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1 Introduction

Practical machines and structures are usually subjected to randomly
varying external loads, and the strength of identical components will never
be the same, even under the same loading conditions. In other words, both
the load and the strength are of an indeterministic nature [1]~[5]. In
addition, a variety of uncertainty factors will inevitably arise in the proces-
ses of their construction and maintenance. Engineering uncertainties have
in general, as is well known, the following wide range of meanings [6] :

(1) randomness - uncertainty due to inherently random nature.
(2) fuzziness - uncertainty caused by that the object is too complicated to

understand, or by insufficient knowledge.
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(3) ambiguity - uncertainty contained in natural language.

(4) vagueness - uncertainty included in, for instance, image processing.
(5) imprecision - uncertainty due to lack of information.

(6) generality - uncertainty due to multi-meanings or multi-interpreta-
tions for the object.

Among these uncertainties, the most essential and important is unques-
tionably the randomness which is the very objective the theory of probabil-
ity and statistics deals with, and the present study also focusses upon.

In order to perform rational design and maintenance, these uncer-
tainties have to be properly evaluated on a probabilistic basis. This is why
reliability should be emphasized in the rational design [7]~[12]. The late
Professor A. M. Freudenthal first introduced his well-known concept of
failure probability to handle this problem in 1946. Following his creative
research work, a number of studies have been carried out in the field where
safety and reliability both play an important role. Needless to say, safety
and reliability play a crucial role in a variety of engineering fields such as
material science, mechanical engineering, civil and architectural engineer-
ing, naval architecture, aeronautical and space engineering and nuclear
engineering, to name but a few. The notion of structural safety and
reliability has become of crucial importance, which is reflected by increas-
ing societal concern to a considerable extent. Recently, a number of
research works in the field of structural safety and reliability have been
published [13]~[95].

In 1969, the first International Conference on Structural Safety and
Reliability (abbreviated by ICOSSAR’69), was formed and held in the USA
under the chairmanship of the late Professor A. M. Freudenthal of George
Washington University (formerly he was at Columbia University), in co-

operation with Professor M. Shinozuka of Columbia University (at present
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he is at Princeton University), Professor A. H-S. Ang of University of II-
linois (he is now at University of California, Irvine), and the late Professor
Emeritus I. Konishi at Kyoto University, Japan. The ICOSSAR confer-
ence has grown up to draw much attention from those researchers and
practicing professionals studying and working in the field of structural
reliability and probabilistic mechanics. The successive second interna-
tional conference (ICOSSAR ’77) was held in Germany in 1977, and after
that time, in the light of promting the societal concern, the conference has
been decided to be held every four years in different part of the world. The
third conference ICOSSAR ’81) was held in Norway in 1981. In the fourth
conference (ICOSSAR ’85) held in Japan in 1985, where one of the authors
served as Chairman of Conference Organizing Committee, there were
nearly 500 participants with presentation of more than 200 papers in total.
Furthermore, the first Japan Conference on Structural Safety and Reliabil-
ity (JCOSSAR ’87) was held in December 1987 under the auspices of the
Japan Science Council.

Last summer the fifth conference (ICOSSAR ’89) was held in San
Francisco, California on 7-11 August 1989, where more than 500 persons
participated from more than 20 countries and nearly 400 papers on struc-
tural safety and reliability were presented with much eager discussions.
This is really one of the evidences that the importance and significance of
structural safety and reliability come to be fully recognized all over the
world. At the closing session of ICOSSAR ’89, the announcement was
made that the next conference ICOSSAR ’93) would be held in Innsbruck,
Austria in 1993. .

As stated earlier, most of machines and structures will fail due to the
repetition of varying loads, which is called fatigue. Hence, in the practi-

cal design, the correct prediction of the fatigue strength or fatigue life of
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structural components is indispensable under actual service conditions [1],
[2]. However, the fatigue strength or fatigue life of identical components
will never be the same even under the same loading conditions. That is, it
has an inherent scatter. Hence, it becomes of crucial importance to clarify
the type of dist;‘ibution it will follow. Assumed that such failure physics
[96] as the mechanism of fatigue failure is made clear, the distribution‘of
the fatigue strength or fatigue life could be theoretically derived. At
present, however, we cannot but take the method to predict, at first, empir-
ically the failure probability model to be fitted reasonably well to the
obtained data and then to estimate the statistical parameters of the model
to be used in the reliability-based design or analysis.

As is well known in this respect, the fatigue life is often successfully
fitted to a Weibull distribution [97], which is characterized by two (the
shape and scale parameters) or three parameters (the shape, scale and
location parameters). The location parameter is often assumed zero in a
sense that failure might occur on the moment of the beginning of service.
This is the case of a two-parameter Weibull distribution on which the
present study mainly focusses [98], [99].

Assuming that the fatigue strength or life follows a two-parameter
Weibull distribution, the most important work is how to estimate their
distribution parameters. In this connection, the present study concerns
with so-called statistical inference in detail, that is, how to estimate statis-
tical parameters (the shape and scale parameters) of the distributiori from
available data. The reliability analysis, for instance, to determine the
design safe life based upon the given reliability level is performed with the
aid of estimated values of parameters. Hence, the statistical ‘inference
procedure discussed in the present paper becomes of crucial impoftance‘- in

the reliabslity-based design of machines and structures.
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2 Order Statistics and Notion of TTFF

In general, more information will be extracted, from a set of data
randomly sampled, by sorting them systematically, for instance, in order
of magnitude. In the analysis of the distribution of life or time to failure,
TTFF (time to first failure) or TTLF (time to last failure) is more reason-
able than the central tendancy of randomly extracted data. In this respect,
this section provides in detail the basic notion of the order statistics.

Let 7®, 7@, ..., and T be the random sample of size #» taken
from the population of the failure life 7°(7 = () having a continuous
probability density function #(¢). By arranging these sample random vari-
ables in ascending order of magnitude, we get

hsh<...£T,
where T;(j =1, 2, ..., n)is called the j-th order statistic of size ». Asis

easily known, 7; thus defined is also considered to be a random variable.

(7—1) samples One sample (n—7) samples
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Fig. 2.1 Explanatory figure to find out the probability of the occurrence of the j-th
order statistic.
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At this point, let us think of the probability that 7; takes on a value
between £ and #;+dt;. As shown in Fig. 2.1, this is given as the probability
of the joint event of Ei, E, and Ej, as follows :

FfinltDdt; = Plt; < T; < t+dt]

= oG PEN PEEED) @)
where E, is the event that (;—1) sample elements, T3, Tz, ..., Ti-y, lie in
the time intefval 0, t;), E the event that T exists in the interval (¢, &
+dt;), and ‘E3 the event that (#— ;) sample elements, T+, Ty, -, I,
lie in the interval (¢+dt;, ).

Sincé the probability of the occurrence of each event E,, E;or E;is

given as
plEl = [r(&)de = Ft)
PB) = [A(e)de = Pt di)=F(v) = f(t)dt

PlE) = [ A(@)de =1~ F(t+db)
= 1-F(t)—f(¢)dt; (2.2)
we get the following relationship by substituting Eq. (2. 2) into Eq. (2. 1):

fin(ty)dt; = zﬁj%m{}?(ti)}j_l{f(ti)dti}{l'—‘F(ti)_.f‘(ti)dti}n_j

! . .
= s F()Y {1 = F(§)} 7 (8) dt;
G-Dl(n D1 ’
+ (higher order terms of d#; than the second order) (2. 3)
Taking the limitation as df; — 0 after dividing the both sides of Eq. (2. 3) by
dt;, we get '

fonlt) = Gy F WY = F @) =7 (0) 2.4

which is nothing but the density function of 7; The cumulative distribu-

tion function Fj.(t;) of T; can be computed as
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Fint) = [ finl &)t

37—

(2.5)

4 dt;
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Fig. 2.2 Schematic explanation to find out the joint density function of the 7-th and

the j-th order statistics.

