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Abstract.

This paper is to report that it is ‘almost’ impossible to prove the fundamental
theorem of algebra（FTA） by a simple application of Brouwer fixed point
theorem. While providing a new simple proof of the FTA based on Reich’s
coincidence theorem, we also show that it is necessary to prove beforehand the
essentiality（the property of being not nullhomotopic）of the map �� on the unit
circle. Since Brouwer fixed point theorem is equivalent to the essentiality of the
identity map, the FTA can be regarded as being topologically more sophisticated
than Brouwer fixed point theorem for the two dimensional space. Besides, in
our proofs of the FTA, we avoid the use of arguments based on homotopy and its
related concepts, thus even high school students will have little difficulty in
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following the proofs, so long as the meaning of Brouwer fixed point is
understood and accepted as the given starting proposition. We also mention a
possible generalization of our result to the case of multivalued maps, and
its application to Walrasian general equilibrium analysis.
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1 Introduction

There have been more and more proofs of the fundamental theorem of algebra

（FTA）appearing in the literature, showing that many mathematicians are still eager

to prove the FTA by use of a theorem or a technique depending on their own

specialization in Mathematics, while the teachers have been wishing to devise a

simpler and more elementary proof to be presented in classrooms. It is of basic

importance that the content of the theorem are easily understood by most high school

students. In simple terms the FTA states that every non-constant single variable

polynomial with complex coefficients has a complex root.

Now, one might have expected that there have been, among more than100

proofs, several simple proofs based upon a direct application of Brouwer fixed point

theorem. （More properly, Bohl-Brouwer fixed point theorem because of the

contribution by Bohl［4］. For a very simplistic argument, x is called a fixed point

of a function ����if ������and if we take ����as equivalent to��������, then

x would be a solution for ������.） Surprisingly, however, we seem to have

only one proof on these lines by Fort［8］, an earlier one by Arnold［1］was

unfortunately wrong. （See Arnold and Niven［2］.） The use of Brouwer fixed

point theorem in Fort［8］, however, is neither simple nor direct. His paper is not

mentioned in the classic reference - Fine and Rosenberger［7］.

Mathematics teachers who wish to find a simple proof based on a fixed point
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theorem have been helped by Nakaoka［15］ and Dodson［5］, which used a

coincidence theorem of Schirmer［17］ or its variant. Needless to say her

coincidence theorem is a generalization of Brouwer fixed point theorem. It would

thus be all the more useful in the classroom if we should be able to present a proof

by a simple application of Brouwer fixed point theorem. In the past, some of the

authors of this paper have tried to get such, but have ended up with some wrong

proofs, and now believe that it is impossible to prove the FTA by use of Brouwer

fixed point theorem without employing a continuous n-th root of a given polynomial

a la Fort［8］, or more precisely without involving the essentiality of the map �� on

the unit circle. We have thus, had to change our strategy ; first to construct a

generalization of Brouwer fixed point theorem, which is geometrically easy to

understand, at least easier to remember and apply. We soon found this had

already been done by Schirmer［17］. Moreover, the FTA had been proved by

Dodson［5］based upon her theorem. On the other hand, Reich［16］generalized

both Schirmer’s theorem and fixed point theorems by Bohl［4］, Shinbrot［18］and

Kaniel［11］. We obtained our theorem by a simple application of Reich’s

coincidence theorem. In so doing, however, we have avoided the concepts of

homotopy, fundamental group, winding number, and the index or degree of

mapping, solely depending upon the essentiality of a map on a sphere defined as

non extensibility of its domain to the entire ball. Moreover, we present our

theorem, following Kulpa［12］, in terms of a necessary and sufficient condition so

that the role of essentiality comes forward inevitably.

This short paper is organized as follows. The next section explains some

coincidence theorems, which are generalizations of Brouwer fixed point theorem,

and then we present our theorem. Using our theorem, we give a new proof of the

FTA in section3. We discuss the essentiality of the identity map on the sphere as

well as the map �� in section4. In section5, a more difficult problem in which the

coefficients of a polynomial can be a function of the variable is dealt with, and a
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proof of the existence of a solution is given under a condition which is more general

than requiring constant coefficients. In the final section, some remarks are given,

including why a simple application of Brouwer fixed point theorem cannot lead to a

proof of the FTA, and how we can generalize our theorem to multivalued mappings,

and use it in an existence proof of general equilibrium models à la Walras without

Walras’ law.

