t) exhibits a highly asymmetric 

behavior, its Hilbert transform $ ( t )  is not equal to zero,not even in ap- 

proximation, in the intervals ( - oo , 0 1 and [ T O ,  oo) . Note that these 

intervals include t=  0 and t=To even when xo(t) is zero a t  these two 
(3C 5 )  

time instants. Under these conditions, neither can the process r ( t )  be 

equal to zero even in approximation in the intervals ( - oo, 0 1 and [To, 

w ) ,  while some physical processes of practical importance require that 

they be equal to zero at the beginning ( t  = 0 ) and at the end ( t  = To). 

Indeed, it is this difficulty that motivates the later introduction of the 

data-based nonstationary process of the second kind which always satis- 

fies the requirement. 

3. 2. 2 Multi -variate and one-dimensional processes 

The definition of the data-based nonstationary random processes is now 

extended to the case of multi - variate, but still one -dimensional nonsta - 
tionar y processes. We first consider a set of records .xoi(t) (i = 1,2, ", 
q )  all observed in the time interval (0, To1 describing a temporal observa- 

tion of a one-dimensional vector quantity xo(t) - consisting of q component 

processes (e. g.., EW, NS and vertical components of earthquake accelera- 

A 

(*5) Note that the Hilbert transform xo(t)  of the original record xo(t) ,is given 
as the convolution of x,(t) and the function 1 /(nt),as shown in Eq. 3.19. 
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tion records). On the basis of the records xo,(t), we then construct a 

q - variate data - based nonstationar y process x(t) - as 

x(t) = [xl(t) xz(t) . x,(t)'lT - (3.53) 

with 

x,(t) = 1 /( 2 x 1  j xo2(w) exp~{wt i -$~(w) )  dw 
-w 

r\ 

=xoL(t) a cos QZ- xoL(t) sin 0, (3.54) 

$do) =@, sgn (w) (3.55) 

where X~~(w)=Fourier  transform of xo,(t), k ( t ) =  Hilbert transform of 

xo,(t), 0, = random variable, not necessarily independent of @,(if j) and 

superscript T indicates a transposition. 

The expected value (vector) of - x(t) is given by 

E { ~ ( t )  I =  IE{xl(t) 1 E {xz(t) 1" . . .~{x , ( t )  ) jT  (3.56) 

for which the expressions similar to Eqs. 3.25 -3.30 follow depending on 

he type of distribution function assumed for the random variables @,'s. 

One of the most important character istics of multi - variate random pro- 

tcesses is the correlation among the component processes, which in the pre - 

sent case finds its origin in the statistical dependence among @,/s. Pri- 

marily for brevity, we assume here that the marginal distribution func- 

tions of A's are either all identical with a uniform density between -mz  

and mz or all Gaussian with zero mean and possibly different values of 

standard deviation. 

For those @<s distributed uniformly, two extreme modes of their 

statistical dependence are considered. One of these represents the state of 

complete independence where all @,'s are independent of each other while 

the other represents a special form of total dependence in which all @,'s 

are identical (@I = IPz = = @, = 0) .  Intermediate modes of dependence 

are not considered since the joint density functions which involve Qi's and 

produce uniform marginal distributions for @,'s appear to be extremeIy 
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difficult to obtain. However, when all @,'s are Gaussian, arbitrary de- 

grees of dependence (including those cases of complete independence and 

total dependence described above) can easily be introduced through the 

wellknown Gaussian joint density functions involving @,k. This fact is 

one definite advantage the Gaussian assumption can enjoy over the assump- 

tion of uniform distribution . 
The crosscorrelation function matrix g,,(tl, t2) of x ( t )  is by defini- - 

tion 

where the crosscorrelation functions RXix,(tl, t2) are in turn defined as 

Rx,x, (tl, t2) =E{xt(tl)x,(t2) (3.58) 

Obviously, Eq. 3.58 gives the autocorrelation function when z =  j. As 

two alter native forms (Eqs . 3.32 and 3.46) exist for the autocorrelation 

function RXx(tl, tz) in the uni-variate case, we have the following two 

equivalent expressions for RxZx, ( t ~  , t2) : 

Rxzxl ( t ~ ,  t2) = X O ~ ( ~ I )  xoj(t2) E{COS @t * cos @/)  
A 

t &(tl) xo,(tz) E{sin @, sin a,) 
A 

- xo,(tl)xol(tz) E{sin @, cos IB,) 

- xo,(t~)&,(t2) - E{ cos @, sin IB, 

and 
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ce 

R ~ , x , ( t l ,  tz) = 1 /( 2 n l z j  ym \ -_Xoz(ml)~&(wz) 

x E{exp z [@, sgn ( w )  --a, sgn (oz)) } exp { z ( o l t ~  - mztz) )dm~do)z 

(3.60) 

Equations 3.59 and 3.60 take various forms similar to Eqs. 3.33-3.38 

depending on whether the distribution functions of @,'s are uniform or 

Gaussian. 

If we assume that all @,'s are uniformly distributed between - mn and 

mn and independent of each other, then the expected value E{x,( t)  } = 0 

and the crosscorrelation function RxZx,(tl, tz) = 0 (i# j) while the auto- 

correlation function RxZx,(tl, tz) takes the form of Eq. 3.35 with xop(t) 

replacing xo(t ) . In this case, therefore, the cr osscorrelation matrix Rxx 

( t l ,  tz) becomes diagonal. On the other hand, if @, 's are all fully corre- 

lated (h = @z= . . = @*= (P) , the expected value E( x,(t) ) = 0 while the 

autocorrelation function (z= j) and crosscorrelation function (z# j) are both 

given by 
h 

R,zxl ( t l ,  t z ) = x {  x o Z ( t l ) ~ o l ( t z ) + ~ o Z ( t t ) ~ o l ( t e )  } (3.61) 

If we assume that all '&' s are Gaussian with zero mean, the joint 

density function can be written as 

where a$= standard deviation of @i and pi,= coefficient of correlation be- 

tween @( and Q j ,  Then, the expected value E { x i ( t ) }  is given by Eq. 

3.29 and the autocorrelation function Rxix,(tl, t z )  by Eq. 3.37 with .xoi(t) 

and ai respectively replacing .xo ( t )  and u, while the crosscorrelation func - 

tion Rxixj(t1,tz) (ifj) takes the form: 
6 A 

Rxix,(tl, tz) =I$${ .xoi(tl).xoi(tz) ' t ' .x~i(tl).~oj(tz) } 
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x exp { - (a: - 2 p,,ozal f a;)/ 2 } 

t 1/2{ *oL(tl)~o~(t2) -;O2(tl)/\Xol(t2) } 

xexpi  -(a:+ 2 p , , a z o l t o ~ ) / 2  ) (3.63) 

If we impose the assumption that P,,= 0 (zfj) or equivalently that @,'s 

are independent of each other, the expected value E{x,(t) } and the auto- 

correlation function RXZX,(tl, t2) remain respectively of the form of Eqs. 

