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1 Introduction 

Practical machines and structures are usually subjected to randomly 

varying external loads， and the strength of identical components will never 

be the same， even under the same loading conditions. In other words， both 

the load and the strength are of an indeterministic nature [lJ~[5l In 

addition， a variety of uncertainty factors will inevitably arise in the proces-

ses of their construction and maintenance.. Engineering uncertainties have 

in general， as is well known， the following wide range of meanings [6J : 

(1) randomness -uncertainty due to inherently random nature. 

(2) fuzziness -uncertainty caused by that the object is too complicated to 

understand， or by insuf五cientknowledge 
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(3) ambiguity -uncertainty contained in natural language .. 

(4) vagueness -uncertainty included in， for instance， image processing 

(5) imprecision -uncertainty due to lack of information. 

(6) generality -uncertainty due to multi-meanings or multi-interpreta-

tions for the ob怜ct

Among these uncertainties， the most essential and important is unques-

tionably the randomness which is the very objective the theory of probabil-

ity and statistics deals with， and the present study also focusses upon 

In order to perform rational design and maintenance， these uncer-

tainties have to be properly evaluated on a probabilistic basis吋 Thisis why 

reliability should be emphasized in the rational design [7J~[12J. The late 

Professor A Mゎ Freudenthalfirst introduced his wel1-known concept of 

failure probability to handle this problem in 1946 Following his creative 

research work， a number of studies have been carried out in the field where 

safety and reliability both play an important role.. N eedless to say， safety 

and reliability play a crucial role in a variety of engineering fields such as 

material science， mechanical engineering， civil and architectural engineer-

ing， naval architecture， aeronautical and space engineering and nuclear 

engineering， to name but a few.. The notion of structural safety and 

reliability has become of crucial importance， which is refiected by increas-

ing societal concern to a considerable extent“ Recently， a number of 

research works in the field of structural safety and reliability have been 

published [13J~[95J 

In 1969， the first International Conference on Structural Safety and 

Reliability (abbreviated by ICOSSAR'69)， was formed and held in the USA 

under the chairmanship of the late Professor A. M.. Freudenthal of George 

Washington University (formerly he was at Columbia University)，加nco-

operation with Prof白es岱soωrM.. Shinozuk王aoぱfColumbia Un凶1吋ive臼r討ty(at p戸resen此1此t 

OLIVE 香川大学学術情報リポジトリ



33 
Some Aspects of Statistical Inference of Weibull Parameters with 

Wide Applicability in Reliability-Based Design -33-

he is at Princeton University)， Professor A.. H-S.. Ang of University of Il-

linois (he is now at University of Califomia， Irvine)， and the late Professor 

Emeritus L Konishi at Kyoto University， ]apan. The ICOSSAR confer-

ence has grown up to draw much attention from those researchers and 

practicing professionals studying and working in the field of structural 

reliability and probabilistic mechanics“ The successive second interna-

tional conference (ICOSSAR '77) was held in Germany in 1977， and after 

that time， in the light of promting the societal concem， the conference has 

been decided to be held every four years in di妊erentpart of the world.. The 

third conference (ICOSSAR '81) was held in N orway in 1981μIn the fourth 

conference (ICOSSAR '85) held in ]apan in 1985， where one of the authors 

served as Chairman of Conference Organizing Committee， there were 

nearly 500 participants with presentation of more than 200 papers in total 

Furthermore， the first Japan Conference on Structural Safety and Reliabil・

ity (JCOSSAR '87) was held in December 1987 under the auspices of the 

J apan Science Council 

Last summer the fifth conference (ICOSSAR '89) was held in San 

Francisco， Califomia on 7-11 August 1989， where more than 500 persons 

participated from more than 20 countries and nearly 400 papers on struc-

tural safety and reliability were presented with much eager discussions. 

This is really one of the evidences that the importance and significance of 

structural safety and reliability come to be fully recognized all over the 

world“ At the closing session of ICOSSAR '89， the announcement was 

made that the next conference (ICOSSAR '93) would be held in Innsbruck， 

Austria in 1993 

As stated earlier， most of machines and structures will fail due to the 

repetition of varying loads， which is called fatigue.. Hence， in the practi-

cal design， the correct prediction of the fatigue strength or fatigue life of 
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structural components is indispem;able under actual service conditions [lJ， 

[2J.. However， the fatigue strength or fatigue life of identical components 

will never be the same even under the same loading conditions.. That is， it 

has an inherent scatter“ Hence， it becomes of crucial importance to clarify 

the type of distribution it will follow. Assumed that such failure physics 

[96J as the mechanism of fatigue failure is made clear， the distribution of 

the fatigue strength or fatigue life could be theoretically derived At 

present， however， we cannot but take the method to predict， at first， empir-

ically the failure probability model to be fitted reasonably well to the 

obtained data and then to estimate the statistical parameters of the model 

to be used in the reliability-based design or analysis. 

As is well known in this respect， the fatigue life is often successfully 

fitted to a Weibull distribution [97J， which is characterized by two (the 

shape and scale parameters) or three parameters (the shape， scale and 

location parameter訓 Thelocation parameter is often assumed zero in a 

sense that failure might occur on the moment of the beginning of service 

This is the case of a two-parameter Weibull distribution on which the 

present study mainly focusses [98J， [99J. 

Assuming that the fatigue strength ar life follows a two-parameter 

Weibull distribution， the most important work is how to estimate their 

distribution parameters.. In this connection， the present study concerns 

with so-called statistical inference in detail， that is， how to estimate statis-

tical parameters (the shape and scale parameters) of the distribution from 

availal:ile data.. The reliability analysis， for instance， to deter'ri1ine the 

design safe life based upon the given re1iability level is performed with the 

aid of estimated values of parameters. Hence， the statistical inference 

procedure discussed in the present paper becomes of crucial importance in 

the reliabslity-based design of machines and structures.. 
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2 Order Statistics and N otion of TTFF 

In general， more information will be extracted， from a set of data 

randomly sampled， by sorting them systematically， for instance， in order 

of magnitude.. In the analysis of the distribution of life or time to failure， 

TTFF (time to first failure) or TTLF (time to last failure) is more reason-

able than the central tendancy of randomly extracted data伽 Inthis respect， 

this section provides in detail the basic notion of the order statistics.. 

Let T(1)， T(2)， …， and T(n) be the random sample of size n taken 

from the population of the failure life T( Tミ 0)having a continuous 

probability density function f(t).. By arranging these sample random vari-

ables in ascending order of magnitude， we get 

T1三;;: T2 ~ζ Tn 

where T;(j = 1， 2，引...， n) is called the j-th order statistic of size弘 Asis 

easily known， T; thus defined is also considered to be a random variable. 
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Fig. 2. 1 Explanatory figure tofind out the probability of the occurrence of the j-th 
order sta tistic. 

OLIVE 香川大学学術情報リポジトリ



-36 Kagawa UniVersi(y Economic Revi伽ew 36 

At this point， let us think of the probability that T; takes on a value 

between t; andん+dt; As shown in Fig.. 2.. 1， this is given as the probability 

of the ioint event of EI> Ez and E3， as follows : 

ん;n(ん)dt;= P[ん:::;;T; :::;; t;+ dt;] 

=/一一、 n! 、ァ{P[EI]}i-1{P[Ez]P{P[E3W-; (2 1) 

where EI is the event that (j -1) sample elements， TI> Tz， .， T;-I， lie in 

the time interval (0，ん)， Ez the event that T; exists in the interval (t;， t; 

+dt;)， and E3 the event that (n-j) sample elements， T;+l， THZ， ...， Tn， 

lie in the interval (t; + dt;，∞) 

Since the probability of the occunence of each event E1， Ez or E3 is 

grven as 

P[E11=fV(M 

P[Ez]=fMtjf(開 =F(計め)-F(ん)~ f(t;)dt; 

P[&]=Lj(M=1-F(ty十品)

主 1-F(t;)-f(t;)dt; (2 2) 

we get the following relationship by substituting Eq.. (2 2) into Eq.. (2 1) : 

j!;n(t;)dt; = 7J 1 111 ・ぃ {F( t;) }H{f( t;)dt;}{l-F( t;) -f(t;)dt;}n-i 
η-J)! 