In the next step, let us consider the joint probability density function

F(t, t)(where 0 < f < ;) of the ;~-th and the j-th order statistics, 7T; and

T; (where 1 <7 < j < ). Inreference to Fig. 2.2, this joint density func-

tion can be obtained, by use of the notion of a polynominal distribution, as

Flt, t)dtdt; =Pt < Ty < hi+dh, 1 < T < 6+ dts)
_ n!
T G-DNIG= DI (=)

X Pi PP T PP

where

P, = the probability that (;—1) elements lie in (0, £)

= ["#@ds = F(z)
P, = the probability that 7; lies in the interval (¢, ¢+ dt)
= F(t+dt)—-F(k) = f(t)dt
P, = the probability that (j—;—1) elements lie in (& +dt, ¢;)
= F(t;))— F(t:+dt.) = F(t;)— F(t:)— f(¢)dt.
P, = the probability that 7 lies in (¢, &+dt;)

(2.6)



—38— Kagawa University Economic Review 38

= F(t;+dt;)—F(t;) = f(t)dt
P; = the probability that (z—;) elements lie in (¢4 dt;, o)
=1-F(t;+dt) = 1-F(t)— (&) adt (2.7)
Substituting Eq. (2. 7) into Eq. (2. 6), deviding the both sides by d#:ds;, and
finally taking the limitation as df; — 0 and 4t — 0, we get the following
joint density :

‘ !
(b, )= (5_1)1(;'—?—1)1(%—7')!

X{F(t)yHE () — F(t)y
X{1=FN () f(8) (2.8)
where 0 < #; < f; < o,

In what follows, some of important notions associated with order
statistics are discussed briefly which are of considerable importance in the
field of reliability engineering.

2.1 Distributions of TTFF, TTSF and TTLF

The probability density function f;»(#) and the cumulative distribution
function Fi.(#) of the time to first failure (the minimum life) 73, that is,
TTFF, can be obtained by replacing j by 1(; = 1) in Egs. (2. 4) and (2. 5) as

Fun(t) = n{l—=F(£)}* (1)

Fun(h) = 1-{1—F(#)}" }

Similarly, the density and the cumulative distribution functions of both the

(2.9)

second minimum life TTSF (the time to second failure) and the maximum
life TTLF (the time to last failure) can be given, by putting j = 2 and j =

n, respectively, as

far(ts) = n(n=DF(&){1 = F(8)}" /(&) } (2.10)
Fon(ts) = 1~ (1= F(&)})" = nF(6&){1— F(&)}"" |
Frnlta) = n{F(w}"‘lf(tn)} (2.11)

Fn;n(tn) = {F(tn)}n



Some Aspects of Statistical Inference of Weibull Parameters with 39—
39 Wide Applicability in Reliability-Based Design ‘

As stated earlier, since the following relationship holds between the cumu-
lative distribution function F(¢) and the reliability function R(¢):
R(t) =1-F() (2.12)

the reliability function for each case mentioned above takes the following

form:
Reliability function of TTFF:

Ria(t) = {R(H)}" (2.13)
Reliability function of TTSFE :

Renl) = n{R(e) {1~ (21 )R () (2.14)

Reliability function of TTLF;

Run(te) = 1—{1—R(8:)}" (2.15)

It should be mentioned at this point that the abovementioned quantities,
say TTFF, need to be treated as random variables. Therefore, the obser-
vation both of the mean as the central tendancy of the variate, and of the
variance as a measure of scatter becomes of much interest. For example,
assuming that the distribution F(¢) of the population follows a two—par'ame-
ter Weibull distribution [100] with the shape parameter « and scale
parameter 8 which will be discussed in detail in the following sections, the
meahs and variances of TTFF and TTSF among #» elements can be
calculated as follows:

MTTFF (mean time to first failure):

E7) = 8(1)r(1+1) = (L) xMTTF or MTBE)  (2.16)

Variance of TTFF : »
Var[Ty] = (%)2”52[1*(1 +%>-—F2<1+ 1 )] (2.17)

@
MTTSF (mean time to second failure):

a7 = (k) (3 o)

n—1 @
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={n(=L) -~ =D(L) X MTTF or MTBF)  (2.18)

Variance of TTSF:

Va1 = {1y (L) (1 2)
) oG )] ew

In this way, such statistical quantities as expected value and variance of,

say TTFF, can be computed based upon both the distribution parameter of
the population and the sample size. MTTFF, which is the central tendan-
cy of TTFF, is obtained, as shown in Eq. (2. 16), by multiplying the central
tendancy of the population (that is, MTTF or MTBF) by the factor (1/x)"*,
where # represents the sample size and ¢ the shape parameter. However,
since the true value of each distribution parametr of the population is
usually unknown, its estimate from a sample of size » has to be utilized,
which might cause an estimation error in the practical application.
2.2 Distribution of Range

The rarige W is defined as the difference between the maximum value
T, and the minimum 73 among a random sample of size ». That is, |

W= T Ti | (2. 20)
Knowing the distribution of the range W is equal to get the distribution of
the maximum width of scatters of all the samples drawn, and, consequent-
ly, is of much significance. The distribution of W can be easily obtained
with the aid of the joint probability density of 7i and 7,. By putting i =
1 and j = # in Eq. (2. 8), the joint probability density is given as

£, 1) = gy FOIE() = Pl (1= F) (1)t

= n(n—D{F(t:) = F(t)}**# () f(ta) (2.21)
By applying variable transformation from (73, T») to (T3, W) such that
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T = Tl; W="T.—T

with the Jacobian [101] of the transform in the following form :

o w| N

b, ta) _ [3(h, w))* _| 9k Ok zll -1 _

oh, w) { o(t, tn)} ot ow 0 1 1 (2.22)
Otn  Otn

the joint probability density f(#, w) of 7y and W can be given as follows:

Ft w) = Ao, )| Sobtnd
= n(n—D{F(h+w)— F()}" () (ti+w) (2.23)

Therefore, the probability density function of the range W, fw(w), is

obtained as the marginal distribution [102] by integrating Eq. (2. 23) over
the whole domain with respect to #. It should be noted that # takes on a

positive value since 7; is the time to failure.
fulw) = [“H(h, w)dn

= n(n—1) £ “(F(t+w)— F()Y 2 () F(h+w)dh (2.24)

Further application can be exemplified easily. For example, the range
execpt both extremal values 7 and T, in a sample of size » may be
determined in a similar way. However, the detailed discussion is omitted
here for lack of space.

2.3 Distribution of Frequency

Let F(T;) be the probability that the random variable 7" of the popula-
tion becomes smaller than the j-th order statistic 7; such that

F(T))=PIT<T]=F
The quantity F; is also considered as a random variable, and is called the
distribution of the cumulative frequency. The probability density function
of F; can be derived in the following form. First, apply the variable

transformation 7; — Fj; such that
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F=F(t) = ["Ke)ds (2.25)

Then the density function of F; can be given as

feF3) =

= DT E WY 1= R (5) —ey
= TP =R (2. 26)

where () < F; < 1. The expected value of F;, denoted by E[F}], can be
computed with the aid of Eq. (2. 26) as

1
[F]= [ FfelF)dF;
n‘ ! J| n—j
2—(—7—:17’7%——7?[; Fi(1—F;))"dF;
' “ -
ZZ/_—IT?/ZG/Z—WBO‘FL n—/-i-l)

_ n! . I'G+)I'(n—j+1)
T G-Din—i I'ln+2)

—_J
T on+1 (2.27)

where I'(+) is a Gamma function, and B(-, -) is a Beta function:

As shown in Eq. (2. 27), the probability that the random variable 7" of
the population is smaller than the j-th order statistic 7 of size #, namely,
the expected value of the distribution of the cumulative frequency at 7;
becomes j/(n#+1) in place of j/u. This is the reason to take the plotting
position of the j-th order statistic ¢ as F(#) = j/(»+1) in the mean rank

method [103] . In general, the expected value of {F;}” is given as

' 14+ 7—1)1
B[R] = (2.26)
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3 Major Failure Models and Associated Distributions