2 Coincidence Theorems and a New Theorem

First we explain our symbols. Let �n be the real Euclidean space of

dimension n , ��� the ball of radius ���with its center at the origin, and ����� the

boundary of ���. In the following, we use the symbols B and S in place of ���

and �����when there can be no misunderstanding.

We start with the definition of essential maps.

Definition. A continuous map f from S to itself is essential if and only if f has no

continuous extension F from B to S .

Normally in textbooks on topology, the concept of null homotopy or

inessentiality is first introduced, and the essentiality of a map is defined as being not

nullhomotopic. The null homotopy of a map on S is then characterized by the

existence of its continuous extension to B .（See, e. g., Dugundji［6, p.316］.） Our

definition above is made by connecting the essentiality directly with non

extensibility, thus dispensing with the concept of homotopy. We use the term

essential , simply because it is short and was used in the past. From the above

definition itself, we have

Theorem2．1. There exists no continuous map f from B to S such that ��� is

essential.

This theorem is a generalization of the no retraction theorem where f is the

identity map. The essentiality of the identity map on the sphere is discussed below
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in section4. Using this theorem, we can establish Schirmer’s coincidence theorem.

Theorem2．2（Schirmer［17］）. Let f and g map B continuously into itself, and

suppose that ������. If ������� is essential, then f and g have a

coincidence.

Proof. If there exists no coincidence point, we can construct a map from B to S ,

by transforming a point x in B to a point on S where the ray from ����to ����

crosses with S . This map is continuous and identical with f on S , which is

essential, contradicting Theorem2．1. □

This proof has already been suggested by Dodson［5, p.478］. It is clear that

Brouwer fixed point theorem is a special case of Schirmer’s theorem above, when f

is the identity map. Since any constant map, say ������� for any �	�,

mapping to the same point ��	�, is continuous, the map f here is onto B because

f has a coincidence with g by Theorem2．2. Note also that two maps f and g both

have its own fixed points in B .

Now we can also prove Reich’s more general coincidence theorem based on

Schirmer’s, thus avoiding the use of homotopy : Reich［16］employed a homotopy

in his simple and elegant demonstration.

Theorem2．3（Reich［16］）. Let f and g map B continuously into �n, and suppose

that ������. If ������� is essential and ����
�������for all �	� and

���, then f and g have a coincidence in B .

Proof. First we construct a map F as �����������������������. This

map is surely continuous, and �����������, with ������� being essential.

Next, we suppose there is no coincidence between f and g in B , and define a

second map �������������������������. This map G is also a

continuous map from B to S . Thus, we can apply Schirmer’s theorem, and there

should exists a coincidence ��	� such that �����������. We should have

��	� because�����	� and �����can be on S only when �� is on S . Now

the equality �����������implies that
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����������������������

with �being a positive real. Thus, we have ����������
�
���������������

with���, and ��	�, yielding a contradiction. □

Theorem2．4. Let f and g map B continuously into �n, and suppose that

����
�. If ������� is essential and ����������� for all �	� and

���, then f and g have a coincidence in B .

Proof. In the proof of Theorem2．3, we change ����������������������

������. In this case, the equality �����������implies that

�����������������������

with �being a positive real. Thus, we have ����������
�
���������������

with���, and ��	�, a contradiction. □

Theorem2．3 can be regarded as a generalization of a fixed point theorem by

Halpern and Bergman［10］for the case of inward maps, while Theorem2．4 for the

case of outward maps, though the domain of maps here is not a compact convex set,

as in general, but a sphere. Note again that the map f in Theorems2．3 and2．4,

though allowed to bring interior points of B to its outside, is after all onto B ,

which is obvious from Theorem2．3, considering a coincidence with a constant map

g into B . Note also that the map g in Theorems2．3 and2．4 either has a fixed

point in the interior of B or has a coincidence with f on S or both. This implies in

particular that if ������	�	���������	�����∅, then g has a fixed point

in the interior of S .

Now we state and prove a new theorem, which is an extension of a result in

Shinbrot［18, Corollary2, p.257］and Kaniel［11, Theorem1, p.259］.

Theorem2．5. Let f and g map B continuously into �n, and suppose that

����
�. Then, for g which satisfies the condition that �����������for all

�	� and ���（or ���）, the equation ������has a solution in B if and
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only if ������� is essential.

Proof. First suppose that ������� is essential, and consider the map �����

���������. This G satisfies the conditions given in Theorem2．4（or Theorem

2．3）, thus f and G have a coincidence point �� in B , implying �����	�����

������. That is, �����	�. Next suppose that ������� is not essential.

