研究ノート

トレンドのあてはめについて

大 藪 和 雄 赤 澤 昌 二

トレンドと循環変動とからなる経済時系列に、最小自乗法を用いてトレンドをあて はめる場合、どのような結果が得られるかをみてみよう。

以下では、時系列データの加法モデルと乗法モデルを仮定し、仮想的なデータを作成し、そのデータの各種の部分区間について、最小自乗法を用いてトレンドをあてはめた結果について考察する。

データは四半期データと考え,循環変動の周期は3年とする。

加法モデルはつぎのように仮定する。

$$T = 505 + 4.7 t$$

$$C = 45 \cos\left(\frac{\pi}{6}(t-1)\right)$$

$$O = T + C \qquad \cdots (1)$$

乗法モデルとしては、つぎの式を採用する。

$$T = 505 + 4.7t$$

$$C = 1 + 0.0757 \cos\left(\frac{\pi}{6}(t-1)\right)$$

$$O = T \cdot C \qquad \cdots \cdot (2)$$

時間 t は 1 から 61 までの値をとるものとし、(1)、(2)式で計算した結果を四捨五入して、整数値のみをとることにする。(表 1 および図 1)

以上のように、(1)式または(2)式で計算した場合、データは波を打つが、その位置を あらわす用語として、山、谷、密、疎を用いることにする。(山、谷などは、景気指数 との関連で用いられており、疎は、回復点とよばれている。ここでは、縦波を図示す

第58巻 第3号

表1 はじめのデータ(仮想例)

t ·	1	2	3	4	5	- 6	7	8	9	10
加法モデル	555	553	542	524	506	494	493	504	525	552
乗法モデル	548	548	539	524	508	498	497	507	527	552
位 置	山			密			谷			疎
t	11	12	13	14	15	16	17	18	19	20
加法モデル	579	600	611	610	598	580	562	551	549	560
乗法モデル	578	598	609	608	597	580	563	551	549	560
位 置			山			密			谷	
t	21	22	23	24	25	26	27	28	29	30
加法モデル	581	608	636	657	667*	666	654	637	619	607
乗法モデル	. 581	608	636	658	670	668	656	637	617	604
位 置		疎			Щ			密		
t	31	32	33	34	35	36	37	38	39	40
加法モデル	606	616	638	665	692	713	724	723	711	693
乗法モデル	601	612	635	665	695	718	730	728	714	693
位 置	谷			疎			山			密
t	41	42	43	44	45	46	47	48	49	50
加法モデル	675	663	662	673	694	721	748	770	780	779
乗法モデル	671	656	654	665	689	721	753	778	791	789
位 置			谷			疎			Щ	
t	51	52	53	54	55	56	57	58	59	60
加法モデル	767	749	732	720	719	729	750	778	805	826
乗法モデル	773	749	726	709	706	718	744	778	812	839
位 置		密			谷			疎		
t	61	-						1		

t 61 加法モデル 837 乗法モデル 852 位 置 山 632

注) * 668 が正しいが、667 で計算してしまった。

トレンドのあてはめについて

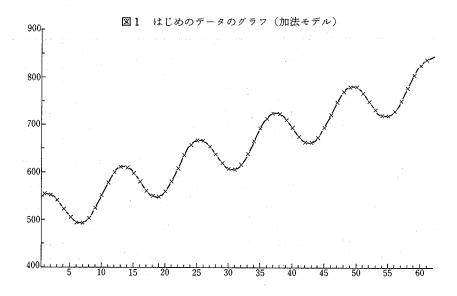
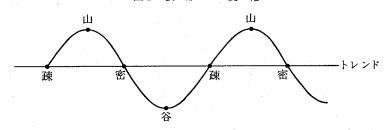



図2 波形の変化

る場合あらわれる疎・密部をもとに便宜的に疎、密という用語を用いることにする。) それぞれの位置は、図2のとおりである。

さて、表 1のデータを用いて、トレンドを求めるわけであるが、各種の部分区間のデータを用いて、最小自乗法により直線をあてはめる。その結果が、表 2、表 3 に与えられている。例えば、表 2 の最初の行の左の部分は、密一密(25、4 -28、480 3、6 2438)であるが、最初の数字は、データの個数であり、そのデータは、時点 4 という密の位置にあるデータから、時点 28 という密の位置にあるデータまでの計 25 個のデータを用いて y=a+bt という回帰直線を最小自乗法によって求めると、a=