Generally speaking, strength of the material can be considered as the
resistance against external stresses. Let S be the external stress and R the
internal resistance of the material against it. Then, the failure may be
defined as

(R < S} 3.1
This definition of failure is called the stress-strength model. In the case
that R or S, or both are considered as random variables, the event that Eq.
(3. 1) holds may become random and the probability of failure, p,, is given
as follows:

pr =P[R < S] (3.2)
Both R and S are generally random variables, and the statistical properties
of S can be obtained based upon observations. On the other hand, thosé of
R can be obtained through replication tests. In both cases, obtained data
need to be usually processed on a statistical basis, and hence mathematical
statistics plays an important role in this respect. In determining the
distribution of S or R, there might be some cases where the probability
theory itself plays a crucial role as can be seen in applying a normal
distribution with the aid of the central limit theorem. Also there might be
some other cases to introduce a suitable type of probability model to
explain failure phenomena of concern through the empirical observations.
In the latter cases, statistical inference plays an indispensable role since the
validity of the model needs to be evaluated based upon the comparison
between the model distribution and the empirical data obtained by observa-
tion or experiment. Parameters of the distribution, either derived from
the theory of probability itself or obtained from the assumed model, must

be estimated with the aid of statistical treatment of the observed data. In
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what follows, some typical failure models and associated distrsibutions are
briefly discussed on the basis of the statistical approach. »
3.1 Pattern of Failure Rate Function

In the reliability analysis of an item, the failure rate function /(#) plays
a very important role, for this is directly connected to the probability model
of failure. The shape of %(¢) as a function of time can be categorized into
three basic kinds ; DFR(decreasing failure rate), CFR(constant failure rate)
and IFR(increasing failure rate) types described as follows:

(a) DFR type The function /(¢#) assumes a decreasing value with a
lapse of time. This means that, in early time of service, defective
parts will fail because of high rate of failure. Therefore, preventive
maintenance is of no use since failure rate decreases with increasing
time. Of importance is the procedure to remove, before the service,
parts of high failure rate with the aid of those techniques such as
screening, aging for stabilization and debugging operations and conse-
quently to use remaining parts of good quality. The temporal variabil-
ity both of the failure density function f(¢#) and of the reliability
function R(¢) is schematically represented in Fig. 3. 1.

(b) CFR type This is typical in chance failure period for items com-
posed of many parts, where %(¢) takes on a constant value and failure
is caused completely by chance.

(¢) IFR type Failures will occur intensively after a certain amount of
service time due to degradation caused by wear and/or fatigue.
Preventive maintenance immediately before failure is undoubtedly
effective to protect items from failure in advance.

In general, the failure rate function of an item in the non-repair system
composed of a large number of elements is represented, as shown in Fig. 3. v

2, by the shape similar to the cross-section of a western bathtub. That is,
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Fig. 3.1 Patterns of the failure rate function 8.
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Fig.3.2 Typical pattern of failure rate (bathtub curve) for an item without mainte-
nance.

in the early stage of service, there exists early failure period with DFR type
of failure rate function, which is caused by defects in the production process
and misuse for service environment. Early failure period is followed by
chance failure period with CFR type of constat %(¢), which comes from the
accumulation of various causes of failures of structural components. The
final stage is wear-out failure period where failure rate rapidly increases
due to cumulative damage by wear and/or fatigue. It is a standard prac-
tice to choose the value of failure rate in chance failure period lower than
the prescribed. The longevity or useful life is the length of period with
actual failure rate of an item being kept lowe‘r than the prescribed. For the
item in the repair system, the useful life can be extended by applying
preventive and corrective maintenance so as to r'edﬁce the value of %(t) less
than the given.

3.2 Chance Failure Model and Exponential Distribution

The first interesting failure model is the chance failure model. Sup-
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pose that R assumes a constant value. Let Fi(s) be the distribution func-
tion of the random variable S, and the probability that failure does not

occur within unit time, that is, P[S < R], can be expressed as

P[S < R]=P[S < R] = F{(R) (3.3)
Conversely, the probability of failure can be given as
P[S2R]=1-F(R)=h (3.4)

At this point, assume that the above failure probability is kept constant
during the entire service time ». Then the probability that failure never

occurs throughout the service time is represented as

Ren) = (P[S < R])" = {Fs(R)}" = (1-A)" (3.5)
When % becomes large enough, the above equation reduces to

Rdn) = (1—n)" = (1—nh/n)" = exp(—nh) (3.6)
»n may be replaced by time ¢, and therefore,

Rt = exp(—ht) 3.7

J is usually called the failure rate which represents the probability that
fracture or failure occurs within unit time. This model is also applicable to
the case of random variable R when the failure rate % in unit time never
changes at all over the entire service time. R.(¢) is called the reliability
function for service time ¢ in chance failure or an exponential distribution,
which is the probability that fracture or failure never occurs during this
period.
3.3 Proportional Effect Model and Log-Normal Distribution

Of next interest is the proportional effect model from which the log
-normal distribution can be derived. Now consider a physical process
wherein failure is due to fatigue cracks [104].

Let X; < Xz < +- < X, be a sequence of random variables that denote
the size of a fatigue crack at successive stages of its gr'owth A propor-

tional effect model can be assumed for the growth of these cracks. This



—48— Kagawa University Economic Review 48

implies that the crack growth increment at stage 7, X;— X;-1, is randomly
proportional to the size of the crack at stage i—1, X;-;, and that the
material fails when the crack size reaches X,.

Let X,—Xioi=&Xioy, i =1, 2, ..., n, where &, the constant of
proportionality, is a random variable. The initial size of the crack, X,
can be interpreted as the size of minute flaws, voids and the like in the
material.  &’s are assumed to be independently distributed random vari-

ables that need not have a common distribution for all z’s. Thus,

IZZI & = z": Xi—Xim1 _ é AXi (3.8)

i=] i-1 i=1 i—1
If the increment, X;— X,_, = A4X,_,, is small at each step, and in the limit,

as 4X:., — 0, and » becomes large, it follows that

SE = fxn—LdX = In X,—1In X, that is
=5 xo X i 0

In X, = IZ: Ei‘f‘ll’l Xo ' (3 9)

Since &/’s, by assumption, are independently distributed random {far‘iables,
by the central limit theorem, it follows that they converge in distribution to
a normal distribution. Thus In X,, the life length of the material, for large
n, is asymptotically normally distributed with mean x and standard devia-
tion ¢, and hence X, has a log-normal distribution.

The statistical properties of a log-normal distribution are given as

follows :
Mean:

ux = exp(p+0*/2) v (3.10)
Variance :

0% = exp(2u+ 0*){exp(o”) —1} (3.11)

3.4 Weakest Link Model and Weibull Distribution

The third interesting model is the weakest link model. Even in a
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simple tensile test of round-bar specimen, tensile strength varys from
sample to sample. The weakest part of a round-bar specimen is consid-
ered to fail since strength may have spatial variétion“ Hence, the strength
distribution may be understood as that of the minimum value.

At this point, assume that the material is composed of % independent
elements, and let F(x) be the identical distribution of strength X of each
element. In this case, the minimum value distribution Gn(x)‘ among
elements, each of which has the same distribution function F(x), can be
represented as follows :

Gn(x) = 1—-{1—-F(x)}* (3.12)
Supposing that the minimum value of strength, 7, exists, then FF(x) can be
defined over the domain x > 7, with F(y) = 0. Further, with the assump-
tion such that

A =F(n)=0,fn)=0,{i=12, ..., a2} (3.13)
where ¢ is a positive constant, and by utilizing Taylor series expansion of

F(x) around x = y such that
_(x—7 a o z— a+l "
Fla) = L2200 pen(y) 1 GBS fo i pa—n)) 31
the following approximation can be made for | F@{y+8(x— )} < M :

|1 =F(a))+27 | =| = F(a) 4 nLEZ2 peon)|

o — a+1
= ‘ n-%-.f"“’{7+ 6(z— 7)}‘

z(a+1) a!
< S T (75 (3.1
where
-l/a
. %Je‘(a—l)g 2,2
£= [ al ] (3.16)

r—y=pRz (3.17)
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In the above, the following approximation is also introduced in the vicinity
of x = 7y

In{l—F(2)} = - F(z)

Since the right-hand side of the inequality (3. 15) approaches zero when

n becomes large, it follows that In{1—F(x)}* = —z* Consequently,

Grl)= G(x) = 1-exp(—2%) = 1—exp| —(ZFL) | (3.18)
The above distribution is called a three-parameter Weibull distribution
[100] which is frequently used in the analysis of strength or life distribution
of the material. The parameters @, 8 and y are called the shape, scale and
location parameter, respectively.

