{"created":"2025-02-27T09:57:19.244356+00:00","id":2000740,"links":{},"metadata":{"_buckets":{"deposit":"d5415cf1-3718-4ae9-8484-ab1abfea5386"},"_deposit":{"created_by":11,"id":"2000740","owner":"11","owners":[11],"pid":{"revision_id":0,"type":"depid","value":"2000740"},"status":"published"},"_oai":{"id":"oai:kagawa-u.repo.nii.ac.jp:02000740","sets":["2"]},"author_link":["4464","4463"],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2023-03-10","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"15","bibliographicPageEnd":"2162","bibliographicPageStart":"2145","bibliographicVolumeNumber":"38","bibliographic_titles":[{"bibliographic_title":"Computer-aided civil and infrastructure engineering","bibliographic_titleLang":"en"}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"データに偏りが生じている場合におけるAI・機械学習モデルを対象にした、新しい妥当性検証法を発案した。実務において事前に想定した精度が現場で発揮されないという問題が検証方法に由来していることを提示し、正味の機械学習モデルの実力を評価することに成功した。","subitem_description_language":"ja","subitem_description_type":"Abstract"},{"subitem_description":"The data acquired in civil engineering tasks often involve high acquisition costs, and the available datasets tend to have a limited number of samples and are highly biased. To estimate the performance of machine learning models, k-fold cross-validation (k-CV) is widely used. However, if only limited data are available and the data distribution is biased, k-CV tends to overestimate the performance for practical applications. This study proposed a new estimator, leave one reference out and k-CV (LORO-k-CV), to determine the practical performance of machine learning models, that is, the generalization performance for population data in the target task, in case data are collected by multiple references resulting in biased data. LORO-k-CV is a combination of a new concept, LORO-CV, that estimates the performance in the extrapolation region of the training data without human intervention and k-CV, considering the ratio of the interpolation and extrapolation regions. The efficacy of LORO-k-CV was validated with its application to the regression task for the chloride-ion concentration of concrete structures. To more specifically demonstrate the advantages of LORO-k-CV in model construction, the feature selections were conducted using both k-CV and LORO-k-CV methods. These results revealed that LORO-k-CV can effectively construct a model with improved generalization performance even from the same data in cases where data are collected by multiple references, resulting in biased data.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10001_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Wiley","subitem_publisher_language":"en"}]},"item_10001_relation_12":{"attribute_name":"論文ID(NAID)","attribute_value_mlt":[{"subitem_relation_type":"isIdenticalTo","subitem_relation_type_id":{"subitem_relation_type_id_text":"https://cir.nii.ac.jp/crid/1360865125953000192","subitem_relation_type_select":"CRID"}}]},"item_10001_rights_15":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"© 2023 The Authors. Computer-Aided Civil and Infrastructure Engineering published by Wiley Periodicals LLC on behalf of Editor.","subitem_rights_language":"en"},{"subitem_rights":"This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.","subitem_rights_language":"en","subitem_rights_resource":"http://creativecommons.org/licenses/by-nc-nd/4.0/"}]},"item_10001_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11725394","subitem_source_identifier_type":"NCID"}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1467-8667","subitem_source_identifier_type":"EISSN"}]},"item_10001_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_1691368617353":{"attribute_name":"識別子","attribute_value_mlt":[{"subitem_identifier_type":"DOI","subitem_identifier_uri":"https://doi.org/10.1111/mice.12992"}]},"item_1691372060236":{"attribute_name":"助成情報","attribute_value_mlt":[{"subitem_award_numbers":{"subitem_award_number":"JPJ000094","subitem_award_number_type":"JGN"},"subitem_award_titles":[{"subitem_award_title":"超小型赤外分光カメラと磁気センシングの融合によるコンクリート構造物の完全非破壊による劣化診断","subitem_award_title_language":"ja"}],"subitem_funder_identifiers":{"subitem_funder_identifier":"https://doi.org/10.13039/501100007330","subitem_funder_identifier_type":"Crossref