3.29 and 3.37, while the crosscorrelation function RXzx,(tl, @(if j) be- 

comes 

R ~ , ~ , ( ~ I ,  t2) = xo2(tl) xoi(t2) exp { - (oq + 03)/ 2 1 (3.64) 

Furthemore, if we let a ,  (z = 1, 2, ...... , q) approach infinity, it follows 

that the expected value E{x,(t)}=O, the crosscorrelation function RxLxi 

(tl ,  t2) = 0 (i# j) and the autocorrelation function Rxzxi(tl, t2) is given by 

Eq. 3.38 with xo,(t) replacing xo(t). Therefore, as in the case of uni- 

form @,%, the crosscorr elation function matrix becomes diagonal when @,'s 

are Gaussian with p,,= O(if j) and c,-.w (z=1, 2, " -,q). 

If all @,'s are Gaussian but fully correlated (@1=@2= -=@,=a) 
and hence a1= a 2  = ... = uq = a ,  the following crosscorrelation functions 

are obtained from Eq. 3.63 with pii being replaced by unity: 

A A 

exp ( ,- 2 a2) { . X C I ~ ( ~ I ) . X ~ ~ ( ~ ~ )  . - , ,xo~(~~),xo j(t2) ) 
(3.65) 

In this case, the expected value and the autocorrelation function take the 

same forms as those for the completely independent case: Eq. 3.29 for 

the expected value and Eq. 3.37 for the autocorrelation function with xoz(t) 

replacing xo(t) . If, moreover, a approaches infinity (2 = 1 ,2 ,  ... ,q) , 
the expected value E {x,(t)} = 0 and the autocorrelation function Rxzxz(tl, 

t2) is given by Eq. 3.38 with xot(t) replacing xo(t) while the crosscorrela- 

tion function becomes 
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Rxz,xl(t19 t 2 )  =M{ ~ o L ( t l ) ~ ~ l ( t ~ )  + XOZ(tl).;or(t2) } (3.66) 

Note that the last equation is identical to Eq. 3.61. 

Extending now the definition of the generalized spectrum Sxx(ol,  oz) 

into the case of multi-variate processes, we define the generalized cross- 

spectral density matrix S,,(wl, w z )  as 

(3.67) 

where the (generalized) cross-spectral density function S x z X , ( ~ l ,  0 2 )  is 

given as the double Fourier transform of Rxzx,(t l ,  t z ) :  

(3.68) 

which produces the generalized spectral density SXzX,(w 1 ~ 0 2 )  of x z ( t )  when 

i =  j .  By means of the inverse Fourier transform, we obtain 
m 

R ~ ~ , ~ ,  ( t ~ ,  tz)= j 1- j s ~ ~ ~ ~ ( ~ I ,  02) exp {i(wltl -02t2) } doldwz 
-m 

(3.69) 

Comparing Eq. 3.69 with Eq. 3.60, we conclude that 

sxzx1(01 ,~2)  = ( 1 / 2 Z ) ~ X O ~ ( W ~ ) X $ ( ~ Z )  E(exp i { Q z  sgn ( 0 1 )  -@, sgn(wz) 11 
(3.70) 

Again depending on whether @, is uniformly distributed or Gaussian, var- 

ious forms of the cross-spectral density function will emerge from Eq. 

3.70. As mentioned earlier, the appropriate joint density functions with 

uniform marginal densities appear to be unavailable a t  this time. There- 

'fore, we concentrate in the present study on the case where @is are joint- 
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ly distributed as Gaussian. As before, we further 'assume that the mean 

value and the standard deviation of @, are respectively zero and a ,  (z = 1, 

2 ,  . , q )  . This assumption makes the cross-spectral density function re- 

latively simple as shown below without sacrificing its usefulness in appli 

cations. 

S,,,, ( 0 1 ,  02) = ( 1 / 2 z ) ~ X O ~ ( ~ I ) X $ , ( W Z )  exp { - %(a: f 2 8pL,aLa, f cq) } 

(3.71) 

where 6= - 1 if wloz> 0 and 6= 1 if wlw2r:O. Eq.  3.71 is valid also for 

z =  j if we set p z , = l .  

In the special case of the complete independence (p,,= 0 for if j ) ,  

we have 

Sx ,x7(o~ ,  oz) = ( 1 / 2 Z ) ~ X O , ( ~ I ) X $ , ( W )  * exp { - %(at f a ; )  ) 

(3.72) 

and for z =  j ,  we have p,,= 1 and hence 

S,,,,(o~,oz) = ( 1 / 2 Z ) ~ X ~ , ( C O ~ ) X $ , ( W Z )  exp { - 1/2( 1 f 8)2a f )  

(3.73) 

Therefore, the following diagonal cr oss-spectral density matrix follows 

from the further assumption of c,--=o(z = 1 ,  2 ,  ... ,q) ; 

(3.74) 

We note again that Eq. 3.74 is valid under pii = 0 ,  u i - , ~ ,  8 = - 1 for 

oiwn>O, and 6= 1 for oioz<O. 
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In the case of full correlation where @ I  = @ z =  .. =Bq=@ and hence 

ol = 0 2 =  - " = u q = u ,  the cross-spectral densities are 

S x z x , ( ~ l ,  02) = ( 1 / 2 Z ) ~ X O ~ ( W I ) X $ , ( W ~ )  exp { - %( 1 + S)2c2} 

(3.75) 

which is valid whether z = j or z+ j . If, furthermore, cr-+m, we obtain 

The mean square and variance functions, extr eme values, probability 

density and distribution functions of the component process x i ( t )  can be 

evaluated in the same way as those of the univariate process x ( t ) .  

3. 3 Data-Based Nonstationary Random Processes of the Second 

Kind 

3. 3. 1 Introduction 

Some physical processes of engineering importance initiate and ter mi- 

nate with zero values as exemplified by earthquake acceleration records. 

Unfortunately, as pointed out earlier, when the record xo(t) observed in 

the interval (0, TO) does not oscillate rapidly and at the same time more 

or less symmetrically with respect to the base line, again as exemplified 

by earthquake acceleration records,the data-based nonstationary random 

processes of the first kind and their sample functions fail to satisfy the 

zero initial and terminal conditions even in approximation. We can show 

however that a relatively simple modification alters the characteristics of 
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these processes of the first kind leading us to a family of nonstationary 

random processes whose sample functions always satisfy the initial and ter - 

minal conditions rigorously. This family is referred to as the data-based 

nonstationary random processes o f  the second kznd. It  is pointed out 

however that the modification is not achieved without penalty. Indeed, 

the processes of the second kind and their sample functions can observe 

the preservation of the Fourier amplitude I X O ( W )  I of the original record 

xo(t) only in approximation. Nonetheless, in view of the fact that in 

practice we often deal with the processes which either by nature or by 

definition must have zero initial and terminal values, the data - based non- 

stationary random processes of the second kind are introduced and their 

characteristics examined in the following, restricting, however, our atten- 

tion only to the uni-variate cases in the present study. 