For the sake of ease of treatment as well as of the fact that fracture
might occur on the moment of the beginning of service, the location param-
eter y may be regarded as zero in what follows [105]. However, it should
be noted that this treatment may not cause any lack of generality of
discussion. In this case, the model is called a two-parameter Weibull
distribution, whose statistical properties are given as follows:

Mean: (MTTF or MTBF)

ux = Br(l+1/e) (3.19)
Variance : ;
ok = BT (1+2/a)—T'*(1+1/a)] (3.20)

4 Wide Applicability of Weibull Distribution for Fatigue Life Scatters

4.1 Superiority of Weibull Distribution

As an interesting example of application of aforementioned stochastic
models to the variability analysis of fatigue life T, a brief comparison is
made between the Weibull distribution derived from the weakest link modetl

and the log-normal distribution from the proportinal effect model with an
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Fig. 4.1 Difference between shapes of cumulative distributions.
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emphasis on how these distributions behave in such a region of smaller
failure probability as is usually the case in the practical design.

Fig. 4.1(a) and (b) represent the difference between the shapes of
cumulative distributions plotted on a log-normal probability paper in the
case that mean life of each distribution is kept the same as p; = 10° and
coefficient of variation Vy = 0.05 and 0.5. As can be clearly seen, the
Weibull distribution lies over the log-normal distribution in the region of
smaller failure probability. This fact implies that the Weibull distribution
gives a shorter percent point of life than the log-normal distribution.

Further, Fig. 4. 2(a) and (b) represent fatigue life percent points of both
distributions as a function of fairly small failure probability. In every case,
the Weibull distribution assumes a smaller value than that of the log-
normal distribution, which means that the former lies in safer side than
the latter. These results must be taken into account in the reliability -
based fatigue-proof design.

4.2 Weibull Distribution as Fatigue Life Distribution Model

As stated in the previous section, the well-known Weibull distribution
with wide applicability is characterized by three parameters, that is, the
shape parameter g, the scale parameter 8 and the location parameter y.
This is named after W. Weibull in Sweden who proposed this distribution
[100]. In the Weibull distribution, the density function f(¢#), the distribu-
tion function (sometimes called as unreliability function) F(¢), the reliabil-
ity function R(¢) and the failure rate function 4{¢) are given respectively as

follows :
=5 (157) " oo (157 »

= 1o (-(157)] e
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R(H) = 1=F(8) = exp {—(£5%)} (4.9)
M) = FOIRE) = LLZL)" (4. 4)

in each equation, ¢ assumes a value larger than or equal to y; £ > 5.

As can be seen from the shape of the failure rate function 4(¢), three
different patterns IFR, CFR and DFR of %(#) can be produced by choosing
a value of @ such that ¢ > 1, e =1 and 0 < ¢ < 1, respectively. This is
why a Weibull distribution has wide applicability. In the above equations,
B is sometimes called the characteristic life, and the scale parameter is
defined by # = g* The physical meaning of the location parameter y,
whose interpretation shoud be of much consideration, may be regarded as
the duration with no damage in degradation failure or the time to crack
initiation in faitgue.

For the sake of ease of handling as well as of the fact that fracture
might occur on the moment of the beginning of service, y can be regarded
as zero in what follows [105]. However, this treatment may not cause any
lack of generality of discussion. " In this case, Eqs. (4. 1)-(4. 4) reduce to the

following forms:

0= 44" o3 e
0= 1-eo{-(3)] o
P o
o) =4 4.4y

where ¢ assumes a value larger than or equal to zero; # > 0.
The shape of Weibull distribution varies as the shape parameter ¢

changes. Fig. 4.3 indicates the variation of the density function in case of
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y =0, from which we can see that the function corresponds to an

exponential distribution in case of ¢ =1, to a Rayleigh distribution in case

of @ = 2, and nearly to a normal distribution incase of ¢ = 3.2. The shape

of the distribution comes to stand sharply with increasing value of shape

parameter . The statistical properties of a two-parameter Weibull distri-

bution defined by Egs. (4. 1Y-(4. 4)’ are given as follows:

Mean (MTTF or MTBF):

(4.5)

E[T] = 5F(1+la)
Variance :
3.0
255 a=6
3
“
o 2.0
S
k3]
[=}
2
» L5k
B
3
® 1 NN
&
0.5} 1
= é“-
0 / 1t 1 1 11 I\\M
0.5 1.0 1.5 2.0

Nondimensional time x = ¢/8

Fig.4.3 Effect of shape parameter « on Weibull distribution, where 8 represents a

scale parameter
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Var[ 7] = g 1(1+%)- r(1+1)] (4.6)
Median :
bmeaian = B(In 2)M* ‘ 4.7

where T represents a random variable of the timé to failure or fracture,
and I'(-) means a I" function.
4.3 Weakest Link Model and Extreme Value Distribution

In this section, both the weakest link model and the extreme value
distribution are briefly discussed. It is often the case in reliability problems
that the Weibull distribution can predict the variability in the model of
failure or fracture. This comes partly from the fact that the distribution

belongs to one type of extreme value distributions.

P )

e mmmme. ... —— O

]
El

(@ {b)

Chain model  Series model

Fig. 4.4 Schematic representation of the weakest link, orthe chain model and the
series model. '

With consideration of the chain model composed of mutually indepen-
dent # links, each having the same strength or life distribution, as shown in
Fig. 4.4, let us think of the strength or life of this chain model. Let R«(¢)
be the reliability of the ;-th link at time . Then the reliabilioy R(¢) of the

chain is given as follows:
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R(t) =1 R(®) (4.8)

In case that the reliability of each link is the same, that is, Ri(¢) = R(¢),
Eq. (4. 8) reduces to the following.

R(t) = {R()}" (4.9)
Such structural model as this is called the weakest link model or the chain
model, and is also accordant with the series model in Fig. 4. 4.

This concept can be extended to the determination either of the
weakest strength or life distribution among » elements following the same
distribution, or of the maximum stress distribution among » independent
applications of the stress having a certain distribution. In the limit where
» becomes infinity, the extreme value distribution is obtained as an
asymptotic distribution. E.J. Gumbel [106] categorized this asymptotic
distribution into three types ; exponential type, Cauthy type and truncated
type of distribution. The Weibull distribution belongs to the third type.

The importance of the concept of the extreme value distribution is

mainly based on the following three facts:

(a) The life of an item can be deemd to be determined by the maximum
size of the defects involved.

() The maximum of stress subjected to an item, for example, the
maximum speed of wind will prescribe the life of the item.

(¢) The annual maximum level of water in a river, the annual max
-imum quantity of rainfall or the maximum magnitude of earthquake

can be obtained with the aid of this concept.
5 Notion of Statistical Inference

Prior to the consideration of the statistical inference of parameter

estimation, we briefly refer to the notion of the statistical inference [107],
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[108].

In general, it is hardly the case that the probability distribution of the
object of concern is determined in advance. In some cases, although the
shape of the distribution function could be predicted based on the past
experience, the distribution parameters such as mean, standard deviation,
shape or scale parameter should be inferred based on samples of compara-
tively small size. The statistical inference is the procedure to be applied
for this purpose.