-88-

第58巻 第3号

表 2 加法モデルのデータから得られた回帰直線

	表と 加伝モアルのア テかり持ちなで自加度級									
データ	種 類	定数項	回帰係数	種 類	定数項	回帰係数	平	均		
数	種 類	上 数 为	四加尔敦	1建 754	<i>E</i> & X	13 /11 /1 / 3X	定数項	回帰係数		
25 37 49	密一密 4 - 28 4 - 40 4 - 52	480 . 3 489 . 2 493 . 5	6 2438 5 4199 5 1095	疎一疎 10-34 10-46 10-58	538 8 524 9 518 9	3 1600 3 9867 4 2912	509.5 507.1 506.2	4.7019 4.7033 4.7004		
22 34 46 58	谷一密 7-28 7-40 7-52 -	482 . 5 492 . 9 497 . 0	6 1446 5 2921 5 0142	山一疎 1-22 1-34 1-46 1-58	519-1 513-5 511-1 509-8	3 2315 4 1111 4 3828 4 5028	500 . 8 503 . 2 504 . 1	4.6880 4.7016 4.6985		
22 34 46 58	密一山 4-25 4-37 4-49 4-61	481 2 491 1 495 3 497 5	6-1429 5-2889 5-0155 4-8983	疎一谷 10-31 10-43 10-55 -	5373 5223 5165	3 2580 4 1160 4 3872	5093 5067 5059	4.7005 4.7024 4.7014 —		
19 31 43 55	谷一山 7-25 7-37 7-49 7-61	484 4 496 0 499 6 501 1	5 9877 5 1089 4 8928 4 8134	山一谷 1-19 1-31 1-43 1-55	518 1 511 6 509 3 508 1	3 3860 4 2899 4 5054 4 5882	501 2 503 8 504 4 504 6	4.6868 4.6994 4.6991 4.7008		
16 28 40 52	山一密 1-16 1-28 1-40 1-52	504.5 503.6 503.7 503.9	5 5471 5 0547 4 8948 4 8171	谷一疎 7-22 7-34 7-46 7-58	511 - 1 508 - 6 507 - 4 506 - 8	3 8132 4 3396 4 5067 4 5811	507 8 506 1 505 6 505 4	4.6801 4.6972 4.7008 4.6991		
16 28 40 52	密一谷 4-19 4-31 4-43 4-55	488 6 494 8 497 8 499 4	5.5471 5.0619 4.8933 4.8204	疎一山 10-25 10-37 10-49 10-61	526.6 517.1 513.3 511.2	3.8397 4.3454 4.5087 4.5839	507 - 6 506 0 505 - 5 505 - 3	4 6934 4 7036 4 7010 4 7021		
19 31 43 55	疎一密 10-28 10-40 10-52	513.7 510.2 508.9	4 7035 4 7097 4 7002	密一疎 4-22 4-34 4-46 4-58	496 3 499 5 501 1 501 9	4.6825 4.7012 4.6999 4.7004	505 0 504 9 505 0	46930 47054 47001		
13 25 37 49 61	Ш—Ш 1—13 1—25 1—37 1—49 1—61	508 7 506 9 506 2 505 9 505 7	4 . 6758 4 . 6900 4 . 6991 4 . 6986 4 . 7006	谷一谷 7—19 7—31 7—43 7—55 —	501 .8 503 .2 503 .8 504 .0	4 6758 4 7000 4 7001 4 7011	505 2 505 0 505 0 505 0	4 6758 4 6950 4 6996 4 6998		