=，. ー竺!、dF(ゐ)}川{l-F(んW-;/(t;)dt;

十(higherorder terms ofdt; than the second order) (2..3) 

Taking the limitation as dt;→o after dividing the both sides of Eq. (2伽 3)by 

dt;， we get 

Un(ti) = 7J 司、21A J'iT{F(t;)}ト 1 (2 4) 

which is nothing but the density function of T;.. The cumulative distribu-

tion function F;;n(t;) of Ti can be computed as 
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叫 ん)=fvyyz(S)d (2 5) 

T! Tz 

(i -1) samples 

ん

ー寸「
7i 'n+l 

One (j -i -1) samples 
sample 

12iz+IZ 
Time to faih問 t

One (n-j) samples 
sample 

Fig. 2. 2 Schematic explanation to find out the joint density function of the i-th and 
the j -th order sta tistics 

In the next step， let us consider the joint probability density function 

l(ti，ん)(where0ζ ti ::;;， t;) of the i-th and the f-th order statistics， Ti and 

T; (where 1 三二 i ::;;， j 孟 n).. In reference to Fig.. 2.. 2， this joint density func-

tion can be obtained， by use of the notion of a polynominal distribution， as 

f(ti， t;)dtidt; = P[ti ::;;， Tiζ ti+dti， ん三二 T;三三 t;十dt;]

n! 
一 (i-1)! 1 !(j-i-1)! l!(n-j) 

x Hi-1PiPd-i-1P1Psn-; 

where 

H = the probability that (i -1) elements lie in (0， ti) 

=ft/(S)ds=F(tz) 

九=the probability that Ti lies in the interval (ti， ti + dti) 

= F(ム+dt，) -F( ti)さ l(ti)dti

九=the probability that ci -i -1) elements lie in (ti + dti，ん)

= F(ん)-F(ti十dti);;: F(t;) -F(ti)一f(ti)dti

九=the probability that T; lies in (ん，ん+dt;)

(2 6) 
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= F(t;+dt;)-F(t;);: /(t;)dtj 

P5 = the probability that (n-j) elements lie in (tj+dt;，∞) 

= l-F(t;十dtj)さ 1-F(t;)一/(ゐ)dtj (2 7) 

Substituting Eq (2 7) into Eq.. (2 6)， deviding the bo出 sidesby dtidt;， and 

final1y taking the limitation as dti→o and dtj→0， we get the following 

joint density : 

/(ti，ん)=1: 1¥.1: n! 
(i -1) !(j -i -l)!(n-j)! 

x {F(ti)}i-1{F(ん)-F(ti)li-i-1

x{1-F(んwγ(t;)/(tj) (2. 8) 

where 0 三二 ti 三二 t; < ∞1 

In what follows， some of important notions associated with order 

statistics are discussed briefty which are of considerable importance in the 

field of reliability engineering 

2.1 Distributions of TTFF， TTSF and TTLF 

The probability density function !I;n(t1) and the cumulative distribution 

function F1;n(t1) of the time to first failure (the minimum life) T1， that is， 

TTFF， can be obtained by replacing f by 1(/ = 1) in Eqs (2 4) and (2 5) as 

!I;n(t1) = n{l-F(t1)}ト 1/(t1)) 
(2.9) 

F1;n(t1) = 1-{1-F(t1W 

Similarly， the density and the cumulative distribution functions of both the 

second minimum life TTSF (the time to second fai!ure) and the maximum 

life TTLF (the time to last failure) can be given， by putting f = 2 and j = 

n， respectively， as 

ん;n(ら)= n(n-l)F(ら){1-F(らwーサ(t2)

九;n(t2)= 1-{1-F(ら)}n_nF(t2){1-F(t2W-1) 

ん;n(tn)= n{F(tn)}ト 1f(tn))

Fn;n(ら)= {F(んw

(2 10) 

(2 11) 
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As stated earlier， since the following relationship holds between the cumu-

lative distribution function F(t) and the reliability function R(t) : 

R(t) = 1-F(t) (2. 12) 

the reliability function for each case mentioned above takes the following 

form: 

Reliability function of TTFF : 

R1;n(tl) = {R(t1W 

Reliability function of TTSF : 

(2. 13) 

品川(t2)=耐(t2W-l{1-(千)R(t2)} (2 14) 

Reliability function of TTLF : 

Rn;n(tn) = 1一{l-R(tnW (2 15) 

It should be mentioned at this point that the abovementioned quantities， 

say TTFF， need to be t1'eated as random variables. Therefore， the obser-

vation both of the mean as the central tendancy of the variate， and of the 

variance as a measure of scatter becomes of much interest. For example， 

assuming that the distribution F(t) of the population follows a two-parame-

ter Weibull dist1'ibution [100J with the shape pa1'ameterαand scale 

paramete1' βwhich will be discussed in detail in the following sections， the 

means and variances of TTFF and TTSF among n elements can be 

calculated as follows : 

MTTFF (mean time to first failure) : 

( 1 Vla...，(， ， 1¥(  1 Vla 
E[れ]= s( ~^) r( 1 +一)= ( ~^) x (MTTF 01' MTBF) (2" 16) 
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(2" 17) 

MTTSF (mean time to second failure) : 

E[T2] =い(古)Ila-(n-1)(士ra}sr(1寸)
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= {n(古 rα一(日)(す)lla)×(MTTForMT町)

Variance of TTSF : 

Var[ T2] = s2[ { n(合 rαー(日)(士ra}r(l+を)

-(n(tJ-(日)(七ra}r

40 

(2.. 18) 

In this way， such statistical quantities as expected value and variance of， 

say TTFF， can be computed based upon both the distribution parameter of 

the population and the sample size MTTFF， which is the central tendan. 

cy of TTFF， is obtained， as shown in Eq (2.. 16)， by multiplying the central 

tendancy of the population (that is， MTTF or MTBF) by the factor (ljn)l/a， 

where n represents the sample size and αthe shape parameter.. However， 

since the true value of each distribution parametr of the population is 

usual1y unknown， its estimate from a sample of size n has to be utilized， 

which might cause an estimation error in the practical application.. 

2. 2 Distribution of Range 

The range W is defined as the difference between the maximum value 

Tn and the minimum T1 among a random sample of size n That is， 

W = Tn-T1 (2 20) 

Knowing the distribution of the range W is equal to get the distribution of 

the maximum width of scatters of all the samples drawn， and， consequent. 

ly， is of much significance The distribution of W can be easily obtained 

with the aid of the joint probability density of T1 and T，払 Byputting i = 

1 and j = n in Eq.. (2. 8)， the joint probability density is given as 

/(tl，ら)-n!{F(tl)}0{F((tn)-F(ti)}n-2{l-F(tn)}of(tl)Y(tn)
- 0!(n-2)!0! 

= n(n-l){FCtn)-F(t1W-2/(tl)/οn) (2 21) 

By applying variable transformation from (Tl， Tn) to (T1， W) such that 

OLIVE 香川大学学術情報リポジトリ



41 
Some Aspects of Statistical Inference of W~ibuJl_ ~arameters with 

Wide Applicability in ReJiability-Based Design 

T1 = T1; W = Tn - 'n 

41-

with the .Jacobian [101] of the transform in the following form: 

(2 22) 

the joint probability density f(t1，ω) of T1 and W can be given as follows : 

f(tl， w) =仇ん)時効|
= n(n-1){F(tl +ω) -F( t1) }n-2f( tl)f (t1十ω (2..23)

Therefore， the probability density function of the range W， fw( w)， is 

obtained as the marginal distribution [102J by integrating Eq. (2..23) over 

the whole domain with respect to t1 It should be noted that tl takes on a 

positive value since T1 is the time to failure.. 

山 )= f~仇 ω)dtl

= n(nーザ{F(tl+ω)-F(tl)}円 (Ml(tl十ω)dtl (2 24) 

Further application can be exemplified easily. For example， the range 

execpt both extremal values T1 and Tn in a sample of size n may be 

determined in a similar way However， the detailed discussion is omitted 

here for lack of space 

2. 3 Distribution of Frequency 

Let F( T;) be the probability that the random variable T of the popula-

tion becomes smaller than the j-th order statistic T; such that 

F(T;) = P[T 三三 T;] == F; 

The quantity F; is also considered as a random variable， and is called the 

distribution of the cumulative frequency The probability density function 

of F; can be derived in the following form First， apply the variable 

transformation T;→丸 suchthat 
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(2 25) Fi = F(ん)=fV(仰と

Then the density function of Fi can be given as 

ん(民)=仏(tF)1251

=η!{F(V  

n!fFj-l(l-Fi)n-i 
(j-1)!(n-j)! 

百leexpected value of Fi， denoted by E[Jろ]， can be 

(2， 26) 

where 0:::;:: F;:三l

computed with the aid of Eq， (2， 26) as 

E[Fi] = 11

FdFJ(Fi)d民

n!f  t Fj(l-Fi)n-idFi 
(j-1)!(n-j)! ，J，。

n! ，B(j+1， n-j+1) 
(j -1)! (n-j) 

τ
lム
一+一!