As for the statistical inference, there are two categories: One is called
the estimation to estimate unknown parameters which prescribe the
population distribution. The other is the test to test whether or not
estimated parameters of the population distribution are pertinent or the
shape of distribution is acceptable. The present study mainly concerns
with the former which is composed of the point estimation to determine the
value of unknown parameter at a certain point of best feature, and interval
estimation to determine the interval where the true value of unknown
parameter exists with a certain prescribed confidence level.

5.1 Point Estimation

Even if we could assume the shape of the population distribution with
a certain method, the distribution never comes to be‘ fixed unless the values
of parameters to characterize the distribution are determined It.is the
point estimation that the value of parameter is estimated so as to have the
best feature from a certain aspect. In this sense, what is the best feature
becomes of vital importance.

Let ®(Ty, T3, ..., T») be an estimator of a certain parameter ¢
composed of a random sample of size u, Th, T3 ..., Tn Theh, the
estimator @ is preferably expected to have the following features (1) to (4) :

(1) Consistency
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This means that the following equation is satisfied for any small

positive value e. In other words, @ converges to ¢ on a probabilistic basis.

LiqrgP[]@—&IZe]=0 (5.1)
The estimator @(Ty, T3, ..., T») which has this nature is called a consis-

tent estimator.
(2) Unbiasedness

This means that the estimator ¢(T3, T3, ..., 7T») has no bias neither
to upper side nor to lower side. That is,

B[O(T:, To ..., T =0 G.2)
The estimator @(73, T, ..., T») which has this nature is called an un-
biased estimator. Here, E[@]— @ is called bias and the estimator @ whose
bias is not zero is also called a biased estimator.

(3) Minimum variance

Even if the estimator satisfies the aforementioned unbiasedness in (2),
the probability needs to be small that the estimator lies largely apart from
the true value. To meet this requirement, the variance is desirable to be as
small as possible.

Now suppose that ¢(Ti, T, ..., Tn) is the unbiased estimator of 4,
then the variance is given as follows:

Var[ 0] = E[{0 —E[0])’] = E[9°]-(E[0])® v

= E[0%]—-6* (5.3)
where the value evidently changes according to the value of 4. Hence, if
@* exists which satisfies the\ following relationship for an arbitrary un-
biased estimator @ in every value of 4, this is named as the uniformly
minimum variance unbiased estimator or UMV unbiased estimator and is
also quite desirable.

Var[@] = Var[ 0*] (5.4)
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By the way, assumed that a sample of size n, 71, T3, ..., T, are generat-
ed independently from the population with probability density function f(¢,
g), the following Cramér-Rao inequality [109] is applicable to an arbitrary
unbiased estimator @ for 4. From this point, such an estimator whose
variance always agrees with the limit of the right-hand side of the above

inequality (this property is called efficiency) may be regarded as the most

desirable.
Var[0] > —{nE[-a% log AT, e)}}'l
(i=12 ..., n (5.5)

This is called an efficient estimator and is evidently a UMV unbiased
estimator. However, in general, the UMV unbiased estimator, even if it
exists, is not always an efficient estimator.

Well, in case that @ is a biased estimator, the estimation of its accu-
racy is performed by the mean square error represented by E[(@—6)?] in
place of variance. In case of an unbiased estimator, it agrees with vari-
ance.

(4) Sufficiency

In the estimation of parameter 4, it is a sufficient estimator of 4 that
all information obtained from sample data is concentrated on the estimator
and any other estimator cannot give more information than it. In other
words, when a certain value of function @ = ¢(Th, T5, ..., T») can be
computed and this value can be sufficient for estimation in place of all
sample values, the function @ is called a sufficient estimator. This can
also be defined by the following. That is, it is a sufficient estimator @
when the conditional probability of Ti, T3, ..., T» given @ = ¢, that is,
PITh, T ..., Tx| @ = ¢), is always free from the parameter §.

Undoubtedly, it is the most desirable for an estimator to have all ¢f the
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abovementioned four features; consistency, unbiasedness, efficiency and
sufficiency. However, it is often the case that some of these properties are
not satisfied.
5.2 Interval Estimation

Although the point estimation has various desirable properties, the
reliability placed on the value may not be so high, since estimated values
may vary from sample to sample. For the obtained point estimate can be
deemed to be close to the true parameter, if we set an interval with
appropriate margin on both sides of the estimate, then the probability that
the true parameter exists in this interval could be considerably high. This
is the notion of the interval estimation which provides much higher reliabil-
ity than the point estimation.

The interval estimation means to determine &, and 4, as a function of

asample, 6.(Ty, Tp, ..., Tn)and @u(Ty, T, ..., Tn), such that the proba-
bility that the interval (6, 6y) contains the true parameter § is (1—a).
P[@Lsﬁs ﬁu]=l—a/E7/ (56)

When this interval (4, 6y) exists, this is called the interval with confidence
coefficient y(=1—a) or confidence interval of 100y = 100(1—a)%, and &,
and @y are said the lower or the upper confidence limit, respectively. Such
estimation with lower and upper confidence limits is called the two-sided
confidence interval estimation, and in some cases, only one limit is of
interest. This is called the one-sided confidence interval estimation. In
this case,

Pl6.<8]=1y, ot POy = 6]l =7 5.7
Since the probability that the confidence interval (§;, Gy) contains a true
value of § is y = 1—a, the probability that the true parameter lies outside
of the interval is ¢. From this point of view, « is called the risk ratio.

Either the risk ratio o or the confidence coefficient y should be determined
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as the occasion may demand, but it is ordinary that y = 0.95(a = 0.05) or y
= 0.99(¢ = 0.01) is adopted.
5.3 Basic Concept of Maximum Likelihood Estimation

As stated earlier, an estimator is desired to have consistency, unbi
-asedness, efficiency and sufficiency. The maximum likelihood method is
one of the practical methods to form a desirable estimator like this.

For the sake of simplicity, assumed that the random variable 7" of one
population distribution has the probability density function f(¢; @) which
depends only on one parameter @, the joint probability density function of
a sample of size »n, Ty =1, 2, ..., n), extracted randomly from the

population, is given as follows:

This is called the likelihood function in the sample point (4, &, ..., tw),

whose values change obviously, depending on the parameter 4. At this
time, it is natural to consider that the sample point (4, &, ..., f.) is most
likely to realize when @ assumes § at which the likelihood function becomes
the maximum. The maximum likelihood method is based on this concept.
Therefore, § is usually given as a solution of the following equation :

dL/d8 = 0 (5.9

g thus defined is called the maximum ldkelihood estimator (hereafter
abbreviated as MLE). In case that the number of unknown parameters is
», similarly, the set of parameters of size »(8, &, ..., §-) may be

obtained so as to maximize the following likelihood function.
L=11At; 6 6 ..., 6) (5.10)

This will usually result in a set of solutions of the following system of
equations derived by partially differentiating L with respect to 6 :
AL/GG: =0, (i=1,2, ..., 7) v (5.11)
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It is based on the following reasons that the aforementioned MLE is really
utilized quite often :

(1) In case that a sufficient estimator exists, MLE will become that
estimator.

(2) MLE is not always an unbiased estimator. However, it is often the
case that a simple modificatin can bring unbiasedness to MLE.

(3) In case that an efficient estimator of unknown parameter § exists,
MLE 4 becomes an efficient estimator of 4.

(4) In case of large sample size, MLE has the property to follow
asymptotically the normal distribution. That is, in a sample of size #,
J7n(8— ) follows asymptotically the normal distribution with mean =
0 and variance = n{—nE[8*log f(¢; 6)/36*]}. Hence, § becomes a
consistent entimator of 4.

