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Abstract. By considering the Le Chatelier-Braun principle in thermodynamics for a 
system of linear equations, we derive a formula which describes how to calculate the 

inverse of principal submatrices of a real square matrix, based upon the inverse of the 
given matrix. This formula is related to the Schur complement, and is due to Duncan. 
Thus, the second term of Schur complement a la Duncan may be interpreted as the matrix 
of exact Le Chatelier-Braun effects. All proofs are simple and elementary. 
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1 Introduction 

Let us consider a system of simultaneous linear equations, Ax = d, where A is in艮nxn,
the set of n by n (n 2:: 2) real matrices, x an n-column variable vector, and d is a given 
n-column vector. We assume A is regular. Now suppose that the first element of d 
is increased by unity, then we know the solution x changes by the amount of the first 
column of the inverse of A. If the last element of the original solution x is to be kept 
unchanged, thus giving up the last equality in the system of simultaneous equations, the 

changes in x are represented by the first column of the inverse of the principal submatrix 
consisting of the first (n -l) columns and (n -l) rows of A. The differences between 
these two cases show how the solution vector shifts when the last equality is removed from 
the simultaneous system while keeping the last variable fixed. This situation is where 
the Le Chatelier-Braun principle may work. In Fujimoto and Ranade[lO], a proposition 

w邸 presentedconcerning this problem when a given matrix is inverse-positive. (See also 

Fujimoto[8] and Fujimoto, Herrero and Villar[9].) The point is that the differences between 
the two inverses of the original matrix and of the principal submatrix are expressed by 
use of the inverse of the original matrix. That is, kno"ing the signs of A-1, we want to 
predict whether each element of the solution or equilibrium vector x changes by a greater 
or a smaller amount than in the original system, when a variable should be fixed, and 
thus destroying one equation. 
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When we allow more than one variables to be fixed, and thus removing as many 
equations, we obtain the inverse of a principal submatrix of a smaller size. When we 
accomplished this generalization, we found that the resulting formula was already known 
to Duncan[6], and was used by Brezinski, Morandi, and Redivo-Zaglia[3, p.926] in dis-

cussing the reverse bordering method or the bordered inversion method. The formula is 
also presented in Galantai[12, p.122]. To prove the formula, these authors utilize the Ba— 

nachiewicz identity in [1], which involves the Schur complement. (For Schur complements, 
see Ouellette[13]: the reader is referred also to Brezinski[2], Carlson[4], and Cottle[5].) 
Following the notation in Ouellette[13] and Galantai[12], let 

A三[E F -1 ＾^  
G H] and A三[8 R], 

where E is in民pxp , 1 ::::; p < n, and H E賊qxq,q = n -p. Then the Banachiewicz 
identity in [1] is 

A―1三［正+Eザ s-1cE-1 -E-1 Fs-1 
-s-1cE-1 s-1 ] , 

where S is the Schur complement defined by 

S三 (A/E)三 H-GE-1F.

(This identity was discovered independently by Frazer, Duncan and Collar[7].) From the 

Banachiewicz identity, it is easy to derive the Duncan identity 

月=E-1 +『国）—噂， or E-1 = (A―1; 和=E-F直）ーlQ.

(For derivation, see Brezinski, Morandi, and Redivo-Zaglia[3, p.925], or Galantai[l2, 
p.122].) 
It is a matter of simple multiplication of two matrices to prove the Banachiewicz 
identity. In this paper, however, we derive the Duncan identity first by considering the Le 
Chatelier-Braun principle for removal of some equations, and then prove the Banachiewicz 

identity. Therefore, we present one more manifestation of the Schur complement through 
equilibrium shift in physical systems. The term (-『国）—屯） may be interpreted as the 
matrix of exact Le Chatelier-Braun effects. The exact statement thus made based on the 

Schur complement a la Duncan makes it easier to understand why the Le Chatelier-Braun 
principle is not so useful when more than one constraints are removed. One exception 
is the case in which a given matrix is an M-matrix, thus every principal submatrix is 
inverse-positive. 
In section 2 our notation is explained, and section 3 presents our propositions. In 
section 4, an interpretation of the matrix (-F国）—屯） is given in terms of equilibrium 
displacements after removal of some equations. The following section 5 includes a natural 
generalization of Schur complement a la Duncan to function spaces. The final section 6 
gives numerical examples and two remarks. 
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2 Notation 

The (i, j) element of a matrix A E罠nxn,n 2 2, is written as aij, and the i-th element 
of a vector x as xi. The identity matrix in罠nxnis denoted by In. The ineq叫 itysigns for 
comparison of two matrices A and B E罠nxnare as follows: 

A 2 B iff aii 2 bii; 
A>  B iff aii 2 bii andAヂB;
A>): B iff aii > bii・ 

In section 5, the symbol L(X) means a Banach space of functions on a measurable set疋，

and T is a linear operator from L(王） to itself. 

3 Propositions 

We first present a theorem which derives the Duncan identity directly, and is a general-
ization of Theorem 3.3 in Fujimoto and Ranade [10]. 