3. 3. 2 Preliminary Analysis 

A record xo(t) of duration TO is again considered. By definition, 

the record begins at t =  0 and terminates at t =  TO with its value being 

identically equal to zero outside the interval [O, To). We then construct 

the symmetric extension yo(t) of xo(t) : 

yo(t) = xo(t) f xo( - t )  (3.77) 

We further construct the periodic extension of z ~ ( t )  of yo(t) : 

Three functions xo(t) , yo(t) and Z N ( ~ )  are schematically illustrated in 

Figs. 1, 2 and 3 respectively. Note that yo(t) and z . ~ ( t )  h e  symmetric 

with respect to the origin. The Fourier transforms Y O ( @ )  of ,yo(t) and 

ZN(w) of Z N ( ~ )  can be shown as 
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Fig.P1 A record .xo(t) Fig. 2 Symmetric extension yo(t) of xo ( t )  

,, ,, ,. ,. 

. 3 . c  
-(2N+llI, -2N10 - 3 1 5  -2X0 - I 3  3 I 3  :rO 310 ZNIO (2N+llI0 

Fig. 3 Periodic extension Z N ( ~ )  of .yO(t) 

where P N ( w )  is a periodic function (with period wo =z/To) known as the 

Fourier -series kernel : 

N 

PN(o)=C exp (i 2 kTow)={sin ( 2  N+ 1 )Too)/sin ( T O W )  
k=-N  

We can show that as N-tm and for ( k  - 1 / 2 ) o o S ~ I ( k  + %)oo 
lim ~ N ( w )  = waS(o.-  k ~ o )  

N - f -  

( X  6) 
Therefore, we obtain, as N-+w, from Eqs. 3.81 

(*6) Since P N ( o )  is periodic with period w 0 = ~ / 7 ~ ,  if we show that, in the in- 
terval (-wo/2, w 0 / 2 ) ,  P N ( o )  tends to o08(o), it will follow that 

m 

lim P ~ ~ ( w ) = w o  2 8(w--kwo) 
N->m k--m 

From Eq, 3. 81 we have 

s i n ( 2 N + l ) T o w = s i n ( 2 N + ~ ) T o w ~  Too 
p N ( w )  = sin(Tow) z w  sin (Too) ' w0 

But we see(St) that 
lim sin ( 2 N +  1 To@ =8(,) 
N-- AW 

and since Tow/sin ( T o o )  is bounded in the (-w0/2, oo/ 2 ) interval we conclude 
that for 1 o I <w0/ 2 

OLIVE 香川大学学術情報リポジトリ



339 DIGITAL SIMULATION OF NONSTATIONARY RANDOM - 75 - 
PROCESSES AND ITS APPLICATIONS 

lim P A  ( w )  = woC 6(0 - kwo) (3.83) . 
N-m k=- m 

and from Eq. 3.80, 

Defining zo(t) as 

A' 

zo(t) = lim C yo(t - 2 kTo) 
h i m  k=-N 

(3.85) 

we observe that zo(t) and Zo(w) constitute a Fourier transform pair. It 

is noted that Z O ( W )  is a real and even function of w .  

Introducing a temporal filter of the form 

~ ( t )  = U ( t )  - U ( t  - To) = 1 O .<t< To 

= 0 t<O; t>To 

with U ( t )  inicating the Heavyside unit step function, we may write 

xo(t) = ~ o ( t )  * ~ ( t )  (3.87) 
( X  7) 

The Fourier transform X O ( ~ )  of xo(t) can then be written as 

= Po(w) t Qo(w) (3.88) 

where V ( o )  is the Fourier transform of the temporal filter v ( t ) ,  

V ( o )  = 1 u ( t )  eup ( -twt)dt= ( 2 /w)  sin (Tow/ 2 ) enp ( -  $Tow/ 2 ) 
-m 

= ( 1 / a )  [sin  TO - 2 i sin 2 ( o T ~ /  2 ) ]  (3.89) 

I lim P,Y(W) =aO 6 ( w )  
A'-=- sin(Tow) 

Too I =a,, . --- 
sin(Toa) I w= 0 . S ( 0 )  

=o06(@) 
(*7) It follows from the frequency convolution theorem that the Fourier transform 

F ( o )  of the product f l ( t )  f z ( t )  of two functions equals the convolution Fl (w)  
*FZ(w) of their respective transforms F l ( w )  and Fz(o) divided by 2 n. 
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 PO(^) = 1 /( 2 n) \ y~o(~o(h) ~ ( u  -I- A) d~ 

The Fourier transform pairs listed below are useful in the analysis that 

follows (see also footnote (* 2 )) : 

(a) we(t) = U(t f TO) - U(t - TO) (see Fig. 4 ) 
(3.92) 

We(o) = We( - o) = ( 2 /a) sin wTo (real) 

Fig. 4 An even temporal filter we(t) Fig. 5 An odd temporal filter wo(t) 

(b) wo(t) = wdt) sgn (t) (see Fig. 5 ) 
(3.93) 

Wo(o) = - Wo( - o) = - ( 4 i/o) sin2 (oTo/ 2 ) (imaginary) 

(c) U(t) =%+ % ~ g n  (t) (unit step function) 
- (3.94) 
U(o) =z~(w) .+  1 /(io) 

(d) Ul(t) =l/z(s(t) - 1 /(int)] 
(3.95) 

U(@) =% f % sgn (w) (unit step f unction,real) 

(el &(t) =%[Kt) f 1 /(int)l 
(3.96) 

U(-o)=%-l/zsgn(o) (real) 

Substituting the last member of Eq. 3.89 into Eq. 3.91 and using 

We(o) and Wo(o) dkfined in Eqs. 3.92 and 3.93, we obtain 
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or equivalently 

Qo(w)=%[ 1 /( ~ ~ ) { Z O ( W ) ~ ( W )  } * K ( ~ ) I  

t 1/2[ 1 /( 2 n){Zo(w)U(w) )*WO(W) (3.98) 

= 1 /( 2 z){Zo(w)U(w) }*V(w) 

where the asterisk indicates a convolution integral. The inverse Fourier 

transform of ~ o ( w ) U ( w )  is given by the convolution of zo(t) and u i ( t )  