As can be seen clearly in the above expressions, MLE really has a lot
of desirable properties.
6 Elimination of High-Time Outliers in a Sample from Weibull Popula-

tion

In a Weibull model, when so-called high-time outlier (extremely large
value) exists in a sample, distribution parameters cannot be estimated
correctly. Let us think of two examples of Ex. 1 and Ex. 2 shown in Table
6.1 [10]. In both examples, most of data are the same, but the former
contains one extremely large life. Conversely, the latter contains one very
small life. Table 6. 1 represents point estimates of fatigue life at a certain
failure probability based on the estimated shape and scale parameters, «
and 8, which are also point estimates with the aid of MLE discussed later.
According to this Table, Ex. 1 shows extremely large scatter and Ex. 2 does
not. That is, in a Weibull model, estimates are much affected by high

-time outliers. On the other hand, they are not influenced so much by
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sample values which are extremely small. In reference to this fact, we
should not consider that a Weibull model is not applicable to fatigue life
distribution because an estimate is easily affected by high-time outlier. In
the estimation, it is better to remove such small quantities of data as those
extracted from the different population with some reasons. One of such
eliminating procedures is an estimation by MLE-censored, whose example
is illustrated in Table 6. 2. In Table 6. 2, Ex. 2 is the case that two high-time
outliers are added to Ex. 1 which contains no outlier, and reversely Ex. 3 is
the case that two low-time outliers are added. In Ex. 2, when the estima-
tion of the shape parameter is performed by replacing each outlier by the
sample value immediately preceding it, we can observe that the estimate of
shape parameter changes largely in the second censoring of outlier and after
that no remarkable change is observed. This is why the third is chosen as
the estimate. On the other hand, in Ex. 3 the first estimate is accepted

because the censoring gives no considerable change to an estimate.

Table 6.1 Simulated examples to illustrate effects of isolated long-life specimens.

Estimates of : Point estimates of
Example 1'Fatigue life
ife(cycles) | . o - (cycles) at some
Characteristic life flcycles) | Weibull shape @ | fajlure probabilities
42000 50% ="71480
45000 10% = 8554
48000 5% = 3800
1 52000 108040 0.887 1%= 605
55000 0.1%= 45
60000 0.01%= 3
500000
5000 50% = 41273
42000 10% =19662
45000 5% =14811
2 48000 47680 2.541 1%= 7798
52000 0.1%= 3145
55000 0.01%= 1270
60000
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Table 6. 2 Simulated examples to illustrate censoring procedure[10].
Example 1 Example 2 E xample 3
: : Weibull : : Weibull : o | Weibull
Flreed | shapea |TERIS"| shapea |PCHG"| shage &
42000 42000 4000
45000 45000 5000
48000 48000 42000
Original 52000 9.07 52000 0.95 45000 1.63
estimate 55000 0.1D 55000 (1.05) 48000 (0.61)
60000 60000 52000
400000 55000
500000 60000
42000 4000
45000 5000
48000 42000
Second 52000 1.05 45000 1.50
estimate 55000 (0.95) 48000 0.67)
60000 52000
400000 55000
400000~ 55000—
42000 4000
45000 5000
48000 42000
Third 52000 9.07 45000 1.35
estimate 55000 (0.11) 48000 0.74)
60000 52000
60000— 52000—
60000— 52000—
42000 4000
45000 5000
48000 42000
Fourth 52000 11.70 45000 1.20
estimate 55000 | (0.085) 48000 (0.83)
55000— 48000—
55000— 48000—
55000— 48000—
Because original was Third Original
Answer 0.K, no. attempt was R 9.07 . 1.63
estimate estimate
made to censore.
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7 MLE of Parameters in a Two-Parameter Weibull Model

7.1 In case that both parameters are unknown

Assumed that fatigue life 7 is a random variable which follows a two-
parameter Weibull distribution, parameters to describe this distribution are
the shape parameter ¢ and the scale parameter 3. The probability density

function f(¢) and the distribution function F(¢) are given as follows:

0= 55 o [-(3)] o
Fio = 1-sco{ (2] @

Let us suppose that fatigue life is obtained by independent fatigue tests
on # test pieces and that each follows the same Weibull life distribution.
The outcome in each test is either

(a) the time to actual failure of test piece (fatigue life), T
or
(b) the random time to terminate test for any reason other than
fracture of test piece (censoring time), Z
where T and Z should be treated as random variables. The symbolic
representation of the outcome in each test is as follows :

[T=tIN[T<Z]lor[Z=2INI[T > Z] (7.3)
where ¢ or z is one realization of T or Z, obtained by a test of each time.

At this point, assume that £ specimens out of n(k < n) are tested to
failure and the test on remaining (»— %) specimens are terminated by the
reason other than the failure of the specimen.

Consequently, from the former, £ outcomes of fatigue life T(4,
b, ..., t.) are obtained and, from the latter, those of censoring time Z of

size (n—£k), (2r+1, Zr+2, ..., Zn), are also gained, where suffix dedicated to
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each outcome is for convenient purpose and has no special meaning to show
the order of size. Since the outcome of each test is shown in Eq. (7. 3), the
event that the set of » outcomes (#, f, ..., b, Zr+1, Zrs2, ..., 2n) Wil

occur is represented, based on the concept of the joint event, as follows:

n

AT <zINIT =t} A (T >ZINZ =21} @9

i=hk+1
where symbol é {E.} denotes the joint event Ey () E2 () -+« () Ex. There-

fore, the likelihood L of such event will be represented as follows:

n

L=CliAt) I 1-F(z)) (7.5)

j=E+1

where C is a constant value independent of parameters « and £ in case that

the set of complete outcomes (T3 = 4, To=t, ..., Tr = t,) of T is given.

Since the population density function f(#) and the distribution function

F(¢) are given in Eq.(7.1) and (7.2) respectively, the following can be
derived by substituting these into Eq. (7. 5):

p= ch 58 oo (-(4)] B oo [(5))] o
The log-likelihood is given by taking the logarithm of Eq. (7. 6) as

. k a _ _&_ _ _tL a _ 7 . a
mL=tnC+3 {in(%4)+e-vn(%)-(%)}- 5. (%) @9
Attentive to the fact that C is independent of parameters, the MLE’s of the

_ Weibull shape parameter ¢ and scale parameter 4 are obtained, from

aforementioned Eq. (5. 11), as the solution of the following system of equa-

tions :
dant = g Bl )5 (3 w(3)
~ 5, (F) (%)= @8
amt=—rgg (B08) + 2.(8)) -
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Suppose that the MLE’s are made & and Z? respectively in case that

both parameters ¢ and 8 are unknown, they can be obtained as the solution

of the following simultaneous equations [110], which are derived by trans-

forming Eq. (7. 8) :
Hals)+.2.(3) = .9

(7.10)
By the way, in the actual fatigue test, one of the following test
methods (a) to (c) will generally be adopted.

(a) Uncensored testing plan
As illustrated in Fig. 7. 1, the tests are performed until all specimens of

size » will fail. When they are tested all at the same time, the observed
data are obtained in order of magnitude as follows:

h€<h< ... <t
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1 p—————it
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1 o
L —td”
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k f -+ X
. i1
t HH t X
bl 14 L. A v
T SRR 1 L O o
n ——tH i X
! i1 | [ !
y U ¥ VD W W WD S
0 31 t2 tr ta

»n complete observations

Fig. 7.1 Uncensored testing plan
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Data of size %, ordered in this fashion, are called order statistics of size »

and a sample obtained by this testing plan is called uncensored sample.

This method is applicable to the case that a certain estimation is made by

use of the entire sample of size », without any modification, if data group

consisting of data of size » are gained. This type of sample is sometimes

called complete sample because the whole members of a sample are used.
(b) Fixed time testing plan

As represnted in Fig. 7. 2, the test is terminated after a certain lapse of
time. When the censoring time r locates as shown in the figure, failure
times of &, #, ..., tx are obtained. On the other hand, there is only such
information that each of fes1, fsss, ..., fn is larger than z. This kind of
sample is termed as the type I censored sample.

(¢) Fixed number testing plan

As shown in Fig. 7. 3, the test is terminated when a prescribed number
of specimens k(1 < k <) fails. In this case, the values of &, &, ..., f
are known, but as for #u41, tess, ..., i, there exists only such information
that each of them is not smaller than #. This kind of sample is called the
type II censored sample and £ is said the censoring number.

