@phdthesis{oai:kagawa-u.repo.nii.ac.jp:00000146, author = {Miyazaki, Ryo and 宮嵜, 亮}, month = {2020-10-09, 2020-10-09, 2020-10-09}, note = {Plasmacytoid dendritic cells (pDCs) are characterized by an exclusive expression of nucleic acid sensing Toll-like receptor 7 (TLR7) and TLR9, and production of high amounts of type I interferon (IFN) in response to TLR7/9 signaling. This function is crucial for both antiviral immunity and the pathogenesis of autoimmune diseases. An Ets family transcription factor, i.e., Spi-B (which is highly expressed in pDCs) is required for TLR7/9 signal-induced type I IFN production and can transactivate IFN-α promoter in synergy with IFN regulatory factor-7 (IRF-7). Herein, we analyzed how Spi-B contributes to the transactivation of the Ifna4 promoter. We performed deletion and/or mutational analyses of the Ifna4 promoter and an electrophoretic mobility shift assay (EMSA) and observed an Spi-B binding site in close proximity to the IRF-7 binding site. The EMSA results also showed that the binding of Spi-B to the double-stranded DNA probe potentiated the recruitment of IRF-7 to its binding site. We also observed that the association of Spi-B with transcriptional coactivator p300 was required for the Spi-B-induced synergistic enhancement of the Ifna4 promoter activity by Spi-B. These results clarify the molecular mechanism of action of Spi-B in the transcriptional activation of the Ifna4 promoter.}, school = {香川大学, Kagawa University}, title = {The mechanism of action of Spi-B in the transcriptional activation of the interferon-α4 gene}, year = {}, yomi = {ミヤザキ, リョウ} }