=%{ 8 ( t )  - 1 / ( z z t )  } (see Eq. 3.95) : 

qol(t) =zo(t)*[%{ 8 ( t )  - 1 / ( in t )  11 

=%{ zo(t) f iSO(t) 1 (3.99) 

where the fact has been used that the Hilbert transform % ( t )  of zo(t) is 

given by 
A 

zo(t> =zo( t )*[ l  / ( z t ) )  (3.100) 

Similarly , with the aid of Eq. 3.96, we obtain the inverse Fourier trans- 

form of Zo(w)U( - w) as 

q 0 4 t )  =~0( t )*1%{  8 ( t )  f 1 / ( i 4  11 =%{ zo(t) - i%(t)  1 (3.101) 

Recognizing that Eq . 3.97 also consists of two convolution integrals in- 

volving qo l ( t ) ,  qoz(t), wc( t )  and wo(t) ,  we conclude that the Fourier in- 

verse transform qo(t)  of Q0(w) is 

4o(t) = %{ 20 ( t )  f i;o(t) )v ( t )  (3.102) 

Similarly , the Fourier inverse transform po ( t )  of Po (w)  is 

Po(t) = %{ zo(t) - iz^,(t) b ( t )  (3.103) 

Writing Po(w) in a form similar to Eq. 3.98, and comparing, we can 

show that 

P o ( - w ) = & $ ( w ) ,  &o(-w)=Pt-(w) (3.104) 

3. 3. 3 Construction of the Processes of the Second Kind 

Now construct a nonstationary random process z ( t )  on the basis of 

zo ( t )  which is the symmetric-per iodic extension of the original record xo ( t )  

I as intxoduced in the preceding section: 

I 
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~ ( t ) = 1 / ( 2 ~ ) ~ ~ ~ Z 0 ( ~ ) e n p z { w t t @ * s g n ( ~ ) ) d ~  -- (3.105) 

The similarity between the process x ( t )  of the first kind defined by Eqs. 

3.7-a and 3.9 and the process z ( t )  above is selfevident. Similar to Eq. 

3.16, the following expression can then be derived for z ( t )  from Eq. 

3.105: 

z ( t )  =zo( t )  cos ID --'&(t) sin @ (3.106) 

where g0(t) is the Hilbert transform of zo ( t )  . The Fourier transform of 

2'0(o) of Go(t) is obtained (see Eq . 3.20) as 
A 

Zo ( o )  = - i sgn ( o )  Zo ( o )  (3.107) 

and therefore 
,\ 

zo(t)= 1 / ( 2 n )  \ - &(o)  exp ( io t )  d o  -- (3.108) 

or equivalently (see Eq. 3.18),  
A 

r ( t )  = 1 /a \ Zo(o)  sin ot d o  (3.109) 

We can also show that the process z ( t )  and its sample functions preserve 

the Fourier amplitude I Zo(o)  I of the extended record zO( t )  just as the 

process x ( t )  of the first kind and its sample functions have preserved 

I Xo(0) I . 
The data - based nonstationary random process x ( t )  of the second kind 

I 

is now defined as 

x ( t )  = z ( t )  v ( t )  = xo ( t )  cos @ - .Go ( t )  sin 0 

where ~ ( t )  =zo(t) * v ( t )  is the original record and - 
xo ( t )  = ;o ( t )  v ( t )  (3.111) 

Thus, the process x ( t )  of the second kind is nothing but that segment of 

z ( t )  which extends over the interval [0,  T o ]  . The Fourier transform - 
Xo(o) of G0(t) is obtained (see Eq. 3.107) as - 

X O  ( o )  = 1 / ( 2 n) 20 ( a )  * ~ ( 2 )  = - i/ ( 2 z),(sgn ( o )  * zo ( a ) )  * V ( o )  

(3.112) 
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which after some algebraic manipulation becomes - 
X O ( W )  =i{po(@) - &o(@) 1 (3.113) 

With respect to x( t )  of the second kind, the following observation is 

of crucial importance: From the time domain definition of the Hilber t trans- 

formation (Eq. 3.19), it follows that the Hilbert transform G ( t )  of z ~ ( t )  

and therefore & ( t )  are equal to zero at t= 0 and t= To since z o ( t )  is a sym- 

metric function of time with respect to these time instants (see Fig. 3 ) .  In 

addition, if the original process xo(t) is equal to zero at t = 0 and t = To, 

then, by virtue of Eq. 3.110, x ( t )  is also equal to zero at the same time 

instants. Comparing Eq . 3.110 with Eq . 3.16 and realizing that in both 

cases the randomness is introduced through @, we conclude that the ex- 

pressions for the expected value, autocorrelation function, mean square and 

variance functions, extr eme values, probability density and distribution 

functions derived for the process of the first kind are also valid for the 

process of the second kind if we replace & ( t )  by & ( t )  in those expres- 

sions. However, the expressions for the generalized spectra and the Fou- 

rier amplitude must be modified. 

The Fourier transform X ( o )  of the processes of the second kind is 

obtained from the second member of Eq. 3.110 as 

x ( w ) =  1 /( 2 n) [ z ( o ) * v ( w ) l  (3.114) 

This equation, with the aid of Eq. 3.105, can be rewritten as 

X ( W )  = 1 / ( 2 n)  [ZO (w) exp { z@ sgn ( o )  11 * V ( o )  

= [ 1 / ( 2 n) (Zo(0) U(w) )*V(@)) exp (i@) 

t 11/(2n){Zo(o)U(-~)1*V(o) l  exp ( - i@)  (3.115) 

which, with the further aid of Eq. 3.98 for Qo(o) and corresponding ex- 

pression for Po(@) ,  finally becomes 

X(w) =Po ( o )  exp (- z@) t Qo ( o )  exp (i@) (3.116) 

The result shown in Eq. 3.116 can also be arrived a t  by taking the Fou- 
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X(o) = Xo (o) cos Q) - 20 (0) sin Q) (3.117) 

and using Eqs. 3.88 and 3.113 for Xo(o) and x0 (w) . Comparison of Eq . 
3.116 with Eq. 3.88 unfortunately indicates that for the process of the 

second kind, no identity exists either between the Fourier transforms, 

Xo(o) and X(w) , nor between the Fourier amplitudes, I Xo (o) I and I X 

( ~ 1  I : 

xo (0) =kx(~) , I xo(o) I =f; / x ( o )  I (3.118) 

More specifically, using Eqs. 3.88, 3.104 and 3.116, we obtain 

I X O ( ~ )  1 2= 1 Po(o) I 2 f  1 QO(w) 1 2 +  2 Re[Po(w>Po(-o)I 

(3.119) 

and 

I X(o) 1 2 =  1 XO(O) I 2-PO(o)PO(-o){ 1 - e x p ( - ~ 2 0 ) )  

- & o ( ~ ) & o ( - ~ ) {  1 - exp (i2Q))) (3.120) 

The expected values of X(w) and I X(o) 1 are evaluated below first 

under the assumption that Q) is uniformly distributed between ,-,a and a 

(a>O). 