 

二
仙
川
町

，
η一十

r{np 
-一r

+一F
一
• 

1
 

一

-q''

1
・一
n

n一川い
一
司
l
ム

一・
q
J

(2 27) 

where r(・)is a Gamma function， and B(・，・)is a Beta function 

As shown in Eq， (2 27)， the probability that the random variable T of 

=一_J_
n+1 

the population is smaller than the j-th order statistic Ti of size n， namely， 

the expected value of the distribution of the cumulative frequency at Ti 

This is the reason to take the plotting becomes jj (n + 1) in place of .i/1ι 
position of the j-th order statisticんasF(ん)= .i/(n+1) in the mean rank 

In general， the expected value of {F;Y is given as 

(2，28) 

[103J 

E[{FirJ = 

method 
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General1y speaking， strength of the material can be considered as the 

resistance against external stresses， Let S be the external stress and R the 

internal resistance of the material against it. Then， the failure may be 

defined as 

{Rζ S} (3 1) 

This definition of failure is cal1ed the stress-strength modeL In the case 

that R or S， or both are considered as random variables， the event that Eq 

(3， 1) holds may become random and the probability of failure，ル， is given 

as fol1ows: 

ρf = P[R 三三 S] (3， 2) 

Both R and S are general1y random variables， and the statistical properties 

of S can be obtained based upon observations" On the other hand， those of 

R can be obtained through replication tests“ In both cases， obtained data 

need to be usual1y processed on a statistical basis， and hence mathematical 

statistics plays an important role in this respectリ Indetermining the 

distribution of S or R， there might be some cases where the probability 

theory itself plays a crucial role as can be seen in applying a normal 

distribution with the aid of the central limit theorem“ AIso there might be 

some other cases to introduce a suitable type of probability model to 

explain failure phenomena of concern through the empirical observations， 

In the latter cases， statistical inference plays an indispensable role since the 

validity of the model needs to be evaluated based upon the comparison 

between the model distribution and the empirical data obtained by observa-

tion or experiment. Parameters of the distribution， either derived from 

the theory of probability itself or obtained from the assumed model， must 

be estimated with the aid of statistical treatment of the observed data" In 
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what follows， some typical failure models and associated distributions are 

briefly discussed on the basis of the statistical approach 

3. 1 Pattern of Failure Rate Function 

In the reliability analysis of an item， the failure rate function h(t) plays 

a very important role， for this is directly connected to the probability model 

of failure. The shape of h(t) as a function of time can be categorized into 

three basic kinds; DFR(decreasing failure rate)， CFR(constant failure rate) 

and IFR(increasing failure rate) types described as follows : 

(a) DFR type The function h(t) assumes a decreasing value with a 

lapse of time. This means that， in early time of service， defective 

parts will fail because of high rate of failure.. Therefore， preventive 

maintenance is of no use since failure rate decreases with increasing 

time. Of importance is the procedure to remove， before the service， 

parts of high failure rate with the aid of those techniques such as 

screening， aging for stabilization and debugging operations and conse-

quently to use remaining parts of good quality. The temporal variabil-

ity both of the failure density function f(t) and of the reliability 

function R(t) is schematically represented in Fig.. 3..1. 

(b) CFR type This is typical in chance failure period for items com-

posed of many parts， where h(t) takes on a constant value and failure 

is caused completely by chance 

(c) IFR type Failures will occur intensively after a certain amount of 

service time due to degradation caused by wear and/or fatigue 

Preventive maintenance immediately before failure is undoubtedly 

effective to protect items from failure in advance. 

In general， the failure rate function of an item in the non-repair system 

composed of a large number of elements is represented， as shown in Fig 3.. 

2， by the shape similar to the cross-section of a western bathtuh. That is， 
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日g..3.. 1 Patterns of the failure rate function h(t).. 

-45 

OLIVE 香川大学学術情報リポジトリ



-46ー Kagawa UniversiかEconomicReview 46 

4
U
H同
』
山
』
ロ
ロ
国
民

Chance failure 
(CFR) 

Wear-out 
failure 
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Fig_ 3_ 2 Typical pattem of fai1u!'e rate (bathtub curve) for an item without mainte-

nance 

in the early stage of service， there exists early failure period with DFR type 

of failure rate function， which is caused by defects in the production process 

and misuse for service environment Early failure period is fol1owed by 

chance failure periud with CFR type of constat h(t)， which comes from the 

accumulation of various causes of failures of structural components. The 

final stage is wear-out failure period where failure rate rapidly increases 

due to cumulative damage by wear and/or fatigue. It is a standard prac-

tice to choose the value of failure rate in chance failure period lower than 

the prescribed. The longevity or useful life is the length of period with 

actual failure rate of an item being kept lower than the prescribed“ Forthe 

item in the repair system， the useful life can be extended by applying 

preventive and corrective maintenance so as to reduce the value of h(t) less 

than the given 

3. 2 Chance Failure Model and Exponential Distribution 

The first interesting failure model is the chance failure modeL Sup-
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pose that R assumes a constant value.. Let Fs(s) be the distribution func-

tion of the random variable S， and the probability that failure does not 

occur within unit time， that is， P[S < R]， can be expressed as 

P[S < R] = P[S ζ R] = Fs(R) (3. 3) 

Conversely， the probability of failure can be given as 

P[S注 R]= 1-Fs(R) = h (3“ 4) 

At this point， assume that the above failure probability is kept constant 

during the entire service time JιThen the probability that failure never 

occurs throughout the service time is represented as 

Re(n) = (P[Sく R])n= {Fs(RW = (1-h)n 

When n becomes large enough， the above equation reduces to 

Re(n) = (1-h)n = (1-nh/n)nζexp(一nh)

n may be replaced by time t， and therefore， 

(3伽 5)

(3. 6) 

Re(t) 3: exp( -ht) (3“7) 

h is usually called the failure rate which represents the probability that 

fracture or failure occurs within unit time.. This model is also applicable to 

the case of random variable R when the failure rate h in unit time never 

changes at all over the entire service time.. Re(t) is called the reliability 

function for service time t in chance failure or an exponential distribution， 

which is the probability that fracture Or failure never occurs during this 

period. 

3. 3 Proportional Effect Model and Log-N ormal Distribution 

Of next interest is the proportional e妊ectmodel from which the log 

-normal distribution can be derived N ow consider a physical process 

wheain failure is due to fatigue cracks [104].. 

Let X1 < X2 <… < Xn be a sequence of random variables that denote 

the size of a fatigue crack at successive stages of its growth A propor-

tional effect model can be assumed for the growth of these cracks This 
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implies that the crack growth increment at stage i， Xi一Xi-h is randomly 

proportional to the size of the crack at stage i -1， X-h and that the 

material fails when the crack size reaches Xn 

Let X， -Xi-1 = CiXi-1， i = 1， 2， .， n， where Ci， the constant of 

proportionality， is a random variable.. The initial size of the crack， Xo， 

can be interpreted as the size of minute flaws， voids and the like in the 

material. E九 areassumed to be independently distributed random vari-

ables that need not have a common distribution for al1 i's“ 

Xi - Xi-1 _ ~ L1Xi-1 ~ Ci = ~ L~i 'V一一一~ k.J~一-
i=l i=l Ai-l i=l Ai-l 

Thus， 

(3 8) 

If the increment， X -X-l = L1X-l， is small at each step， and in the limit， 

as L1Xi-1→0， and n becomes large， it follows that 

会1£=f会dX= ln Xn-ln Xo，制 is

n 

ln Xn = ~ Ci十ln)G。 (3引 9)

Since c/s， by assumption， are independently distributed random variables， 

by the centrallimit theorem， it follows that they converge in distribution to 

a normal distribution.. Thus ln Xn， the life length of the material， for large 

n， is asymptotically normally distributed with mean μand standard devia-

tionσ， and hence Xn has a log-normal distribution 

The statistical properties of a log-normal distribution are given as 

follows: 

Mean: 

μx = exp(μ+σ2/2) (3“10) 

Variance: 

σ~. = exp(2μ+σ2){exp(σ2)-1} (3. 11) 

3.4 Weakest Link Model and Weibull Distribution 

The third interesting model is the weakest link model Even in a 
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simple tensile test of round-bar specimen， tensile strength varys from 

sample to sample. The weakest part of a round-bar specimen is consid-

ered to fail since strength may have spatial variation.. Hence， the strength 

distribution may be understood as that of the minimum value.. 