As stated earlier, the censoring procedure plays an important role in
case of Weibull distribution where parameter estimates are largely affected
by high-time outliers. The estimation procedure in Table 6.2 is the method
that the estimation of the shape parameter ¢ is performed based on a
censored sample such that larger values than the £-th order statistic are
replaced by the k-th order statistic. Therefore, this sample is the same as
the type II censored sample.

Since, in the parameter estimation, the available data are generally
given in a form of order statistics and the censoring procedure to censor at

the k-th order statistic is usually applied, it will be convenient to describe
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the MLE corresponding to this case. Here, suppose that » data exist in the
data group, given as

FO @
Then the order statistics arranged in ascending order of magnitude are
represented as follows: '

Hh< b, S h ]
At first, the MLE’s (so-called MLE-uncensored) of @ and g are discussed
based on a complete sample of size » In this case, the actual outcome of
the censoring time Z is naught and hence, in Eq. (7.9) and (7. 10), we may
put 2= and z; = 0. Therefore, in case that both parameters are un-
known, the MLE-uncensored of @ and j are obtained as # and B which

satisfy the following equations:

L3 - =
2= S ({5 (Y) @

Second, the MLE’s (so-called MLE-censored) of ¢ and 8 are discussed
based on a type II censored samplé such that all the order statistics greater

than the k-th value (1 < £ < #) are replaced by .

tl, B2, ooy h=te1=...= ln (7 13)
Replacing z; = t,(j = k+1, k+2, ..., n) in Eq.(7.9) and (7. 10), it follows
that : ’

1 (& (LN _ E\4

+HE (7,»’) +(n=#) (7;) J=1 (7.14)

k

i

E- G H(E - o-n(g gy o

The MLE-censored of ¢ and # are obtained as & and B which satisfy the
above equations, Egs. (7. 14) and (7. 15).
The MLE'’s of ¢ and 8 are obtained by the solution of Egs. (7. 9) and (7.
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10), Eqgs. (7. 11) and (7. 12), or Egs. (7. 14) and (7. 15), respectively. How-
ever, the solution of these equations cannot be obtained in a closed form
and therefore, it is not easy and is necessary to make use of iterative
procedure with the aid of a computer. In the estimation of the shape
parameter ¢, when the MLE of the reciprocal shape parameter A = 1/z is
considered, this value is obtained in the following way. That is, in case of
MLE-uncensored where a complete sample is used, from Egs. (7. 11) and (7.
12),

IO @9

- 84 -n 9 o

In case of MLE-censored where a censored sample is used, from Egs. (7. 14)
and (7. 15),

HEE omn () ) - =

b= Bl H () Jwn(§)n(5) o

By solving the above equations with respect to E and A, A gives an answer.
7.2 In case that the shape parameter ¢ is known

There may be the case that the shape parameter ¢ is known for any
reason. If the MLE of B corresponding to this case is expressed by 3, this
is obtained by

i=la@e 29"

(7.20)
- (B £,)

J=k+1
On the other hand, the MLE-censored of 3, £, by use of such censoring
procedure as shown in Eq. (7. 21), is obtained by transforming Egs. (7. 14)
and (7. 15) as follows:
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Zyin=Zpe=...=Zn=Tx (7.21)
where T, is the k-th order statistic.
~ )3 /e
B={L(3 w+tn-hy)}
(7.22)
{1 (& ek
= {’i{(g A+ (n—k)th )}

In case of MLE-uncensored, it follows from Eq. (7. 11) and (7. 16) that

=-(Ee)”

Therefore, in case that ¢ (or A) is known, the maximum likelihood
eatimate of Weibull scale parameter j, based on the result of the fullscale
fatigue test, is obtained by Eq. (7. 20), (7. 22) or (7. 23).

8 Statistical Properties of MLE’S of Weibull Parameters

From the discussion in the preceding section, the Weibull MLE’s @ and
[V?, in case that both parameters are unknown, or §, in case that the shape
parameter is known, can be obtained. Hence, the first objective of the
reliability-based design seems to be accomplished. However, if the distri-

butions of & and Z;’ or that of B can be predicted in advance, which
represents how they distribute around the corresponding true values of «
and f in relation to the sample size » and the censoring number £k, the
validation of the results of the actual estimation as well as the propriety of
the sample size can be evaluated. This is much helpful, convenient and
useful in a practical sense. |

In the prediction of the distributions of & and E’, the notion of parame-
ter-free statistics independent of the true values « and 8 is desirable in
order to give generality to the discussion. For this purpose, the following

transformations are introduced :
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Y, = (%) (=12 . % (8.1)
U= dl (8.2)
V=(BR)* (8.3)

where T, is the 7-th order statistic of size #.
Rewriting Eqgs. (7. 14) and (7. 15) by use of Egs. (8. 1)~(8. 3) reduces to:

k
v =135 v+ (=i} (8.4)
k
2 yfinyi+(n—Ryelnye | 1 &
i=1 . .__(-7 = ? Z Iny: (8 5)
2 vl +(n—k)yd =
By the way, it is evident that y.(; = 1, 2, ..., k) obtained by the transfor-
mation defined by Eq. (8. 1) for fatigue life #, (: =1,2, ..., k) of a two-

parameter Weibull type, follows the exponential distribution with mean of
unity, independent of the Weibull two parameters ¢ and 3. Therefore,
both U and V defined by Egs. (8. 2) and (8. 3) are proved to be parameter
-free statistics from the parameters @ and 5. In case of MLE-uncensored,
similarly, both U and V are briefly shown to be parameter-free statistics

from ¢ and g, and the following equations hold :

=Ly (8.6)

=1 N S 5”\_' Iny: 8.7

From the above discussion, the empirical distributions of U and ¥/ can be
made clear by computer simulation with the aid of Monte Carlo technique.
The detailed description of the simulation method is omitted here for lack
of space. In what follows, the empirical distributions of U, V and W are
briefly discussed.

Fig. 8. 1 represents the distribution of 1/ = a/@ = /A, reciprocal of
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Fig.8.1 Empirical distribution of the MLE of the Weibull shape parameter « for
complete samples. (Note: & is the MLE of the true Weibull shape «)

U = &/a, obtained by computer simulation and plotted on a normal proba-
bility paper for each sample size ». For the sake of simplicity, only the
case is shown here for complete samples without censoring procedure. The
empirical distribution in the figure reprenents cumulative frequency of two
thousand estimates of 1/U, arranged in order of magnitude, obtained by
utilizing those two thousand data groups numerically generated by a com-
puter, each consisting of a sample of a given size of exponential random
numbers with mean = 1. As ‘shown clearly in the figure, with increasing

sample size, the distribution of 1/U approaches a straight line whose slope
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Fig.8.2 Comparison of the empirical distribution of the MLE of the Weibull shape
parameter « between complete samples and censored one.

becomes gradually steeper. This means that the distribution of 1/U
approaches a normal distribution with increasing sample size and that the
probability that an estimate lies close to the true value becomes large since
a steeper slope corresponds to smaller variance. Compared with the
distribution of V = (B/g) ¢ discussed later, a considerably accurate estima-
tion can be performed even for a small sample size. In case of » = 2, the
distribution of 1/U is derived theoretically [111]. The estimated results by
Monte Carlo simulation technique for # = 2 show a good agreement with

the corresponding theoretical one represented by the dotted line. This fact
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can be the evidence of the validity of the present simulation technique.

Fig. 8.2 gives an example of the simulated result of the effect of the
censoring number on the estimation of . Comparison between the censor-
ing at the 3rd of 5 and complete sample of size 3 or 5 is illustrated. From
this figure, the MLE of the shape parameter « is not largely affcted by the
censoring and is estimated similarly for the small sample size [10].