E{ X(o) ) = Xo (o) (sin a/a) (3.121) 

E{ I X(o) 1 2 } =  1  PO(^) 1 2 f  I Qo(w) I 2f2ReIP~(w)P~(-o)'1{2a/(sin2a)) 
(3.122) 

For example, if a = n/ 2 

E{X(o)l= 2Xo(o)/n. (3.123) 

E{ I X(@) 1 2}= 1 Po(o) 1 2 f  1 &o(~)  1 (3.124) 

and if a=n/ 4 ,  

E{ X(o) } = ( 2 d y / n )  xo (o) GXO (o) (3.125) 

E{ I X(o) 1 2 ) =  1 Po(o) 1 2 f  1 QO(o) 1 2~ ~ R ~ ~ P o ( @ ) P o ( - w ) ~ / ~  
I 

(3.126) 

If we assume that Q) is Gaussian with zero mean (p= 0 ) and standard de- 
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viation o ,  

E { X ( w )  }=XO(O)  exp ( -02/  2 )  = ( P o ( w )  f Qo(0)) exp (-(r2/ 2 )  

(3.127) 

E{ I X(w)  1 2 ) =  1 X O ( O )  1 2- 2Re[Po(w)Po(-o)j{ 1 - exp (-  2 0 2 ) }  

(3.128) 

As u -. m, these equations approach the following values: 

E{ X(w)  ) = 0 (3.129) 

E{ I X ( o )  1 2 ,  = 1 Po(@) 1 f 1 &o(w) 1 (3.130) 

As to the relationship between the autocorrelation function Rxx( t l ,  

tz) and the generalized spectrum SXx(wl, oz) of the processes of the second 

kind, Eq. 3.45 is still valid whether we deal with the processes of the 

first kind or of the second kind. At the same time, the autocorrelation 

function of the process x ( t )  can generally be written as 

Rxx( t i ,  t2) = 1 / ( 2  4' \ :_ 1- -- E [ x ( w ~ ) X * ( w z ) ]  

xexp { i (ol t l  -oztz) ) dwl dwz (3.131) 

Therefore, comparing Eqs. 3.131 with 3.45, we obtain 

S X x ( w ,  02) = E [ X ( w ) X * ( 0 2 ) ) / (  2 z I2  (3.132) 

Substituting Eq. 3.116 into the above, we fur the1 obtain 

- Q ( ) Q o ( -  [ 1 E {  exp ( 2  i ~ ) ) ] ] / ( 2 z ) ~  

(3.133) 

Hence, if Q is uniformly distributed between -a and a (a> 0 ) , 
S x x ( w ,  02) = [ x o ( ~ I ) x $ ( ~ z )  - P P ~ ( ~ ~ ) P ~ ( -  02) { 1 - sin ( 2  a ) / ( 2  a ) )  

I 

I 
-Qo(wl)Qo(-wz){ 1 ,-sin ( 2 a ) / ( 2 a ) } ] / ( 2 ~ ) ~  

(3.134) 

In particular , if a= mz/  2 ( m  = a positive integer) , we can show that 
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and if a=n/4, 

+Qo(wi)Qo(-.a I]/( 2 (3.1361 

In the cases where @ is Gaussian with zero mean (,u= 0 )  and stand- 

ard deviation a, we can show that 

+{PO(W~)PO(-W~) +QO(W~)QO( -w~)Iexp ( -  ~ i ) ] / ( 2 n ) 2  

(3.137) 

which, as o->-, reduces to 

[ Sxx(wi, w2) = Po(~l)Qo(- WZ) f QO(WI)P~(- WZ)]/( 2 .)' (3.138) 

Note that Eq. 3.135 and 3.138 are identical. In all these expressions that 

appear above, the functions Po(w) and QO (w) play a major role. We sug - 

gest that these functions be evaluated as the Fourier transforms of po(t) 

and qo(t) as defined in Eqs. 3.103 and 3.102 respectively. 

CHAPTER 4 NUMERICAL EUMPLES AND DISCUSSIONS 

4. 1 Introduction 

The data-based nonstationary random process models proposed in the 

preceding chapter are applied to three different sets of observed data. The 

first is a set of the NS and EW components of the ground acceleration 

recorded at the time of the Niigata earthquake (1964). Their nonstationary 

characteristics are conspicuous in temporal variability not only in intensity 

but also in spectral content. While it is undoubtedly of vital importance to 

examine the physical significance that such a nonstationarity might sug- 

gest (for example, the effect of liquefaction), these records are simulated 

(without considering physical implications) by the process of the first kind 
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assuming in one case that the two components are independent and in the 

other that they are statistically dependent. The second set of data con- 

sitst of a stretch (360 sec) of a wind pressure record measured at a loca- 
(33) 

tion on the wall on the leeward side of a building. The record exhibits 

a considerable asymmetry dominated by negative pressures caused by tur- 

bulence in the wake behind the building. The process of the first kind is 

applied to this record of wind pressure. Finally, the process of the sec- 

ond kind is used to simulate the temporal variations of a normal load 

factor (in terms of g , acceleration due to gravity) recorded during fighter 

maneuver actions. The observed data consist of two stretches of actual 

records of such variations, maneuver load A with a duration of 31.0 sec 

and maneuver load B with a duration of 69 sec. The process of the sec- 

ond kind is used here to ensure that at the beginning and at the end of a 

maneuver, the normal load factor is unity since we assume an ideal level 

flight before and after the maneuver . 
4 .  2 Earthquake Acceleration 

In Figs. 6 and 7,  the original record xo(t), with a duration of 34 

sec, the Fourier amplitude 1 Xo(w) 1 and phase angle I ; o ( ~ )  are plotted re- 

spectively for the NS and EW components of the ground acceleration of 

the 1964 Niigata earthquake. The sharp change in the oscillatory char - 

actexistics of these records is apparent a t  around t = 9 sec. Fig. 8 plots 

both the original record xo(t) of the NS component and its Hilbert trans- 

from ;o(t) in the time interval (0, TO) with TO = 34 sec, while Fig. 9 com- 

pares the original record xo(t) with two sample functions xC1)(t) and xC2)(t) 

chosen out of the five hundred generated from the data-based nonstationary 

process of the first kind having a Gaussian @ with mean p = 0 and 

standard deviation u = 5 0 ~ .  The standard deviation of 50n is practically 

large enough to approximate the limiting case of a-+m. In Fig. 9, we 
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m r: 
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00 18 68 Ze 0@ 30 %@ 40 00 50 00 
w (radian/sec) 

Fig. 6 Original record x , ( t )  of NS component of the Niigata 
earthgquake (1964),  Fourier amplitude I X o ( o )  I and phase 
angle t o ( - ) .  