At this point， assume that the material is composed of n independent 

elements， and let F(x) be the identical distribution of strength X of each 

element In this case， the minimum value distribution Gn(X) among n 

elements， each of which has the same distribution function F(x)， can be 

represented as follows : 

Gn(X) = 1一{1-F(xW (3 12) 

Supposing that the minimum value of strength， y，exists， then F(x) can be 

defined over the domain xミ y，with F(y) = O. Further， with the assump-

tion such that 

f(y) = F'(y) = 0， f(i)(y) = 0， {i = 1， 2， α-2} (3. 13) 

where αis a positive constant， and by utilizing Taylor series expansion of 

F(.ωx刈Z
F附附(ωωZυ)=勾ん何伊山川門叫-→4吋巧lり吋勺川)刊)(y什yμ)+1耐子μμf戸pa何α山 (x一yけ州)片但3叫

the following approximation can be made for I pa){ y+ 8(x-γ)}I < M: 

I n.ln{l-F(x)}+za 1=卜n.F(エ)+n与it-Fl)(け|

=In.i計何){y+8(x-y)}1

ζ4dH丙~J (315) 

where 

α
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1
 

1
1
1
1
1
1
J
 

j
 
I
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α
j
 

n
 

「
1
1
1
1』

βμ・ (3.. 16) 

(3.. 17) x-y=βz 
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In the above， the following approximation is also introduced in the vicinity 

of x = y: 

ln{l-F(x)}三 -F(x)

Since the right-hand side of the inequality (3 15) approaches zero when 

n becomes large， it follows that ln{l-F(ェwさ -za.. Consequently， 

、αl

Gn(X)→G(.x) = 1一切(ーか 1一切l-(Xs
Y rJ (318) 

The above distribution is called a three-parameter Weibull distribution 

[100J which is frequently used in the analysis of strength or life distribution 

of the materiaL The parameters α，βand Y are called the shape， scale and 

location parameter， respectively 

For the sake of ease of treatment as well as of the fact that fracture 

might occur on the moment of the beginning of service， the location param-

eter y may be regarded as zero in what follows [105J. However， it should 

be noted that this treatment may not cause any lack of generality of 

discussion In this case， the model is called a two-parameter Weibull 

distribution， whose statistical properties are given as follows : 

Mean: (MTTF or MTBF) 

μx = sr(l+lj，α) (3れ 19)

Variance: 

σ主=s2[r(1+2/，α)-r2(1 + 1/，α) ] (3 20) 

4 Wide Applicability of Weibull Distribution for Fatigue Life Scatters 

4. 1 Superiority of Weibull Distribution 

As an interesting example of application of aforementioned stochastic 

models to the var泊bilityanalysis of fatigue life T， a brief comparison is 

made between the Weibull distribution derived from the weakest link model 

and the log-normal distribution from the proportinal effect model with an 
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emphasis on how these distributions behave in such a region of smaller 

failure probability as is usually the case in the practical design 

Fig.. 4.. l(a) and (b) represent the di任erencebetween the shapes of 

cumulative distributions plotted on a log-normal probability paper in the 

case that mean life of each distribution is kept the same as μ1 = 106 and 

coefficient of variation れ =0“05and 0..5.. As can be clearly seen， the 

Weibull distribution lies over the log-normal distribution in the region of 

smaller failure probability This fact implies that the Weibull distribution 

gives a shorter percent point of life than the log-normal distribution. 

Further， Fig 4“2(a) and (b) represent fatigue life percent points of both 

distributions as a function of fairly small failure probability. In every case， 

the Weibull distribution assumes a smaller value than that of the log-

normal distribution， which means that the former lies in safer side than 

the latter These results must be taken into account in the reliability-

based fatigue-proof design 

4. 2 Weibull Distribution as Fatigue Life Distribution Model 

As stated in the previous section， the well-known Weibull distribution 

with wide applicability is characterized by three parameters， that is， the 

shape parameter α， the scale parameter s and the location parameter '(.. 

This is named after W. Weibull in Sweden who proposed this distribution 

[100J引 Inthe Weibull distribution， the density function f(t)， the distribu-

tion function (sometimes called as unreliability function) F(t)， the reliabil-

ity function R(t) and the failure rate function h(t) are given respectively as 

follows: 

l(t) =会(宇)ト1exp {_(うザ)

F(t) = 1-exp {-(うザ)

(4.1) 

(4..2) 
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R(t) = 1-F(t) =仰{-(うザ)

h(t) = f(t)周(t)=合(う工)ト1

(4 3) 

(4 4) 

in each equation， t assumes a value larger than or equal toγ t ミ 7

54 

As can be seen from the shape of the failure rate function h(t)， three 

di任erentpatterns IFR， CFR and DFR of h(t) can be produced by choosing 

a value of αsuch that α> 1，α= 1 ~nd 0く α<1， respectively This is 

why a Weibull distribution has wide applicability In the above equations， 

βis sometimes called the characteristic life， and the scale parameter is 

defined byあ=βαThephysical meaning of the location parameter '1， 

whose interpretation shoud be of much consideration， may be regarded as 

the duration with no damage in degradation failure or the time to crack 

initiation in faitgue 

For the sake of ease of handling as well as of the fact that fracture 

might occur on the moment of the beginning of service， '1 can be regarded 

as zero in what follows [105J However， this treatment may not cause any 

lack of generality of discussion“-In this case， Eqs. (4 1)一(44) reduce to the 

following forms : 

l(t)=会(ず1exp {_(古川

F(t) = 1一切{-(ず)

R(t)=仰{-(ず)
h(t) =す(す)αー1

where t assumes a value larger than or equal to zero; t注 O叶

(4ゎ 1)'

(4 2)' 

(4 3)' 

(4れ 4)'

The shape of Weibull distribution varies as the shape parameterα 

changes. Fig 4.. 3 indicates the variation of the density function in case of 
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y = 0， from which we can see that the function corresponds to an 

exponential distribution in case of α= 1， to a Rayleigh distribution in case 

ofα= 2， and nearly to a normal distribution in case of α= 3..2. The shape 

of the distribution comes to stand sharply with increasing value of shape 

parameterαThe statistical properties of a two-parameter Weibull distri. 

bution defined by Eqs.. (4“ 1)' -(4 4)' are given as follows: 

Mean (MTTF or MTBF) : 

E[T] = sr(l+士) (4ゎ 5)

Variance: 

3..0 

(

U

円
)
¥
ロ
c
z
uロロ』
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ロ
担
同
比
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Fig. 4..3 Effect of shape parameter a on Weibull distribution， where βrepresents a 
scale parameter 
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(4リ 6)Var[T] = s2[r(1+を)-rz( 1寸)J
Median: 

(4“7) tn削 !an= s(In 2)川

where T represents a random variable of the time to failure or fracture， 

and r(・)means a r function.. 
Weakest Link Model and Extreme Value Distribution 4.3 

In this section， both the weakest link model and the extreme value 

It is often the case in reliability problems distribution are briefly discussed. 

that the Weibull distribution can predict the variabi1ity in the model of 

This comes partly from the fact that the distribution failure or fracture“ 

belongs to one type of extreme value distributions. 

2

・'
a
-
-
-
-
-
-
-
-
-
-
-

(b) 

Series model 

Fig_ 4. 4 Schematic representation of the weakest link， or the chain model and the 
series model. 

(a) 

Chain model 

With consideration of the chain model composed of mutually indepen-

dent n links， each having the same strength or life distribution， as shown in 

Let Rμ) Fig 4..4， let us think of the strength or life of this chain model 

be the reliability of the i-th link at time t. Then the reliabilioy R(t) of the 

chain is given as follows : 
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(4 8) 

In case that the reliabi1ity of each link is the same， that is， Rμ) = R(t)， 

Eq.， (4 8) reduces to the following 

R(t) = {R(tW (4 9) 

Such structural model as this is called the weakest link model or the chain 

model， and is also accordant with the series model in Fig. 4.， 4.， 

This concept can be extended to the determination either of the 

weakest strength or life distribution among n elements following the same 

distribution， or of the maximum stress distribution among n independent 

applications of the stress having a certain distribution， In the limit where 

n becomes infinity， the extreme value distribution is obtained as an 

asymptotic distribution E.. J Gumbel [106] categorized this asymptotic 

distribution into three types; exponential type， Cauthy type and truncated 

type of distribution， The Weibull distribution belongs to the third type.， 

The importance of the concept of the extreme value distribution is 

mainly based on the following three facts : 

(a) The 1ife of an item can be deemd to be determined by the maximum 

size of the defects involved 

(b) The maximum of stress subjected to an item， for example， the 

maximum speed of wind will prescribe the life of the item， 

(c) The annual maximum level of water in a river， the annual max 

ーimumquantity of rainfall or the maximum magnitude 'of earthquake 

can be obtained with the aid of this concept， 

5 N otion of Statistical Inference 

Prior to the consideration of the statistical inference of parameter 

estimation， we briefl.y refer to the notion of the statistical inference [107]， 
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[108J. 