We can find a continuous extension of f , say F , from B to S . Let ���（or


�）, this g satisfies the specified condition, and yet the equation ����	�has no

solution in B . □

Note that the map f itself satisfies the conditions on g, and so there exists an

���� such that �����	�. Moreover, we notice that the map ���������
�,

where � is an arbitrary point in the interior of B , satisfies the conditions in

Theorem2．5, thus there is an ���� such that �����������
�	�, implying f

is onto B by its continuity.

Theorems from2．2 to2．4 can also be restated in the style of ‘if and only if ’

as in Theorem2．5. In this note, however, they are presented as originally shown

by the respective authors.

To memorize Theorem2．5 visually, the reader may consider the geometrical

meaning of the condition that ����	������for all ��� and ���. This says

simply that for any x on S , ����is never on the reverse direction of ����. For

example, when ����for ��� is always in the half space ����������������

�n�, where（ ,）stands for the inner product, the condition is well satisfied.

3 A New Proof of the Fundamental Theorem of Algebra

Let � be the field of complex numbers, and we consider a monic polynomial

��	��	
���	

�����
, with the coefficients ����, 
��, and the variable

	��. The symbol ���stands for the set of all nonzero complex numbers. The

variable z is also written as �	����, with �����	. We define ��	���	���
�,
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i. e., ����is a transformation of z in the direction（argument）of ��, but keeping

the original absolute value. For a real ���, we define the disk ������������

and the circumference ���������	��.

The theorem we are going to prove is :

Theorem3．1. Every complex, non-constant polynomial has a zero.

Proof. It is evident that we can concentrate on the case of non-constant monic

polynomials. We suppose that ����
	�for ���, implying 	�
	�. It is also

clear that we can regard �� as 
��, and �� as ���, or simply S . When���is large

enough, say �����, the directions of ����and ����are more or less in the same

direction because ��������������	�. Thus, we can choose � large enough so

that ����
	������for all ���� and ���. It is proved in the following section

that ���� is essential for any ���. We can now apply Theorem2．5, obtaining

the existence of a solution to ����	�. □

We can make explicit the size of �. Indeed, if ����	����	�
� �	��, we

have

��
	�

�

	�������
	�

�

��	�����
������

	�

�

�	������
��������
�������

which is given, e. g., in Fine and Rosenberger［7, p.200］. Since ������������

	������� with ������for �
	�, the above inequality guarantees that ����
	

������for all ���� and ���. Thus we have a better bound for solutions than

in Arnold［1］and in Fort［8］, albeit a well-known one（Goursat［9, p.104］）.

Given � above, we can prove more that the inner product between ����and

����is positive for ����, that is, the angle between them is less than ���.（Here,

the inner product stands for the one when the complex plane is regarded as the two

dimensional Euclidean space.） This is because
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���������������������������������������������
�	�

�

������������

	������������
�	�

�

������������

In other words, ����for �
�	 is always in the half space���������������


��.

4 Essential Maps

To apply our Theorems2．2 to 2．5, we need to know certain maps are

essential. Given Brouwer fixed point theorem, or its equivalent, i. e., the no

retraction theorem, it is easy to prove that the identity map on 
	��� is essential.

The negation of essentiality of the identity map implies the existence of a continuous

extension map from �	� to 
	���, which contradicts the no retraction theorem. If

the reader wishes to use Brouwer fixed point theorem, the antipodal map can in

addition be applied, as is well known. Thus, the essentiality of the identity map on


	
��� is equivalent to Brouwer fixed point theorem.

Now it seems more difficult to prove that the map �� is essential on ��. And

at the same time in this note we want to shrink from the use of degree of mappings

and its related concepts. Fort［8］has, however, already presented an elementary

proof of a theorem which can be employed to show the essentiality of �� on ��.

Fort’s Theorem5in［8, p.374］asserts that if f is a continuous map from a disk �	

into ���and n is a positive integer, then there exist n distinct continuous maps

���� which have the property that �������	����for all �
�	. That is,

continuous n-th roots can be found if a given continuous function on �	 does not

include the origin in its image. Suppose that the map �� is not essential on ��.