13 ( radian/sec)  

Fig. 7 Original record .xo(t)  of EW component of the Niigata 
earthquake (1964), Fourier amplitude I X , ( o )  I and phase 
angle f ' , (w).  
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-- 

t (sec) 

Fig. 8 Original record x,( t )  of NS component of :he Niigata 
earthquake (1964) and its Hilber t transform xo( t )  . 

-800 00 I I I I I I I a I J - 
200 00 - 

x ( l '  (t) : sample f u n  
C 

2 00 
m 
L. 0 

; -200 00 
U " 200 00 

mple f u n c t l o n  

00 

-208 00 I I I I 

00 6 80 13 60 20 40 27 20 34 00 
t (see) 

Fig. 9 Original record of NS component of the Niigata earthquake 
(1964) and sample functions (first kind; Gaussian distribution 
of 0 with P= 0 and o=50z). 

observe that sample functions faithfully reproduce the temporal variations 

of the intensity and the frequency content exhibited by the original rec- 
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ord. In Fig. 10, the Fourier amplitude I Xo(o) I of the original record is 

compared with those of the sample functions, and we observe that these 

Fourier amplitudes are practically identical. 

Fig. 10 Fourier amplitudes of original record of NS component 
of the Niigata earthquake (1964) and of sample functions 
(first kind; Gaussian distribution of @ with P= 0 and 
G =50n). 

While it is not explicitly illustrated in Fig. 8, the Hilbert transform 
A 

.xo(t) of the original record xo(t) is actually close to zero for the time 

domains t 5 0  and t2To (=34 sec) due to the fact that the original record 

fluctuates symmetrically in approximation and rapidly. This is the reason 

why the sample functions shown in Fig. 9 also have approximately zero 

initial and terminal values. At the same time, this is responsible for the 

fact that the Fourier amplitudes of the original record and of the sample 

functions are all practically identical as shown in Fig. 10, a confirmation 

of the theoretical assertion that the process of the first kind and its sam- 

ple function preserve the Fourier amplitude of the original record. 
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(e-2) empirical density function at t = 9 sec. 
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Fig. 11 (e)-2 Continued 
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(e-3) emp~rlcal densrty function at t = 20 sec 
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Fig. 11 (e)- 3 Continued 

Similar results are shown in Figs. 12-15 for the EW component rec- 

ord with the same comments applicable as for the case of the NS compo- 

nent. It is pointed out, however, that the sample functions in this case 

-m 88 1 I I I I I 1 I I I 
88 8 8 8  1688 24 -  3200 4088  

t(sec) 

Fig. 12 Original record x,(t) of EW component of :he Niigata 
earthquake (1964) and its Hilber t transform xo(t). 
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Fig. 13 Original record of EW component of the Niigata earthquake 
(1964) and sample functions (first kind; Gaussian distribution 
of (D with P= 0 and o =50n). 

Fig. 14 Fourier amplitudes of original record of EW component 
of the Niigata earthquake (1964) and of sample functions 
(first kind; Gaussian distribution of (D with P= 0 and 
~ = 5 0 n ) .  
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08 6 80 13 60 20 40 27 20 34 00 
t (see) 

Fig. 15 (a)-(d) O~iginal record xo(t)  of EW component of the Niigata 
earthquake (1964), mean value, standard deviation, max- 
imum, minimum and empirical density functions (first 
kind; Gaussian distribution of @ with P = 0 and a =50n; 
sample size=500). 

(e-1) empirical density function at t = 4 sec 

Fig. 15 (e)- 1 Continued 
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( e - 2 )  empirical density function at t = 9 sec 
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Fig. 15 (e).-2 Continued 

(e-3) empirical density function t = 20 sec 
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Fig. 15 (e)-3 Continued 

I are generated under the assumption that the nonstationary process con- 

k structed for the EW component is completely independent of the process 
I 
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constructed for the NS component. This implies that two entirely inde- 

pendent sequences of realizations of the random variable Q are used; one 

for generating sample functions of the EW component and the other for 

the NS component. 

If we wish to introduce a statistical dependence between the processes 

xl(t) and x2(t) respectively representing the NS and the EW components, 

they must be assumed to form a bivariate process d t )  = [xl(t) xz(t)lT 

with the component processes xl(t) and xz(t) (both of the first kind) 

constructed with the aid of Eqs. 3.54 and 3.55. In the present study, 

we further assume that @I and QZ in Eq. 3.55 are jointly Gaussian with 

zero mean, identical standard deviation a = 50z and coefficient of corr ela- 

tion p12 = 0.999. Then, the expected values are (see Eq. 3.29) 

E{xl(t) }=E{x~( t ) )=  0 (4. 1) 

the autocorrelation functions are (see Eq . 3.38) 
A A 

Rxzxz(tl, tz)=4/2{ xoz(t1) xoz(t2) f xoz(t1) xoz(t2) ) (z= 1,2) 

(4. 2) 

and the crosscorrelation function is (see Eq. 3.63) 
A A 

Rxlx2(tl, t2)=1/2{ xol(t1) xoz(tz) f xol(t~)xoz(tz) ) exp ( -2.5z2) 

(4. 3) 

The original records xol(t) and xoz(t) together with their sample functions, 

two each out of the two sets of five hundred generated, are plotted in 

Fig. 16. The sample functions of the process x ~ ( t )  shown in Fig 16 are 

identical with those in Fig. 9 since the same realizations of a Gaussian 

random variable, referred to as Q in the case of Fig. 9 and QI in the 

case of Fig. 16, are used for both cases. However, this does not apply 

to the sample functions of the process x2(t). Indeed, in this case, the 

sample functions shown in Fig. 16 are constructed using realizations of 

the random variable 0 2 .  These realizations are generated in accordance 
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NS coniponent i:W component 

U 

B 

-200 
0  6 8  1 3 6 2 B 4 2 7 2 3 4 0  0 6 8 1 3 6 2 8 4 2 7 Z 3 4 0  

t lsec)  t ( s e c )  

Fig. 16 Acceleration record of the 1964 Niigata earthquake and cor res. 
ponding artificial acceleration component. (Cox r elated bivax iate 
process; joint Gaussian distribution for 0, and O2 with V Q ~ = C ~ ,  