In general， it is hardly the case that the probability distribution of the 

object of concern is determined in advance. In some cases， although the 

shape of the distribution function could be predicted based on the past 

experience， the distribution parameters such as mean， standard deviation， 

shape or scale parameter should be inferred based on samples of compara-

tively small size.. The statistical inference is the procedure to be applied 

for this purpose 

As for the statistical inference， there are two categories: One is called 

the estimation to estimate unknown parameters which prescribe the 

population distribution.. The other is the test to test whether or not 

estimated parameters of the population distribution are pertinent or the 

shape of distribution is acceptable.. The present study mainly concerns 

with the former which is composed of the point estimation to determine the 

value of unknown parameter at a certain point of best feature， and interval 

estimation to determine the interval where the true value of unknown 

parameter exists with a certain prescribed confidence leveL 

5. 1 Point Estimation 

Even if we could assume the shape of the population distribution with 

a certain method， the distribution never comes to be fixed unless the values 

of parameters to characterize the distribution are determined It • is the 

point estimation that the value of parameter is estimated so as to have the 

best feature from a certain aspect“ In this sense， what is the best feature 

becomes of vital importance“ 

Let φ(T1， Tz， ー ，Tn) be an estimator of a certain parameter e 

composed of a random sample of size n， T1， T2，川 副 ，Tn Then， the 

estimator φis preferably expected to have the following features (1) to (4) : 

(1) Consistency 
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This means that the following equation is satisfied for any small 

positive value e， In other words，φconverges to 8 on a probabilistic basis， 

lim P[Iφ-θ|注 e]= 0 (5 1) 

The estimator φ(Tl， Tz， “" '" Tn) which has this nature is called a consis-

tent estimator， 

(2) Unbiasedness 

This means that the estimator φ(T1， T2" ，Tn) has no bias neither 

to upper side nor to lower side That is， 

E[φ(T1， T2，れ ，Tn)] = 8 (5“ 2) 

The estimator O( T1， T2，句， '" Tn) which has this nature is called an un-

biased estimator Here， E[φ]一θiscalled bias and the estimator φwhose 

bias is not zero is also called a biased estimator" 

(3) Minimum variance 

Even if the estimator satisfies the aforementioned unbiasedness in (2)， 

the probability needs to be small that the estimator lies largely apart from 

the true value To meet this requirement， the variance is desirable to be as 

small as possible、

N ow suppose that φ(Tl， T2， 引わ ， Tn) is the unbiased estimator of 8， 

then the variance is given as follows : 

Var[の]= E[{φ-E[φ])2] = E[φ2]一(E[φ])2

= E[φ2]_ 82 

where the value evidently changes according to the value of 8 

(5 3) 

Hence， if 

o* exists which satisfies the following relationship for an arbitrary un-

biased estimator φin every value ofθ， this is named as the uniformly 

minimum variance unbiased estimator or UMV unbiased estimator and is 

also quite desirable 

Var[φ]注 Var[φ*] (5， 4) 
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By the way， assumed that a sample of size 払 T1，T2， '" Tn， are generat-

ed independently from the population with probability density function f(t， 

θ)， the following Cramer-Rao inequality [109J is applicable to an arbitrary 

unbiased estimator φfor () From this point， such an estimator whose 

variance always agrees with the limit of the right-hand side of the above 

inequality (this property is called efficiency) may be regarded as the most 

desirable 

Var[φ]注 一{nE[すまlogf(Ti，めJr1

(i = 1， 2， "叶'" n) (5， 5) 

This is called an efficient estimator and is evidently a UMV unbiased 

estimator， However， in general， the UMV unbiased estimator， even if it 

exists， is not always an e伍cientestimator 

Well， in case thatφis a biased estimator， the estimation of its accu-

racy is performed by the mean square error represented by E[(φ-())2] in 

place of variance， In case of an unbiased estimator， it agrees with vari-

ance 

(4) Sufficiency 

In the estimation of parameter ()， it is a su伍cientestimator of () that 

all information obtained from sample data is concentrated on the estimator 

and any other estimator cannot give more information than it In other 

words， when a certain value of function φ= ct( T1， T2， """ Tn) can be 

computed and this value can be su伍cientfor estimation in place of all 

sample values， the function φis called a su侃cientestimatoL This can 

also be defined by the following， That is， it is a su伍cientestimator φ 

when the conditional probability of Tl， T2， ""'" Tn given φ=ゆ， that is， 

P[ Tl， Tz， ゎ リ ，Tn Iφ=φ]， is always free from the parameter () 

Undoubtedly， it is the most desirable for an estimator to have all of the 
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abovementioned foUT' features; consistency， unbiasedness， e伍ciencyand 

sufficiency However， it is often the case that some of these properties are 

not satisfied. 

5. 2 Interval Estimation 

Although the point estimation has various desirable properties， the 

reliabi1ity placed on the value may not be so high， since estimated values 

may vary from sample to sample. For the obtained point estimate can be 

deemed to be close to the true parameter， if we set an interval with 

appropriate margin on both sides of the estimate， then the probability that 

the true parameter exists in this interval could be considerably high This 

is the notion of the interval estimation which provides much higher reliabil-

ity than the point estimation 

The interval estimation means to determine eL and eu as a function of 

a sample， er( T1， Tz， ••• ..， Tn) and eu( T1， Tz， 川副 ， Tn)， such that the proba-

bility that the interval (er，θu) contains the true parameter e is (1一α)“

p[eLζOζ eu] = 1一α==r (5 6) 

When this interval (er， eu) exists， this is called the interval with confidence 

coefficient r( = 1一α)or confidence interval of 100r = 100(1-α)%， and er 

and eu are said the lower or the upper confidence limit， respectively. Such 

estimation with lower and upper confidence limits is called the two-sided 

confidence interval estimation， and in some cases， only one limit is of 

interest十 Thisis called the one-sided confidence interval estimation. In 

this case， 

p[eL 三二 e] = r， or p[θu ::?:: e] = r (5 7) 

Since the probability that the confidence interval (er， eu) contains a true 

value of e is r = 1一仏 theprobability that the true parameter lies outside 

of the interval isαわ Fromthis point of view，αis called the risk ratio 

Either the risk ratio αor the confidence coefficient r should be determined 
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as the occasion may demand， but it is ordinary that r = 095(α= 0，05) or r 

= 0，99(α= 001) is adopted 

5. 3 Basic Concept of Maximum LikeIihood Estimation 

As stated earlier， an estimator is desired to have consistency， unbi 

-asedness， efficiency and sufficiency The maximum likelihood method is 

one of the practical methods to form a desirable estimator like this 

For the sake of simplicity， assumed that the random variable T of one 

population distribution has the probability density function f(t; fJ) which 

depends only on one parameter θ， the joint probability density function of 

a sample of size n， T，心:-= 1，2，“わ ，n)， extracted randomly from the 

population， is given as follows : 

L =f(九 t2， ら;fJ) =旦/Ui;fJ) (5 8) 

This is called the likelihood function in the sample point (tl， t2， 'れ ，tn)， 

whose values change obviously， depending on the parameter θAt this 

time， it is natural to consider that the sample point (t1， ら， 昨ドド ，tn) is most 

likely to realize when θassumes fJ at which the likelihood function becomes 

the maximum， The maximum likelihood method is based on this concept， 

Therefore， e is usually given as a solution of the following equatiori : 

dL/dfJ = 0 (5.. 9) 

e thus defined is called the maximum ldkelihood estimator (hereafter 

abbreviated as MLE) In case that the number of unknown parameters is 

r， similarly， the set of parameters of size r( fJl， fJ2， ""'" fJγ) may be 

obtained so as to maximize the following likelihood function， 

L =Ef(ん;fJl， {k， め) (5 10) 

This will usually result in a set of solutions of the following system of 

equations derived by partially differentiating L with respect to fJi: 

。'Lj(JfJi= 0， (i = 1， 2，わ i リ ，r) (511) 
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It is based on the following reasons that the aforementioned MLE is really 

utilized quite often : 

(1) In case that a sufficient estimator exists， MLE will become that 

estimator 

(2) MLE is not always an unbiased estimator. However， it is often the 

case that a simple modificatin can bring unbiasedness to MLE 

(3) In case that an e伍cientestimator of unknown parameter () exists， 

MLE e becomes an e伍cientestimator ofθ 

(4) In case of large sample size， MLE has the property to follow 

asymptotically the normal distribution.. That is， in a sample of size n， 

rn( e -()) follows asymptotically the normal distribution with mean = 

o and variance = n{ -nE[ d210g f( t; ()) /d()2]}一 Hence，e becomes a 

consistent entimator ofθ 

As can be seen clearly in the above expressions， MLE really has a lot 

of desirable properties 

6 Elimination of High-Time Outliers in a Sample from WeibuIl Popula-

tion 

In a Weibull model， when so-called high-time outlier (extremely large 

value) exists in a sample， distribution parameters cannot be estimated 

correctly. Let us think of two examples of Exれ 1and Ex.. 2 shown in Table 

6.1 [10].. In both examples， most of data are the same， but the former 

contains one extremely large lifeド Conversely，the latter contains one very 

small 1ife. Table 6.. 1 represents point estimates of fatigue 1ife at a certain 

failure probability based on the estimated shape and scale parameters，α 

and s， which are also point estimates with the aid of MLE discussed later 

According to this Table， Ex.. 1 shows extremelyもlargescatter and Ex引 2does 

not That is， in a Weibull model， estimates are much affected by high 

-time outliers.. On the other hand， they are not influenced so much by 
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sample values which are extremely smalL In reference to this fact， we 

should not consider that a Weibull model is not applicable to fatigue life 

distribution because an estimate is easily affected by high-time outlier In 

the estimation， it is better to remove such small quantities of data as those 

extracted from the different population with some reasons. One of such 

eliminating procedures is an estimation by MLE-censored， whose example 

is illustrated in Table 6.. 2.. In Table 6.. 2， Ex.. 2 is the case that two high-time 

outliers are added to Ex.. 1 which contains no outlier， and reversely Ex. 3 is 

the case that two low-time outliers are added. In Ex.. 2， when the estima-

tion of the shape parameter is performed by replacing each out1ier by.the 

sample value immediately preceding it， we can observe that the estimate of 

shape parameter changes largely in the second censoring of outlier and after 

that no remarkable change is observed引 Thisis why the third is chosen as 

the estimate.. On the other hand， in Ex..3 the first estimate is accepted 

because the censoring gives no considerable change to an estimate. 