Theorem 1 Duncan[6]) Let us suppose a given matrix A and Hare regular. Then, E is （ 
also regular, and the difference between two corresponding elements in the inverses of E 
and A is given as 

E-E-1 = F直）ー1G, or E-1 = (A―1; 恥=E-『国）―lf}.

Proof. We adapt the proof for Theorem 3.3 in Fujimoto and Ranade [10], and consider 
two matrix equations: 

A [~ ~] In, and (1) 

EY = Ip, (2) 

where XE民pxp,U E恥pxq,VE良qxp,andW E匝qxq,while Y is in艮pxp_We know 

~ ~ ~ ~ 

X = E, U = F, V = G, and W = H. 

Subtracting the second equation (2) from the top p equations of (1), we get 

Y

Y

 

I~I 

v
 

x

x

 

―

―

―

―

 

A
 

l

-

―

―

 

u
w
u
w
 

-[ふ Jq] , or 
- A―1 [ -嘉 J.l-[~:][ ふ J,l 

(3) 

(4) 



-22- Kagawa University Economic Review 392 

From these, follow 

X -Y = -FGY, and V =—加Y.

From the latter, we have GY = -(H)-1 V = -(恥—1G, which is substituted to the former, 
yielding E -Y =『（恥—1G, i.e., Y = E-F(H)-1G. Proceeding backward in this proof, 
we know from eq.(2) that Y is the inverse of E. ■ 

Theorem 2 (Banachiewicz[l]) Let us suppose a given matrix A and its principal subma-
trix E are regular. Then 

A-I= [正+Eザ s-1cE-1 -Eザ s-1
-s-1cE-1 s-1 ]・ 

Proof. Since 

(A―1戸=[~ ~]' 

叫 Eisassumed to be regular, we can apply the Du~can identity to A-1 and凡obtaining
(H)-1 = H -GE-1 F = S, from which comes out H = s-1. Now we can write 

A—1~[ E-1 8『sG ;_,] (5) 

From the identity AA-1 = In, we~have E戸+FS-1 = 0. Thus, F = -E-1Fs-1. 
Similarly, from A-1A =In, we get G = -s-1GE-1. Substituting these into the RHS of 

eq. (5), completes the proof. ■ 
When His a nonzero scalar, i.e., q = l, it is easy to have the following corollary, which 
is Theorem 3.3 in Fujimoto and Ranade [10, p.62]. 

Corollary 3 Suppose that H is a scalar, ann, the inverse of A has its last column and 
the bottom row non-negative, and that JAi > 0 and JEI > 0. Then each element of the 
杷verseof E-1 is less than or equal to the corresponding element of the inverse of A, i.e., 
E. 

Proof. Since H = JEI / JAi > 0, F 2: 0, and G 2: 0, the desired result follows from 
Theorem 1. ■ 
This result can be interpreted as expressing a sort of Le Chatelier-Braun principle as 
is explained in Fujimoto and Ranade[lO, p.65]. However, when q becomes larger than 

one, say q = 2, that is, two equations are removed at the same time, we cannot predict 
the directions of changes even when the inverse of A has the last two columns and the 
bottom two rows positive. (See a numerical example in section 6.) One exception is the 
case in which a given matrix A is an M-matrix. 



393 The Schur Complements and the Le Chatelier-Braun Principle -23-

Corollary 4 If A is an M -matrix, then each principal submatrix is inverse-positive, and 
the smaller is the・size of a principal submatrix, the smaller are the elements of its inverse 
or they remain unchanged. That is, 『国）疇＞〇．

Proof. Since each principal submatrix of an M-matrix is again an M-matrix, it is 
inverse-positive. Thus, we can apply Corollary 3 successively. ■ 
This corollary is proved in Fujimoto, Herrero and Villar [9] using an iterative method, 

＾^ and the inequality F(H)崎>0 does not seem trivial unless we know the LHS is the 
difference between E and E-1. (The essence of this result was generalized to an indecom-
posable system of nonlinear M-functions in Fujimoto [8].) 

4 An Interpretation 

In thermodynamics, the Le Chatelier principle means a prediction of direction in which an 
equilibrium shifts when a direct parametrical change takes place in the system, while the 
Le Chatelier-Braun principle is concerned with the situation where a disturbance is intro-
duced indirectly. Recently this distinction has become almost lost, and both dictate that 

the equilibrium changes in order to reduce the effects caused by external disturbances 
directly or indirectly, thus implying possible stability of the new equilibrium. The Le 
Chatelier principle is normally proved using the positive definiteness of the Hessian ma— 

trix at the equilibrium: the definiteness is guaranteed through minimization of a certain 
energy. In our framework, an equilibrium described by a system of simultaneous linear 
equations, Ax = d, is perturbed by changes in d while fixing some variables at the pre— 

vious equilibrium levels and removing as many equations, and so the Le Chatelier-Braun 

principle may work. 
Our proof of Theorem 3.1 can give a natural interpretation of the matrix 

(-『国）—屯）．

First, we imagine that a series of n disturbances have taken place separately, in each 
of which di, for i = 1 to n, is increased by one. These disturbances are represented by 