=50n and p~ =0.999). Cross -coxrelation function Rxlx2(tl, t2) 
1 2  

= ~ { ~ ~ l ( t l ) ~ ~ ~ ( t z ) + X a l ( t ~ ) & ~ ( t ~ ) ~  exp ( - 2 . 5 ~ ~ )  

with the "conditional density function of 02 given 01" which is derived 

from Eq. 3.62. They are therefore different from those used in the con- 

struction of the sample functions in Fig. 13 and hence the two sets of 

sample functions in Fig. 13 and in Fig. 16 are different. As mentioned 

earlier, it is the unavailability of such conditional density functions for 

uniformly distributed 0's that prevents their use in the multivariate simu- 

lation. The Monte Carlo evaluation of the mean value, standard devia- 

tion, maximum value, minimum value and empirical density functions of 

the process x2(t) statistically dependent upon the process x ~ ( t )  in the man- 

ner described', above, is performed on the basis of the five hundred sample 

functions thus generated. As expected, the results are identical with those 

shown in Fig. 15 since the quantities considered here all depend only on 

the marginal density function of @2 which in this case is the same density 

function used independently for generating the results in Fig. 15. 
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4. 3 Wind Pressure 

In Fig 17, the original record m(t)  of wind pressure, its Fourier 

amplitude I X o ( o )  I and phase angle t;o(w) are plotted. The Hilbert trans- 

form & ( t )  of x o ( t )  is then computed and plotted in Fig. 18 in the interval 

Fig. 17 Original record xo(t)  of wind pressure, Fourier amplitude 
( Xo(o) ( and phase angle to (@) .  

-5 0e 
@@ 72 W 1144 $8 2 9 6  '30 280 06 368 88 

t ( sec )  

Fig. 18 Original record .xo(t) of wind pressure and its Hilbext 
transform &t) .  
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(0,  TO) (TO = 360 sec) together with the original record xo(t) . While it 

is not explicitly illustrated in Fig. 18, the Hilbert transform ;~ ( t )  of 

xo(t) is not necessarily close to zero in the time domains t I  0 and t 2 T 0  

due to the fact that .xo(t) is dominated by negative pressures. Never - 

theless, the data-based nonstationary random process of the first kind is 

used to simulate the wind pressure, since in this case the condition of zero 

initial and terminal values does not necessarily have to be strictly observed. 

The random variable @ is assumed to distribute uniformly between -n/ 2 

and z /2  to simulate the asymmetric nature of the original record (see 

Eqs. 3.49-3.52). Fig. 19 plots two sample functions (out of the five 

hundred generated) together with the original record, while Fig. 20, the 

Fourier amplitudes of these two sample functions as well as of the origi- 

nal. In this case, in spite of the use of data-based process of the first 

kind, we observe that the Fourier amplitudes of the sample functions 

t ( s e c )  

Fig. 19 Original record of wind ipressuxe and sample functions 
(first kind; uniform distribution of @ between - n / 2  and 
n /2  
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w (radian/sec) 

Fig. 20 Fourier amplitudes of original record of wind pressure 
and of sample functions (fir st  kind ; uniform distribution 
of 0 between -n/ 2 and n/ 2 ) 

are dissimilar not only to each other but also to that of the original record. 

This is due to the follwing fact: The Hilbert traniform ;o(t) and hence 
A 

x(t) = xo (t) cos @ - xo (t) sin: @ are generally not close to zero but have no 

insignificant values outside the interval (0, TO] . Therefore, if we con- 

struct sample functions, as we do here, by extracting that portion of x(t) 

which exsends only over the interval (0, TO) and evaluate its Fourier 

amplitude, we then find that the Fourier amplitude depends on each sam- 

ple function and is usually smaller than I Xo(w) I corresponding to the 
(X-, 8 ) 

original (this is consistent with the Parseval theorem). The Monte Carlo 

(*8) Let F , ( o )  and F z ( o )  be the Fourier txansforms of j , ( t )  and f z ( t  ) , xespec- 
tively. Then the Parseval theoxem states that 

\ L f , ( t )  f d t )  dl=& j : l ( - w ) ~ z ( w )  d @  

If f , ( t  ) = j 2 ( t )  = j ( t ) ,  with F(o)  being its Fourier transform and f ( t )  being 
a real function of t ,  

w j -- t t  z Z  -- F ( - @ ) F ( W ) ~ W = ~  

since for a real function f ( t )  we have F ( -  o ) = F * ( w ) .  
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evaluation of the mean value, standard deviation, maximum value and 

minimum value are plotted as functions of time in Fig. 21(a)- (d) while 

the empirical density function of x( t)  at t = 180 sec. is in Fig. 21 (e) . 

t (sec) 

Fig. 21 (a)-(d) Mean value, standard deviation, maximum,minimum 
and empirical density function of the simulated wind 
pressure process (first kind; uniform distribution of @ 
between - n/ 2 and a/ 2 ; sample size=500). 

16 (e) empirrcal density function 

at t = 180 sec 

Theoretical 

Wind Pressure (psf )  

Fig. 2l(e) continued 
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The results in Fig. 21 (a)-- (d) also represent the theoretical evaluation of 

the same quantities since the Monte Carlo and theoretical evaluations have 

been found to be in almost perfect agreement. 

4. 4 Maneuver Loads 

Two sets (cases A and B) of temporal variations in the normal load 

factor observed during fighter maneuver actions are considered. These 

temporal variations, their Fourier amplitudes and phase angles are plotted 

in Figs. 22 and 23 respectiyely for maneuver A (duration T0=31 sec) 

and maneuver B (duration TO = 69 sec) . Both maneuver loads are domi - 
nated by positive values and hence their Hilbert transforms are not close 

to zero a t  t = 0 and t = TO even in approximation. This implies that the 

use of the data-based process of the first kind will not produce desired 

sample functions which begin and end with zero values. Therefore, the 

data-based process of the second kind is used to simulate these maneuver 

loads. In both cases, the random variable Q) is assumed to be uniformly 

Fig. 22 Original ~ e c o ~ d  x , ( t )  of maneuver load A ,  Fou~ier 
amplitude I X , ( w )  1 and phase angle {0(0). 
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3- 4 @b3 
d U  300 
m o  2 % 0  
$ 5  a s s  
2 a 00 

2 3 14 
C : 8 

2 -3 14' 
I 

m 2 ~ ~ 3  4 4  6 6  8 8  
w (rad~an/sec) 

Fig. 23 Original record xo(t) of maneuver load B, Fourier 
amplitude I Xo(o) I and phase angle l o ( @ ) .  

distributed between - n/ 2 and n!2. 