634

635

トレンドのあてはめについて

表3 乗法モデルのデータから得られた回帰直線

データ	種 類	定数項	回帰係数	種 類	定数項	回帰係数	苹	均
数 							定数項	回帰係数
25 37 49	密一密 4 —28 4 —40 4 —52	4813 4895 4933	6 2177 5 4303 5 1380	疎一疎 10-34 10-46 10-58	539 2 525 9 519 9	31138 39277 42427	5103 5077 5066	4 . 6658 4 . 6790 4 . 6903
22 34 46 58	谷一密 7-28 7-40 7-52	482 7 492 5 496 2 —	6 1592 5 3286 5 0609	山一疎 1-22 1-34 1-46 1-58	517 8 513 3 511 4 510 2	3 3123 4 0946 4 3473 4 4691	500 2 502 9 503 8 —	4.7357 4.7116 4.7041 —
22 34 46 58	密一山 4-25 4-37 4-49 4-61	4827 4919 4958 4977	6 0774 5 2683 5 0082 4 9021	疎一谷 10-31 10-43 10-55 -	536 9 522 3 516 6 —	3 2575 4 0990 4 3724	509.8 507.1 506.2 —	4 6674 4 6837 4 6903
19 31 43 55	谷一山 7-25 7-37 7-49 7-61	485 1 496 1 499 5 500 8	5 9632 5 1133 4 9011 4 8283	山一谷 1-19 1-31 1-43 1-55	516.7 511.0 509.1 508.1	3 4930 4 3048 4 5000 4 5800	500 . 9 503 . 6 504 . 3 504 . 5	4 7281 4 7091 4 7005 4 7041
16 28 40 52	山一密 1-16 1-28 1-40 1-52	502 9 502 2 502 5 502 6	5 - 6706 5 - 1541 4 - 9618 4 - 8764	谷一疎 7-22 7-34 7-46 7-58	513.2 510.6 509.3 508.4	3.6779 4.2310 4.4210 4.5172	508 · 1 506 · 4 505 · 9 505 · 5	4 - 6743 4 - 6925 4 - 6914 4 - 6968
16 28 40 52	密一谷 4-19 4-31 4-43 4-55	491 6 496 8 499 3 500 7	5 3265 4 9600 4 8290 4 7772	疎一山 10-25 10-37 10-49 10-61	523 1 515 2 511 9 509 9	4 . 0294 4 . 4231 4 . 5538 4 . 6214	507 4 506 0 505 6 505 3	4 6779 4 6916 4 6914 4 6993
19 31 43 55	疎一密 10-28 10-40 10-52 -	510 4 507 8 506 6 —	4 8772 4 8113 4 7838	密一疎 4-22 4-34 4-46 4-58	498 7 501 7 503 1 503 7	4 . 5298 4 . 5847 4 . 6096 4 . 6329	504 6 504 8 504 8 —	4 - 7035 4 - 6980 4 - 6967 —
13 25 37 49 61	Ш—Ш 1—13 1—25 1—37 1—49 1—61	506.3 505.5 505.2 505.1 504.9	4 . 9615 4 . 7892 4 . 7492 4 . 7301 4 . 7285	谷一谷 7-19 7-31 7-43 7-55	505 1 504 9 505 0 505 0	4.4396 4.6115 4.6456 4.6651	505 . 7 505 . 2 505 . 1 505 . 1 —	4 - 7005 4 - 7004 4 - 6974 4 - 6976

-89-

-90-

第58巻 第3号

図3-1 データの種類別データ数と定数項の関係(加法モデル)

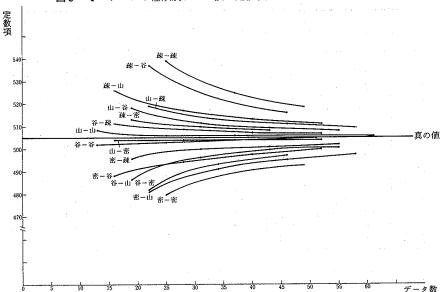
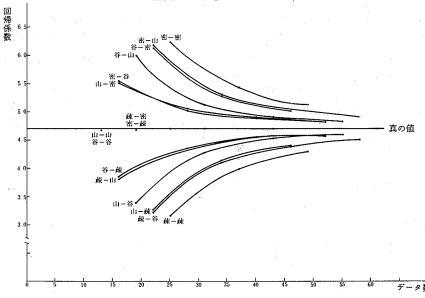



図3-2 データの種類別データ数と回帰係数の関係(加法モデル)