Table 6. 1 Simulated examples to illustrate effects of isolated long-life specimens. 

Estimates of: Point estimates of 
Fati 1ife Example life(cygculee 活) a(I cycles)at some Characteristic life s(cycles) Weibull shape a failure probabi1ities 

42000 50%=71480 
45000 10%= 8554 
48000 5%= 3800 

1 52000 108040 。.887 1%= 605 
55000 01%= 45 
60000 001%= 3 
500000 

5000 50%=41273 
42000 10%=19662 
45000 5%=14811 

2 48000 47680 2..541 1%= 7798 
52000 01%= 3145 
55000 001%= 1270 
60000 
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Table 6. 2 Simulated examples to illustrate censoring procedure日OJ.

Example 1 Example 2 Example 3 

Fatigue Iife WeibuII 
Fatigvcule E life 

WeibuII Fatigue Iife 羽TeibuII

(cycles) sha(Eλe ) tt (cycles) sha(pλe ) tt (cycles) sha(pλe ) tE 

42000 42000 4000 

45000 45000 5000 

48000 48000 42000 

Original 52000 9 07 52000 o 95 45000 L63 

estimate 55000 (0..11) 55000 (1 05) 48000 (061) 

60000 60000 52000 

400000 55000 

500000 60000 

42000 4000 

45000 5000 

48000 42000 

Second 52000 L05 45000 L50 

estimate 55000 (095) 48000 (067) 

60000 52000 

400000 55000 

400000→ 55000→ 

42000 4000 

45000 5000 

48000 42000 

Third 52000 9..07 45000 L35 

estimate 55000 (0 11) 48000 (0 74) 

60000 52000 

60000→ 52000→ 

60000→ 52000→ 

42000 4000 

45000 5000 

48000 42000 

Fourth 52000 11 70 45000 L20 

estimate 55000 (0085) 48000 (083) 

55000→ 48000→ 

55000→ 48000→ 

55000→ 48000→ 

Because original was 
Third Original 

Answer o. K， no attempt was 
estimate 

9..07 
estimate 

L63 

made to censore 
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7 MLE of Parameters in a Two-Parameter Weibull Model 

7. 1 In case that both parameters are unknown 

Assumed that fatigue life T is a random variable which follows a two-

parameter Weibull distribution， parameters to describe this distribution are 

the shape parameter αand the scale parameterβThe probability density 

function f(t) and the distribution function F(t) are given as follows: 

/(t)=会(すY-lexp {-(古川

F(t) = 1-exp { -(剖

(7 1) 

(7 2) 

Let us suppose that fatigue life is obtained by independent fatigue tests 

on n test pieces and that each follows the same Weibull life distribution 

The outcome in each test is either 

(a) the time to actual failure of test piece (fatigue life)， T 

or 

(b) the random time to terminate test for any reason other than 

fracture of test piece (censoring time)， Z 

where T and Z should be treated as random variables. The symbo1ic 

representation of the outcome in each test is as follows : 

[T=t]n[Tζ Z] or [Z = z] n [T > z] (7 3) 

where t or Z is one realization of T or Z， obtained by a test of each time.. 

At this point， assume that k specimens out of n(kζη)  are tested to 

failure and the test on remaining (n-k) specimens are terminated by the 

reason other than the failure of the specimen. 

Consequently， from the former， k outcomes of fatigue life T(lI， 

t2，わ i “，tk) are obtained and， from the latter， those of censoring time Z of 

size (n-k)， (Zk+l， Zk哨"ゎ ，Zn)， are also gained， where su伍xdedicated to 
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each outcome is for convenient purpose and has no special meaning to show 

the order of size.. Since the outcome of each test is shown in Eq.. (7 3)， the 

event that the set of n outcomes (t1， t2，“1 “， tk， Zk+!， Zk+2， ......， Zn) will 

occur is represented， based on the concept of the joint event， as follows : 

ハ{[Tiζ Zi] n [Ti = ti] }れ {[T;> Z;] n [Z; =ぁ]}
;=k+1 

h 

where symbol Q{Ez}denotes the joint event Eln E2内…ハEk

(7 4) 

There-

fore， the likelihood L of such event will be represented as follows : 

L = CI1f(ti) 日 {l-F(ぁ)} 
i=l j=k+l 

(75) 

where C is a constant value independent of parameters αand s in case that 

the set of complete outcomes (目 =t1， T2 = t2， • リ.， Tk = tk) of T is given 

Since the population density function f(t) and the distribution function 

F(t) are given in Eqリ (71) and (7 2) respectively， the following can be 

derived by substituting these into Eqゎ (75) : 

L=C立[会(会r-1
e刈-(会)α}] ;=4+1卜xp{-(吾川]

The log-likelihood is given by taking the logarithm of Eq. (7 6) as 

l叫=ln C十全 hn(~)+(α-l)ln(ムト(ムr~一色(与Y
l¥sJ ¥β/¥βJ J ;='k'+1¥sJ 

(7 6) 

(7 7) 

Attentive to the fact that C is independent of parameters， the MLE's of the 

Weibull shape parameter αand scale parameter βare obtained， from 

aforementioned Eq. (5 11)， as the solution of the following system of equa-

tions: 

jblnL=す+会計)一割合r1n(会)
-;=*+1 (号)α刊号)= 0 

jblnL=ーづ+す(窓会)¥ゑ(号r}= 0 

(7.8) 
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Suppose that the MLE's are made a and βrespectively in case that 

both parameters αand βare unknown， they can be obtained as the solution 

of the following simu1taneous equations [110J， which are der討edby trans-

forming Eq.. (7. 8) : 

士(割合)¥孟1(すy}= 1 (7 9) 

す=皇(す叶)十五(すyln(ず一室叶t)
(710) 

By the way， in the actual fatigue test， one of the following test 

methods (a) to (c) will generally be adopted 

(a) Uncensored testing plan 

As illustrated in Fig. 7.. 1， the tests are performed until all specimens of 

size n will faiL 羽市enthey are tested all at the same time， the observed 

data are obtained in order of magnitude as follows: 

t1三二 t注孟わ :::;: tn 

1 

h 

n 

。 tl t2 tk tη 

n complete observations 

Fig.7.1 Uncensored testing plan 
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Data of size n， ordered in this fashion， are called order statistics of size n 

and a sample obtained by this testing plan is called uncensored sample 

This method is applicable to the case that a certain estimation is made by 

use of the entire sample of size n， without any modification， if data group 

consisting of data of size n are gained This type of sample is sometimes 

called complete sample because the whole members of a sample are used 

(b) Fixed time testing plan 

As represnted in Fig.. 7.. 2， the test is terminated after a certain lapse of 

time. When the censoring time r locates as shown in the figure， failure 

times of t1， t2， 引 ，tk are obtained. On the other hand， there is only such 

information that each of 九十1，tk+2，“..， tn is larger than r This kind of 

sample is termed as the type 1 censored sample 

(c) Fixed number testing plan 

As shown in Fig 7..3， the test is terminated when a prescribed number 

of specimens k(lζhζn) fails.. In this case， the values of t1， t2， • •• • ， tk 

are known， but as for tk+1， tk+2，われ ，tn， there exists only such information 

that each of them is not smaller than tk引 Thiskind of sample is cal1ed the 

type II censored sample and k is said the censoring number. 

As stated earlier， the censoring procedure plays an important role in 

case of Weibul1 distribution where parameter estimates are largely affected 

by high-time outliers The estimation procedure in Table 6.2 is the method 

that the estimation of the shape parameterαis performed based on a 

censored sample such that larger values than the k-th order statistic are 

replaced by the k-th order statistic. Therefore， this sample is the same as 

the type II censored sample. 