Dealing first with maneuver load A,  the symmetr ic-periodic extension 

zo(t) of the original record ro(t) and the HiLert transform 2 0 ( t )  of z o ( t )  

Fig. 24 Symmetric-periodic exte%sion zo( t )  of manuever load A 
and its Hilber t transform zo(t)  
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are plotted in Fig. 24. In Fig. '25, the Fourier amplitude / Xo(o) 1 of 

xo(t) is plotted together with the quantities { 1 Po(w) 1 + 1 Qo(o) 1 2}N, 

I 1 and 1 Qo(o) I . The quantity { I Po(o) 1 2 + I Q ~ ( ~ )  1 21% is of 

particular importance since this is equal 

to [E{ I X(w) 1 2}1 3": under the current as- 

sumption of @ and is to be compared 

with 1 Xo(o) 1 . Indeed, if the differ - 
ence between I XO (o) 1 and { I PO(@) 1 

+ I Qo(0) 1 2}H=[E{ 1 X(o) j 2}]W is 

small, it indicates that the simulated 

process (of the second kind) , on the av - 

erage with a small alteration, has pre- 

served the Fourier amplitude of the o- 

riginal record while ensuring zero initial 

and terminal conditions. We observe in 

u (radlan/eec) Fig. 25 some reduct ion in the value of 
Fig.  25 1 Xo(w) I t { I Po(o) 1 '4- 1 &O 

(01 ~ ~ J ~ , ~ P ~ ( ~ ) ~ ~ ~ ~ I Q ~ ( w )  I { I Po(o) I '-I- I Q O ( W ) I ~ } ~  forsmallval- 
for maneuve1 load A.  ues of o. This is consistent with a fur - 

ther observation in Fig. 26 that all of the three sample functions shown 

therein exhibit generally smaller normal load factors than the original 

record. This trend exists for most of the five hundred sample functions 

generated and is one of the characteristics of the process of the second 

kind. Fig. 27 plots the Fourier amplitudes of the original record and of 

the sample functions shown in Fig. 26. The Monte Car10 evaluation of 

the mean value, standard deviation, maximum value and minimum value 

are plotted as functions of time in Fig. 28 (a) -(d) while the empirical 

density function a t  t = 15.5 sec is plotted in Fig. 28 (e) on the basis of 

the five hundred sample functions. Fig. 28 (a) - (d) also serve as the plot 
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Fig. 26 Original record of maneuver load Fig, 27 Fourier amplitudes of or ig- 
A and sample functions (second kind; inal record of maneuver load 
uniform distribution of @ between -n  A and of sample functions 
/ 2  and ~ / 2 )  (second kind; uniform distr i - 

bution of Q) between -n /  2 
and n / 2 )  

Fig. 28 (a)-(d) 
Mean value, standard devia- 

tion, maximum, minimum and 
empirical density function of 
the simulated maneuver load 
A (second kind; uniform dis- 
tribution of Q) between - a / 2  
and n/ 2 ; sample size=500). 
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(e) emprrical density function 

.... 2 24 at t = 15 5 sec 

~ o r m a l  Load Factor (g) 

Fig. 28 (e) Continued 

of the theoretical values for the corresponding quantities for the same 

reasons as repeated above. 

Similar results for maneuver load B are obtained in Figs. 29-33 with 

the same comments applicable as for the case of maneuver load A .  

t (sec) 

Fig. 29 Symmetric-periodic extens$n z,(t) of maneuver load B 
and its Hilbert transform z,(t) 
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Fig. 30 / %(@) I , { I PO(@) 1 '+ 
I Qo(0) 1 21x, I Po(@) I 

and I Qo(o) I for maneu- 
ver load B. 

Fig. 

Fig. 
t (sec) 

31 Original record of maneuver load B 
and sample functions (second kind; uni- 
form distribution of a) between -.a/ 2 
and n/ 2 ) 

u (radian/sec) Fig. 33 (a)--(d) N[ean value, standard 
32 Fourier amplitudes of or kina1 deviation, maximum, minimum and 

record of maneuver load B and of empirical density function of the sim- 
sample functions (second kind; ulated maneuver load B (second kind; 
uniform distribution of @ between unifor distr ibutlon of Q) between 
- ~ / 2  and n / 2 )  

. - 

- x/ 2 and n/ 2 , sampe size=500). 
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(el empirical density function 
2 52 

at t = 34 5 sec 

S 2 16 

Normal Load Factor (g) 

Fig. 33 (e) Continued 

CHAPTER 5 CONCLUSION 

As one of the nonstationary random process models to be characterized 

primarily in terms of the frequency domain behaviors, the data - based non - 
stationary random process models of the first and second kind have been 

introduced. 

The model can be written as the inversion of the Fourier transform of 

the original record (the first kind) or of its symmetric-periodic extension 

(the second kind) with the phase angle shifted by a random amount @. It  

is this shift that introduces the randomness into the model. 

The processes of the first kind preserve, in principle, the Fourier am- 

plitude of the original record while those of the second kind do so only in 

approximation. The latter however strictly observe the zero initial and 

terminal conditions if the original record does. The data-based multi- 

variate process model of the first kind is also introduced. 

The construction of the data-based process model is a straightfor ward 
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task requiring only the Fourier transform of the original record (or its 

extension) or equivalently its Hilbert transform: No theoretical or nu 

merical finesse needs to be exercised in the construction of the model, 

thus obviating the necessity of the engineer analyzing the data, to be an 

expert in random process theory and data analysis. 

The following quantities associated with the data- based nonstationar y 

random process are theoretically evaluated : the mean value, standard de - 

viation, maximum value, minimum value, probability density function, 

autocorrelation function, generalized spectr um, crosscorrelation function and 

cross-spectral density function (in multi-variate situation). 

The model lends itself to a tractable implementation of Monte Carlo 
(34) 

analyses since it can generate sample functions with ease. The validity 

of such Monte Carlo analyses can be checked by comparing the Monte 

Carlo estimation of some of the quantities just mentioned with their cor - 

responding theoretical values. 

Three sets of observed data are used for numerical examples. The 

NS and EW components of the ground acceleration of the 1964 Niigata 

earthquake are simulated by the processes of the first kind; in one case as 

two independent processes (with independent 8,'s) and in the other as a 

bivariate process with a correlation between the component processes (with 

dependent 8,'s). In both cases, we assume that the random variable @ is 

Gaussian obtaining the simulated processes of symmetric distribution. The 

process of the first kind is also used to simulate a stretch of a wind pres- 

sure record with @ distributed uniformly between - n/ 2 and n/ 2 to em - 
phasize its asymmetric behaviors. Finally, two records of the acceleration 

representing the normal load factor for a fighter aircraft during its ma- 

neuver actions are analyzed and simulated by the process of the second 

kind with 8, distributed uniformly between .- n/ 2 and n/ 2 again to re- 

OLIVE 香川大学学術情報リポジトリ



371 DIGITAL SIMULATION OF NONSTATIONARY RANDOM -107- 
PROCESSES AND ITS APPLICATIONS 

produce the asymmetric characteristics of the records. A set of five hun. 

dred sample functions are generated for each of the example cases men- 

tioned above for the purpose of a Monte Carlo verification of the the- 

oretically evaluated mean value, standard deviation, etc. The agreement 

between the Monte Carlo and theoretical results has been found to be 

practically perfect. 
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