In in eq.(1), and all the resulting displacements are given as [ i晶]in eq.(1). The 
displacements, Y , when the bottom q variables remain unchanged and destroying as many 
bottom equations, are described by eq.(2). Direct and indirect effects are all contained 
in the elements of the inverse A-1 and Y(= E-1). The matrix (-GY) in eq.(3) shows 

the discrepancy created p the b_2ttom q equations by the shift from X to Y in the first 
p variables. Thus, once G and H , inclusive of all direct and indirect effects, are known, 
we can calculate (-GY) as 

-GY=直）―iv=(月）ーic,
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using the bottom q equations of eq.(4). If, in addition, E and F are known, it follows 

from the top p equations, i.e., X -Y = -FGY, that 

応炉＝オGY=F国）―1a.
Thus, the displacement matrix (-『（恥—1G) between two equilibria X and Y may be 
called the matrix of exact Le Chatelier-Braun effects. 

More concretely, let us consider the case dealt with jointly by both Corollaries 3 and 4. 
Suppose for simplicity~of discussion that H is a positive scalar, and F and G are strictly 
positive vectors and E is a strictly positive matrix. When d1 is increased !?_y unity, 釘
竺:1-dXn are also increased to the new equilibrium values x;: and x~because E11 > 0 and 
G1 > 0. Then, keeping Xn fixed at the level before the disturbance, implies decreasing呪，
which in turn would be equivalent to an decrease in dn as a parametri~ 史1change because 
if is a positive scalar. In the end, this will cause x1 to decrease since Fi > 0. Therefore, 
the effect on x1 of the increase in d1 is smaller when the last element Xn is fixed and the 
last equation is removed. In sum, removal of the last equation attenuates the effect of the 

disturbance produced by increasing d1・

5 A Generalization to Function Spaces 

It is now not difficult to extend the results in section 3 to function spaces. Suppose a 
measure space, 疋withits measureμ, is divided into two measurable sets P and Q such 

that PU Q = x, P n Q = 0, μ(P) =I= 0, andμ(Q) =I=〇.We assume that a given linear 
operator T from L(王） to itself has its inverse r-1. By considering the restrictions of 
domains of functions to P or Q, we can conceive the decompositions of T and r-1 as 

T~[~; ] and r-1~[ g ; ] , 
exactly as in the case of a finite dimension. When two operators E and月areinvertible, 
the same proof that is employed for Theorem 1 applies, interpreting In, Ip and Iq as 

the identity maps on the respective subspaces, and we have E -E-1 = F直）→G or 
E-I = (T-I位） = E-『国）一1G. Concerning a special case of M-operator we have 
published a paper in this journal([ll]). 

6 A Numerical Example and Remarks 

Consider the following 4 by 4 matrix and its inverse: 
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When 

-6.0 5. 5 6.0 

E~ [ 閏。 ＿ー昌 ＿霊[。l, 
we can confirm Corollary 3 because 
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E=[~ 悶゚ ~4\]' 

E-1 -[~ 悶゚!4¥]―1 
［誓。旦〗]»[闘 悶]=E. 

Note that though the matrix A has the bottom two rows and the last two columns positive, 
removal of bottom two equations while fixing the last two variables gives rise to a very 
different picture, compared with the case of removal of a single equation separately. 
One more example is concerned with the case of M-matrix treated in Corollary 4. Let 
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we have 

『直）ーlQ 1
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If 

0.5126 0.04355 

月 se [ 0.03686 0.3392 
0.01692 0.01338 

0.04827 

0.01456 ] =d直）―'"'
1.9800 

0.2558 [二~~;〗〗
-0.2400 -0.3600 

~ 言贔―3゚ 贔!~o],
then 

扉）鷺"'[0.06371 0.07621 0.08448 J [ ! 喜悶。
-0.1200 

~0.03726 > 0. 

These inequalities verify Corollary 4. 

-0.2400 -0.3600 0.1165 

冒悶。ー;o贔〗~][~・［二l
Remark 1 From the Banachiewicz identity or eq.(5), it easily follows that JA-11 = IE-11・
1s-1J. Thus we have the original result due to Schur [14], JAi = IEI・JSI. We can then 

deduce Js-11・IAI = IEI, i.e, I司・IAI= IEI. (See the proof of Theorem 2.) This is the 
Jacobi determinant identity. 

Remark 2 The Le Chatelier-Braun principle may work well when only one'disturbance' 
takes place. As we can observe from the first example in the above, however, when two or 
more constraints are removed by fixing as many variables, it may be wrong to add those 

individual effects that can be well predicted separately by the principle. Our Theorem 1 
may be able to give some useful qualitative information in special cases such as~e one in 
Corollaries 3 and 4, or more generally when the sign patterns of the inverse of H can be 
found by those of月only.Indeed, as Carlson[4, p.273] wrote, "They(Schur complement 
matrices) will continue to be of use to mathematicians and users of mathematics as long 
as partitioned matrices and restrictions of linear operators to subspaces are studied." 
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