Since， in the parameter estimation， the available data are generally 

given in a form of order statistics and the censoring procedure to censor at 

the k-th order statistic is usually applied， it will be convenient to describe 
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1 

Censoring time 

h 

:l-￥ 
ー+ートー---y.η 

。 t1 tk Z' tk+1 tn 

v 
， 

k samples 
with observation 

n-k samples 
without observation 

Fig. 7. 2 Fixed time testing plan 

I 

Censoring number 

h 

一ー年

1
 

1
 

1
 

e
T
 

d

不
十
t

L
a
L
i

，. 
n 

O fJ tk tk+1 tn 

、，
'‘ v 

k samples 
with observation 

n-k samples 
without observation 

Fig. 7" 3 Fixed number testing plan 
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the MLE corresponding to this case. Here， suppose that n data exist in the 

data group， given as 

t(l)， t(Z)，ド リ ，t(n) 

Then the order statistics arranged in ascending order of magnitude are 

represented as follows : 

h三二 tz三二“}川 三二 tn 

At first， the MLE's (so-called MLE-uncensored) ofαand s are discussed 

based on a complete sample of size n In this case， the actual outcome of 

the censoring time Z is naught and hence， in Eq (7 9) and (7. 10)， we may 

put k = n and Zj = 0 Therefore， in case that both parameters are un-

known， the MLE-uncensored of αand βare obtained as ei and s which 

satisfy the following equations : 

士会(す =1 (711) 

す=会{(す-1}唯) (7 12) 

Second， the MLE's (so-called MLE-censored) ofαand βare discussed 

based on a type 11 censored sample such that all the order statistics greater 

than the k-th value (1ζh ζη) are replaced by九

t1， tz， 川肺引， 九=tk+1 =引1ω = tn (7 13) 

Replacing :?，;三九(j= k+ 1， k+2， 制 ，n) in Eq. (7.9) and (7 10)， it follows 

that: 

士(会(す+(nー叫す}= 1 (7. 14) 

72皇[{叶)}{(す-1}]+(n-叫すr1n(すr (7 15) 

The MLE-censored of αand βare obtained as ei and s which satisfy the 

above equations， Eqs.， (7 14) and (7. 15) 

The MLE's ofαand s are obtained by the solution of Eqsれ (79)and (7 
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10)， Eqs“ (7， 11) and (7れ 12)，or Eqs， (7 14) and (7 15)， respectively， How-

ever， the solution of these equations cannot be obtained in a closed form 

and therefore， it is not easy and is necessary to make use of iterative 

procedure with the aid of a computer" In the estimation of the shape 

parameter α， when the MLE of the reciprocal shape parameter i! = l/a is 

considered， this value is obtained in the following way" That is， in case of 

MLE-uncensored where a complete sample is used， from Eqsれ (711) and (7 

12)， 

寺会(すrλ=1 (716) 

nX =会{(す)1 (7 17) 

In case of MLE-censored where a censored sample is used， from Eqs" (714) 

and (715)， 

士訂(急( 含tJ.+(

k以X=急剖剖[日{憎)}{(含すrX

-1}]ト+(ωη一川含riυ川市川JiL川lnベ(含yliυ川J
(7 19) 

By solving the above equations with respect to s and X， X gives an answer 

7. 2 In case that the shape parameter αis known 

There may be the case that the shape parameterαis known for any 

reasonゎIfthe MLE ofβcorresponding to this case is expressed by s， this 

is obtained by 

s={土(会(孟1
~f) ra 

1 

={士(皇tlへ主l
zyJ.)}J

(7，， 20) 

On the other hand， the MLE一-censor閃ed0ぱfsι， s， by use of such c白enso凹ri泊n

procedure as shown in Eq引 (σ7，21リ)， is obtained by transforming Eqs" (7， 14) 

and (7 15) as follows : 
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Zk+1 = Zk+2 =引，=Zn三 Tk

where n is the k-th order statistic 

s = {計三ltf+(n一川ra

1 

=刷会tFλ+(n-k)tl/λ)YJ

(7， 21) 

(722) 

In case of MLE-uncensored， it follows from Eq， (7 11) and (7 16) that 

s = (士会tf)11α

=(士会tl
lλ) (7 23) 

Therefore， in case thatα(or 11) is known， the maximum likelihQod 

eatimate of Weibull scale parameter s， based on the result of the fullscale 

fatigue test， is obtained by Eq， (7 20)， (7ド 22)or (7 23)， 

8 Statistical Properties of MLE'S of Weibull Parameters 

From the discussion in the preceding section， the Weibull MLE's a and 

s， in case that both parameters are unknown， or s， in case that the shape 

parameter is known， can be obtained Hence， the first objective of the 

reliability-based design seems to be accomplished， However， if the distrI-

butions of a and βor that of s can be predicted in advance， which 

represents how they distribute around the corresponding true values of α 

and s in relation to the sample size n and the censoring number k， the 

validation of the results of the actual estimation as well as the propriety of 

the sample size can be evaluated This is much helpful， convenient and 

useful in a practical sense 

In the prediction of the distributions of a and β， the notion of parame-

ter-free statistics independent of the true values αand s is desirable in 

order to give generality to the discussion" For this purpose， the fol1owing 

transformations are introduced: 
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(8引 1)

(8ド 2)

(8 3) 
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五=(号)α，(i = 1， 2， • • .， n) 

U = a/，α 

v = (s/s)α 

where Ti is the i-th order statistic of size n 

-74-

Rewriting Eqs.. (7 14) and (7 15) by use of Eqs. (8 1)~(8 3) reduces to : 

(8“4) v= 1 {会 yf+(n-k)yk'}

1 1 j! 
U ZTEZ1lnV2 

呂V 九nyめ肘z汁+(η 一h的)YJ/叫山f訂如lln

L:: yf+(η一h的)yJ/f 
(8“5) 

By the way， it is evident thatyμ= 1，2， リ目..， k) obtained by the transfor-

mation de白nedby Eq. (8 1) for fatigue life ti (i = 1，2， .....， k) of a two-

parameter Weibull type， follows the exponential distribution with mean of 

Therefore， unity， independent of the Weibull two parameters αand s.. 

both U and V defined by Eqs. (8 2) and (8 3) are proved to be parameter 

In case of MLE-uncensored， 

similarly， both U and V are briefty shown to be parameter-free statistics 

-free statistics from the parameters αand β 

from αand β， and the following equations hold : 

(8 6) 

(8“ 7) 

n 

V =772Ur 

刊
wvn

 

n2M 

l
一η一一

1
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M
M

一
n
一uz

句
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グ

"と

n
2同

n2M一

From the above discussion， the empirical distributions of U and V can be 

made clear by computer simulation with the aid of Monte Carlo technique 

The detailed description of the simulation method is omitted here for lack 

Vand Ware 

briefty discussed. 

Fig.8ド 1represents the distribution of l/U =α/a = l.μ， reciprocal of 

In what follows， the empirical distributions of U， of space 
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。5 1 0 

Empirical curves 

Exact curve (n=2) 

1 5 

Parameter-free statistic， 1/U=α/a 

2.0 

Fig. 8. 1 Empirical distribution of the MLE of the Weibull shape parameter a for 
complete samples (Note: a is the MLE of the true Weibull shape a) 

U=  &/，α， obtained by computer simulation and plotted on a normal proba-

bility paper for each sample size n For the sake of simp1icity， only the 

case is shown here for complete samples without censoring procedure“ The 

empirical distribution in the figure reprenents cumulative frequency of two 

thousand estimates of l/U， arranged in order of magnitude， obtained by 

utilizing those two thousand data groups numerically generated by a com-

puter， each consisting of a sample of a given size of exponential random 

numbers with mean = L Asshown clearly in the figure， with increasing 

sample size， the distribution of l/U approaches a straight line whose slope 
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Fig. 8， 2 Comparison of the empirical distribution of the MLE of the Weibull shape 
parameter a between complete samples and censored one 

This means that the distribution of l/U becomes gradually steeper 

approaches a normal distribution with increasing sample size and that the 

probability that an estimate lies close to the true value becomes large since 

a steeper slope corresponds to smaller variance.. 

distribution of V = (s/s)αdiscussed later， a considerably accurate estima. 

Compared with the 

In case of n = 2， the tion can be performed even for a small sample size“ 

The estimated results by distribution of l/U is derived theoretically [111J 

Monte Carlo simulation technique for n = 2 show a good agreement with 

This fact the corresponding theoretical one represented by the dotted line 

OLIVE 香川大学学術情報リポジトリ



77 Some Aspects of Statistica1 Inference of Weibull Parameters with 
Wide App1icabi1ity in Re1iability-Based Design -77ー

can be the evidence of the va1idity of the present simu1ation technique. 