Fig. 8.3 represents how the sample size influences on the estimation
accuracy in case of estimating the Weibull shape « by the MLE-unconsored
4. The variance is usually a measure for estimation accuracy. However,
if an estimattor has no unbiasedness, this is not a suitable measure and the
expected loss or mean square error should be used in place of it. In this
respect, both are represented in the figure. In case of small sample size,

the difference between the expected loss and the variance becomes large,

05
< 0.4 \ Expcected loss of (a/@) = E{(e/2—1))
‘ \
\
\
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\
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0 \-‘
1 5 10 ' 50 100
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0.1}

Expected loss and variance of (a/a)

Fig.8.3 A measure of sampling error of the MLE of the Weibull shape from complete
samples.
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and the estimated error becomes also large.

Though the unbiasedness is a preferable feature for an estimator as
stated earlier, @ discussed in this section is not always an unbiased
estimator. For example, in case of sample size » = 20, @ seems to repre-
sent a normal distribution as shown in Fig. 8. 1, but actually it has a little
bias because the value at 509% of cumulative frequency is a litte less than the
true value of unity. From this point of view, both the bias factor B, and
the variance factor @, of the MLE of the reciprocal shape parameter A =
1/@, represented by Eq. (8. 8), are introduced and simulated for each sample
size as in Table 8. 1.

E[B.A] = 4, and Var[B.A] = Qu1? (8.8)
The reciprocal shape parameter A is first estimated by MLE (1) for each
data group. Then, according to the sample size, a modification is
introduced as

A =B (8.9)
2 thus obtained now becomes an unbiased estimator. Assumed that there
are m data groups, the best unbiased estimator F throughout the whole

groups can be given as follows:

= % j:I/Q"J
R (8.10)
2 1/Qu
with its variance defined as
Varl 71 = 2/ 3 (1/Qw) (8.11)

where A; = B, A, is an unbiased estimator obtained by multiplying the
MLE, A, estimated from the j-th data group by the bias factor B,, in Table
8.1, and @, is the variance fator corresponding to the sample size in the
7-th data group.

Next, in case that the shape parameter ¢ is unknown, the sampling
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Table 8. 1 Bias and variance factor of Weibull MLE of reciprocal shape parame-
ter 1.
Complete sample size # Bias factor B, Variance factor @,
2 1.73 0.71
3 1.37 0.35
4 1.25 0.22
5 1.187 0.164
10 1.088 0.073
20 1.047 0.033
o 1 0

distribution of the aforementioned statistic defined by Eq. (8. 3) provides
how the MLE of g, Z?, distributes around the true value of £ according to
the sample size.

v =(Bl8)" = (Bl " (8.12)
Similarly to the empirical distribution of 1/U = a/&, some examples of the
empirical distribution of the statistic ¥V are represented in Fig. 8.4 for
complete samples, obtained by computer simulation by use of Egs. (8. 6) and
(8.7). From this figure, in case of small sample size » =2 ~ 5, a large
scatter is observed in the distribution of ¥, which means that the probabil-
ity that an estimate ,73’ is different from the true value is large, in the
estimation of scale parameter B from data of sample size » = 2 ~ 5 when
the Weibull shape « is assumed to be unknown. Therefore, a large value
of the safety factor should be chosen in the design. Like the previous case
of @, it asymptotically approaches a normal distribution when sample size
becomes large. Fig. 8. 5 represents the effect of the censoring procedure on
the results of estimation. In this case, the probability that § approaches
the true value becomes large by applying the censoring procedure.

Finally, the discussion is made on how the MLE j distributes around

the true value B8 when ¢ is assumed to be known. Let us consider W



—80— Kagawa University Economic Review 80

» ’ n=20/
98

/ //ﬂ=10 lnis/
95 ‘ 7
. [/

80

. =

60
50
40

ol LA

2

I\
)

Cumulative frequency %

~
N
N

1

o<<
~
\S

\JQ\
[
o —

p—t
—_—
-

0 1.0 2.0 3.0 4.0

Parameter-free statistic, V = (B/8)*

Fig.8.4 Empirical distribution of the MLE of the Weibull scale parameter 8 for
complete samples of size z = 2, 3, 4,5, 10 and 20 when Weibull shape is assumed
to be unknown.

defined as
W = (Bl§)* (8.13)
The consideration only of the case of a censored sample as in Eq. (7. 22)
suffices the discussion since it can easily be extended to the case-of uncen-
sored complete samples, by setting £ = ». § with uncensored data is given
by Eq. (7. 23). When we introduce the variate Y;, obtained by transforming
fatigue life 7; by Eq. (8. 1), W defined by Eq. (8. 13) can be transformed with



81

Cumulative frequency %

Some Aspects of Statistical Inference of Weibull Parameters with

Wide Applicability in Reliability-Based Design

99
98
/-——
* / ﬁ =
90 // ——
/ /’ [
) L
v/
60 AL
5 L4
40 //'/
w1
[/
20 / 77
10 ‘I II
/ /l ——- — Uncensored (zn=3)
5 / 7 == = = Uncensored (#=5)
/ Censored (3 of 5)
244
L |
0 1.0 2.0 3.0 4.0

Parameter-free statistic, V= (ﬁ/ﬁ)e

81—

Fig.8.5 Comparison of the empirical distribution of the Weibull scale parameter g
between complete and censored one

the aid of Eq. (7. 22) as follows:
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k
=L {5 (i) v (8.14)
When the complete outcomes T3 = £, i =1, 2, ..., »n of size » of fatigue

life T which follows Weibull distribution are given, the corresponding Y7’
sof size n, Vi=uy;, i=1, 2, ..., n, follow the exponential distribution
with mean = 1 respectively, and are parameter-free from « and 8. For
this reason, W given in Eq. (8. 13) also becomes a parameter-free statistic,
and besides the following variate

Xe=n—i+1)(Yi=Yi) (=12, ..., ») (8.15)
also follows the exponential distribution with mean =1, Therefore, from
Eq. (8.14), %W is given as the sum of the exponential variate of size » with
mean = 1. By the way, the probability density of X; is given as

fxlxs) = e ™ (8.16)
On the other hand, the density function of the random variable G{G: =
2X,) is

folg) = Fulx) | = e (3.17)
and the density function of y? with ¢ degrees of freedom is

fH = Wl%g/gy(xz)m“ exp (—%) (8.18)
Settig ¢ = 2 in Eq. (8. 18) reduces to Eq. (8. 17), which means that G follows

x* distribution with 2 degrees of freedom. Therefore, from the re-

producibility of y? distribution,
20W = 22X, = 3 Gi

will follow x? distribution with 2% degrees of freedom, and hence the

density function of W is given as follows:

fw(w) = —2%;; (2nw)* " exp (—nw)
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n

= s exp (=) (8.19)

Fig. 8. 6 represents the theoretical distribution of the statistic W given
by Eq. (8. 13) as a parameter of ». In this figure, the distribution function
is shown in place of the density function. Compared with Fig. 8.4 which
represents the distribution of the MLE ,72 when ¢ is assumed to be unknown,

the distribution of B shows less scatter around the true value @, and,
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therefore, an estimate of B has considerably high reliability even when
estimated based upon only one sample, that is, » = 1. Similar to the
distributions of U and V, an estimate 8 approaches the true value 8 with
increasing sample size. It should be emphasized that when the Weibull
shape @ is known, the MLE § of the scale parameter 8 has less scatter in

comparison to the corresponding MLE Z;’ for unknown shape.
9 Concluding Remarks

The Weibull probability model has been frequently used to express
fatigue life distribution of a structural component. It plays an important
role in the reliability-based design of machines and structures.

In the present paper, the parameter estimation of a two-parameter
Weibull distribution has been discussed in detail, and the maximum likeli-
hood estimators for the Weibull shape and scale parameters in case of both
being unknown as well as that for Weibull scale in case of known shape are
theoretically derived as the simultaneous solutions of a system of likelihood
equations.

Unfortunately, however, the solutions cannot be obained in a closed
form. In this respect, parameter-free statistics for the maximum likeli-
hood estimators have been introduced and their empirical distributions have
been established with the aid of Monte Carlo simulation techniques to
clarify their statistical properties in connection with the true parameter
values, the sample size and the censoring number. The results obtained in
the present study are undoubtedly believed to be of crucial importance in

the reliability-based design.
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