637

トレンドのあてはめについて

-91-

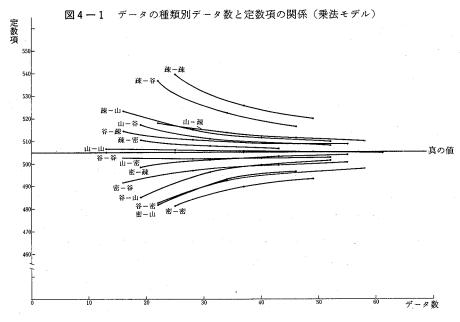
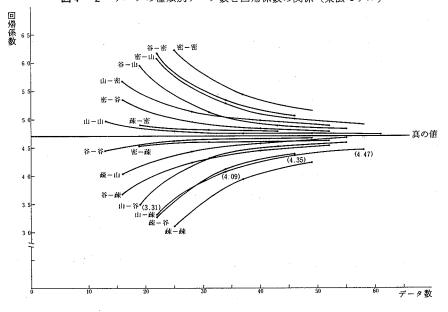
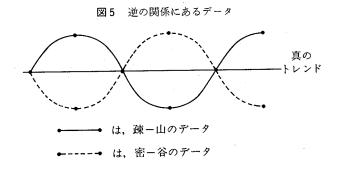



図4-2 データの種類別データ数と回帰係数の関係 (乗法モデル)

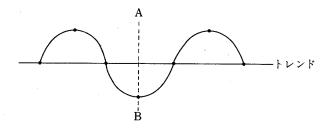


第58巻 第3号

480.3, b = 6.2438 が得られるということを示している。

これらの結果を、横軸にデータ数をとり、縦軸にaまたはbの値をとってグラフにしたものが、図3-1、図3-2、図4-1、図4-2である。これらのグラフから気付くことは、

- (1) どの部分区間のデータについても、データの個数が多くなればなるほど真の値に近づくこと。
- (2) 回帰係数が真の値よりも大きめの値をとる場合は定数項が小さめの値をとりが ちであること。(これには、例外がある。加法モデルでは、疎一密のデータの回帰 係数は真の値に近いのに、定数項は大きめの値をとっていること、密一疎のデー タの回帰係数は真の値に近いのに、定数項は小さめの値をとっていること、乗法 モデルでは、疎一密のデータの回帰係数、定数項はいずれも大きめになっており、 密一疎のデータの回帰係数、定数項はいずれも小さめになっている。)
- (3) 逆の関係にあるデータの組について、一方の回帰係数が大きめになるとき、他方の回帰係数はそれとほぼ同程度だけ小さめになる。また、定数項についても同じことが言える。ここで、逆の関係にあるデータとは、疎一山に対して、密一谷というような関係にあるデータのことである。(図5参照)ただ、これにも例外があり、定数項のグラフについてみると密一密と疎一疎、谷


一密と山一疎,密一山と疎一谷などは真の値を示す横線に関して対称になっていない。

638

639

(4) データの個数が比較的少なくても、かなり真の値に近い値を示すのは、山一山、谷一谷、疎一密、密一疎のデータである。加法モデルの定数項については、疎一密、密一疎も比較的良好な結果を示すが、山一密、谷一疎の方がより真の値に近いようである。疎一密、密一疎は、山一山、谷一谷と同様、中央部(直線 AB)に関して対称であり、(図 6)回帰係数については真の値に近い値を示し、定数項については、疎一密は大きめになり、密一疎は小さめになる。

図6 中央部に関して対称なデータの例

以上、要するに、限られたシミュレーションからの推論であるが、循環変動を伴うような時系列のデータにトレンドをあてはめる場合、山一山とか、谷一谷とかいうデータの組にトレンドをあてはめるか、回帰係数と定数項の対称性を利用した上で、疎一密、密一疎というデータの組にトレンドをあてはめ、その両者のパラメータの推定値の平均(表2、表3の平均の欄)を用いるならば、かなりよい結果が期待できるものと思われる。なお、問題点として残るのは、如何にして山、谷、密、疎などの位置を見つけるか、循環変動の周期が一定しないことから起こる問題、トレンドが直線でない場合はどうかというようなことがある。