Then there is a continuous extension F from �� to �� with ����	��. Surely F

does not have the origin in its image of ��, thus we can pick up one of the n-th
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root function, say �����such that �������. Now the map ���� is a continuous

function from �� to ��, and on the ��, it is the identity, showing a contradiction to

the no retraction theorem. Therefore the map �� is essential on ��. Since �� and

�� are homeomorphic for any ���, the map 	��� in the previous section is also

essential on ��.（Concerning continuous logarithm, the reader is referred to Ash and

Novinger［3］.）

5 A Slightly More Difficult Problem

Our proof of the FTA does not make use of the fact that polynomials are

holomorphic, while most analytic proofs need this property. Thus our method can

also work in more general cases where a given function is not holomorphic but

simply continuous.

Let us consider a polynomial-type function in which the coefficients can be a

function of the variable, or more precisely, a given function is expressed as


���������������	��
���	������������������.

Here the coefficients �����’s are continuous functions of z, and not necessarily

holomorphic in ��. Now we have

Theorem5．1. A polynomial-type function in which the coefficients can be a

continuous function of the variable, as described above, has a zero, provided

����������	���������
�	��for ���with reals ���, ����for�����.

Proof. Almost the same proof as in Theorem3．1 can be applied. We choose

����	������
�
��	�������, and we have

��
���

�

��������	����
���

�

������������
�	�����

���

�

��	�����������
�	�
�����

��������
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which is enough to show that ������������for all ���� and���. □

It seems that any of the existing complex analytical proofs cannot easily be

adapted to prove Theorem5．1. In more general, when we have ������	
����

����	���for	��, ������has a solution so long as ����is continuous on �.

This is clear from our Theorem2．5, because ����and ����have their arguments

with an almost fixed difference, i. e., that of c , when ���becomes large, implying

thus the impossibility of either ������������for all ���� and���, or���.

6 Concluding Remarks

Remark1. With hindsight, we can simplify the proof in Fort［8］, sharpening the

bound of solutions at the same time. Our starting point is again Fort’s Theorem5

（［8, p.374］. As in the above, let ���������
��
� ��
�. Then, ����������
��

and ����for ��� have their arguments which differ less than ��	. Now if

�������for ���, there is continuous n-th roots of ����, i. e., n�����, as is

explained in the preceding section. It follows that z and n�����have the arguments

difference still less than ��	for ���. Then we can conceive a continuous map

g from � to �� by defining 	���as the point on �� where the ray from z to ��
n�����intersects with ��. On ��, the map g is the identity, and so we have a

contradiction to the no retraction theorem. Thus there should be a ���� such

that �������.

Remark2. Kulpa［12］presented an elementary proof for Schirmer’s coincidence

theorem based on a special case of Stokes theorem, and discussed its application to

the FTA following Dodson［5］. He also showed that the converse of Schirmer’s

theorem is also valid. That is, let f be a continuous map from S to S . If for

arbitrary two continuous maps F and G from B to B such that �����, there exists

a point ��� such that ���������, then f is essential. It is easy to prove this

by contraposition. If f is not essential, there is a continuous extension F of f ,
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which maps B to S . We adopt the constant map from B to its center as G .

Evidently there is no coincidence between these two maps, F and G . This

proposition tells us that the essentiality of a map in general is as highly sophisticated

as Schirmer’s coincidence theorem. It is noted above that Brouwer fixed point

theorem is equivalent to the essentiality of the identity map on S , while the FTA is

related to the essentiality of the map �� on ��. Thus if we stick to topological

proofs of the FTA by use of fixed point or coincidence theorems, depending on only

the continuity of a given map, i. e., making no use of the fact that a polynomial

function is holomorphic, it is impossible to obtain a proof by a simple and direct

application of Brouwer fixed point theorem : such a proof needs an additional

contrivance equivalent to a demonstration of the essentiality of the map ��. Our

Theorem2．5has been formulated so that this impossibility can been seen clearly.

Remark3. In Walrasian general equilibrium analysis, it is desirable to weaken the

requirements of Walras’ law as well as the homogeneity concerning the excess

demand functions. The reader is referred to Lehmann-Waffenschmidt［13］and

Maskin and Roberts［14］. Our method shall be based on an extension of Theorem

2．5 to the case of multivalued maps. In a sense, the result due to Shinbrot［18,

Corollary2, p.257］can deal with general equilibrium models withWalras’ law but

without the homogeneity, while its generalization by Kaniel［11, Theorem1, p.

259］can dispense with both the law and the homogeneity. Some generalizations of

this sort will constitute the authors’ next joint paper, and will indeed provide still

another proof of the FTA.
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