Fig.. 8.. 2 gives an examp1e of the simu1ated resu1t of the e任ectof the 

censoring number on the estimation ofα Comparison between the censor-

ing at the 3rd of 5 and comp1ete samp1e of size 3 or 5 is i1lustrated From 

this figure， the MLE of the shape parameterαis not 1arge1y a任ctedby the 

censoring and is estimated simi1arly for the small samp1e size [10]. 

Fig..8“3 represents how the samp1e size infiuences on the estimation 

accuracy in case of estimating the Weibull shape αby the MLE-unconsored 

α The variance is usual1y a measure for estimation accuracy However， 

if an estimattor has no unbiasedness， this is not a suitab1e measure and the 

expected 10ss or mean square error shou1d be used in p1ace of it In this 

respect， both are represented in the figure In case of smal1 samp1e size， 

the difference between the expected 10ss and the variance becomes 1arge， 

o 5 

く3
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‘判。
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U 

i O3 
ro 
〉

"cl 
ロ
吋
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Fig.. 8. 3 A measure of samp1ing error of the MLE of the Weibull shape from comp1ete 
samp1es. 
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and the estimated error becomes also large“ 

Though the unbiasedness is a preferable feature for an estimator as 

stated earlier， a discussed in this section is not always an unbiased 

estimator. For example， in case of sample size n = 20， a seems to repre-

sent a normal distribution as shown in Fig" 8.. 1， but actually it has a little 

bias because the value at 50% of cumulative frequency is a litte less than the 

true value of unity From this point of view， both the bias factor Bn and 

the variance factor Qn of the MLE of the reciprocal shape parameter ，1 = 

l/a， represented by Eq.. (8 8)， are introduced and simulated for each sample 

size as in Table 8.. 1. 

E[BnX] = ，1， and Var[BnX] = Qn，12 (8 8) 

The reciprocal shape parameter ，1 is first estimated by MLE (，1) for each 

data group. Then， according to the sample size， a modification is 

introduced as 

，1 = Bn，1 (8 9) 

X thus obtained now becomes an unbiased estimator. Assumed that there 

are m data groups， the best unbiased estimator X' throughout the whole 

groups can be given as follows : 

~ X;/Q叫

λ 弓一一一
呂l/Q町

with its variance defined as 

m 

(8リ 10)

Var[).'] = ，12/呂(1/仏 (811) 

where ん =BnJ; is an unbiased estimator obtained by multiplying the 

MLE， X， estimated from the j-th data group by the bias factor BnJ in Table 

8..1， and QnJ is the variance fator corresponding to the sample size in the 

j-th data group. 

Next， in case that the shape parameterαis unknown， the sampling 
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Table 8. 1 Bias and variance factoI' of Weibull MLE of reciprocal shape parame・

terλ. 

Complete sample size n Bias factor Bn Variance factor Qn 

2 1 73 071 

3 137 0..35 

4 1.25 。22

5 1..187 o 164 
10 1088 0..073 

20 1047 0..033 

C口 1 。

distribution of the aforementioned statistic defined by Eq， (8， 3) provides 

how the MLE of s，β， distributes around the true value ofβaccording to 

the sample size 

V = (s/s)α = (s/s)ll A (8 12) 

Similarly to the empirical distribution of l/U = α/ei， some examples of the 

empirical distribution of the statistic V are represented in Fig.. 8.. 4 for 

complete samples， obtained by computer simulation by use of Eqs，. (8， 6) and 

(8 7)， From this figure， in case of small sample size n = 2 ~ 5， a large 

scatter is observed in the distribution of V， which means that the probabil-

ity that an estimate βis different from the true value is large， in the 

estimation of scale parameter βfrom data of sample size n = 2 ~ 5 when 

the Weibull shape αis assumed to be unknown， Therefore， a large value 

of the safety factor should be chosen in the design， Like the previous case 

ofα， it asymptotically approaches a normal distribution when sample size 

becomes large， Fig，. 8.. 5 represents the e任ectof the censoring procedure on 

the results of estimation In this case， the probability that s approaches 

the true value becomes large by applying the censoring procedure.， 

Finally， the discussion is made on how the MLE s distributes around 

the true value βwhen αis assumed to be known， Let us consider W 

OLIVE 香川大学学術情報リポジトリ



-80- Kagawa University Economic Review 80 

99 

98 

95 

90 

ぷ 80

E E E H 70 
60 

告官書

5 

1. 0 2 0 

Parameter.free statistic， V = (s/s)α 

Fig. 8. 4 Empirical distribution of the MLE of the Weibull scale parameter βfor 
complete samples of size n = 2， 3， 4， 5， 10 and 20 when Weibull shape is assumed 

to be unknown 

defined as 

W = (sjs)α (8， 13) 

The consideration only of the case of a censored sample as in Eq" (7 22) 

suffices the discussion since it can easily be extended to the case of uncen-

sored complete samples， by setting k = n" s with uncensored data is given 
by Eq (7刷 23)ゎ Whenwe introduce the variate y;， obtained by transforming 

fatigue life Ti by Eq (8 1)， W defined by Eq" (8れ 13)can be transformed with 
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Fig. 8. 5 Comparison of the empirical distribution of the Weibull scale parameter β 

between complete and censored one 

the aid of Eqド (722) as follows : 

W = (sIs)" 

=[す{皇制(n-k)t:}J/sa 

=す(会(合)α
+(n一川吾川

=士{ふ+(n一川
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=士(会(nー什的i-Yiー1)} (8 14) 

When the complete outcomes Ti = ti， i = 1， 2， 引川" n of size n of fatigue 

life T which follows Weibull distribution are given， the corresponding Y;' 

s of size n， 1"; = Yi， i = 1， 2，“ ， n， follow the exponential distribution 

with mean = 1 respectively， and are parameter-free fromαand βFor 

this reason， W given in Eq (8“13) also becomes a parameter-free statistic， 

and besides the following variate 

X=(n-i+1)(1";-Yi-1) (i=1， 2" n) (815) 

also fol1ows the exponential distribution with mean = 1， Therefore， from 

Eq" (8ゎ 14)，n W is given as the sum of the exponential variate of size n with 

mean = L By the way， the probability density of X is given as 

f，JXi) = e-x， (8“ 16) 

On the other hand， the density function of the random variable Gi( Gi = 

2X) is 

μ必リー 1
fC，(gi) =ん(ぁ)悶=ヂ (8ド 17)

and the density function of X2 with <t degrees of freedom is 

l(χ2) =司北口π(χ2)O12九(-Jf-) (8 18) 2~/"r( ゆ幻 xp¥ '2) 

Settigゆ=2 in Eq. (8 18) reduces to Eq" (8引 17)，which means that Gi follows 

X2 distribution with 2 degrees of freedom Therefore， from the re-

producibility of X2 distribution， 

2nW = 2:2X = 2: Gi 

will fol1ow X2 distribution with 2n degrees of freedom， and hence the 

density function of W is given as follows : 

山)=議万(2nw)n-Iexp (-nω) 
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Fig. 8.6 Theoretical distribution of the MLE of the Weibull scale parameter βfor 
complete samples when Weibull shape is assumed to be known 

=ポ了w
n
-
1
exp (一問) (8， 19) 

Fig“8" 6 represents the theoretical distribution of the statistic 防Tgiven 

by Eqド (8，13) as a parameter ofηIn this figure， the distribution function 

is shown in place of the density function， Compared with Fig， 8" 4 which 

represents the distribution of the MLEβwhen αis assumed to be unknown， 

the distribution of βshows less scatter around the true value α， and， 
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therefore， an estimate ofβhas considerably high reliability even when 

estimated based upon only one sample， that is， n = 1 Similar to the 

distributions of U and V， an estimate βapproaches the true value βwith 

increasing sample size It should be emphasized that when the Weibull 

shape αis known， the MLE s of the scale parameterβhas less scatter in 
comparison to the corresponding MLEβfor unknown shape. 

9 Concluding Remarks 

The Weibull probability model has been frequently used to express 

fatigue life distribution of a structural component. It plays an important 

role in the reliability-based design of machines and structures.. 

In the present paper， the parameter estimation of a two-parameter 

Weibull distribution has been discussed in detai1， and the maximum likeli. 

hood estimators for the Weibull shape and scale parameters in case of both 

being unknown as well as that for Weibull scale in case of known shape are 

theoretically derived as the simultaneous solutions of a system of likelihood 

equations. 

Unfortunately， however， the solutions cannot be obained in a c10sed 

form In this respect， parameter-free statistics for the maximum likeli. 

hood estimators have been introduced and their empirical distributions have 

been established with the aid of Monte Car10 simulation techniques to 

c1arify their statistical properties in connection with the true parameter 

values， the sample size and the censoring number. The results obtained in 

the present study are undoubtedly believed to be of crucial importance in 

the reliability-based design 
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