Funder"},"subitem_funder_names":[{"subitem_funder_name":"国土交通省","subitem_funder_name_language":"ja"},{"subitem_funder_name":"Ministry of Land, Infrastructure, Transport and Tourism","subitem_funder_name_language":"en"}],"subitem_funding_streams":[{"subitem_funding_stream":"政策課題解決型技術開発公募(一般タイプ)","subitem_funding_stream_language":"ja"},{"subitem_funding_stream":"Construction Technology Research and Development Grant Program","subitem_funding_stream_language":"en"}]},{"subitem_award_numbers":{"subitem_award_number":"2020–5","subitem_award_uri":"https://committees.jsce.or.jp/opcet_sip/node/29"},"subitem_award_titles":[{"subitem_award_title":"非破壊検査を駆使したインフラの塩害劣化に対する評価技術の海外展開と社会実装","subitem_award_title_language":"ja"}],"subitem_funder_identifiers":{"subitem_funder_identifier":"https://isni.org/isni/0000000417571555","subitem_funder_identifier_type":"ISNI"},"subitem_funder_names":[{"subitem_funder_name":"土木学会","subitem_funder_name_language":"ja"},{"subitem_funder_name":"Japan Society of Civil Engineers","subitem_funder_name_language":"en"}],"subitem_funding_streams":[{"subitem_funding_stream":"インフラマネジメント技術国際展開研究助成","subitem_funding_stream_language":"ja"},{"subitem_funding_stream":"Research Grant for International Development of Infrastructure Management Technology","subitem_funding_stream_language":"en"}]}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"岡﨑, 百合子","creatorNameLang":"ja"},{"creatorName":"オカザキ, ユリコ","creatorNameLang":"ja-Kana"},{"creatorName":"Okazaki, Yuriko","creatorNameLang":"en"}],"familyNames":[{"familyName":"岡﨑","familyNameLang":"ja"},{"familyName":"オカザキ","familyNameLang":"ja-Kana"},{"familyName":"Okazaki","familyNameLang":"en"}],"givenNames":[{"givenName":"百合子","givenNameLang":"ja"},{"givenName":"ユリコ","givenNameLang":"ja-Kana"},{"givenName":"Yuriko","givenNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"4464","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"9000414373113","nameIdentifierScheme":"CiNii ID","nameIdentifierURI":"http://ci.nii.ac.jp/nrid/9000414373113"},{"nameIdentifier":"90973438","nameIdentifierScheme":"e-Rad_Researcher","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=90973438"}]},{"creatorNames":[{"creatorName":"岡﨑, 慎一郎","creatorNameLang":"ja"},{"creatorName":"オカザキ, シンイチロウ","creatorNameLang":"ja-Kana"},{"creatorName":"Okazaki, Shinichirou","creatorNameLang":"en"}],"familyNames":[{"familyName":"岡﨑","familyNameLang":"ja"},{"familyName":"オカザキ","familyNameLang":"ja-Kana"},{"familyName":"Okazaki","familyNameLang":"en"}],"givenNames":[{"givenName":"慎一郎","givenNameLang":"ja"},{"givenName":"シンイチロウ","givenNameLang":"ja-Kana"},{"givenName":"Shinichirou","givenNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"4463","nameIdentifierScheme":"WEKO"},{"nameIdentifier":"1000030510507","nameIdentifierScheme":"CiNii ID","nameIdentifierURI":"http://ci.nii.ac.jp/nrid/1000030510507"},{"nameIdentifier":"30510507","nameIdentifierScheme":"e-Rad_Researcher","nameIdentifierURI":"https://kaken.nii.ac.jp/ja/search/?qm=30510507"},{"nameIdentifier":"read0141645","nameIdentifierScheme":"researchmap","nameIdentifierURI":"https://researchmap.jp/read0141645"},{"nameIdentifier":"0000-0002-5552-1319","nameIdentifierScheme":"ORCID","nameIdentifierURI":"https://orcid.org/0000-0002-5552-1319"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_access","date":[{"dateType":"Available","dateValue":"2025-02-27"}],"displaytype":"detail","fileDate":[{"fileDateType":"Issued","fileDateValue":"2023-03-10"}],"filename":"mice.12992","format":"text/html","licensetype":"license_5","url":{"objectType":"fulltext","url":"https://doi.org/10.1111/mice.12992"},"version_id":""}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Estimator for generalization performance of machine learning model trained by biased data collected from multiple references","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Estimator for generalization performance of machine learning model trained by biased data collected from multiple references","subitem_title_language":"en"}]},"item_type_id":"10001","owner":"11","path":["2"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2025-02-27"},"publish_date":"2025-02-27","publish_status":"0","recid":"2000740","relation_version_is_last":true,"title":["Estimator for generalization performance of machine learning model trained by biased data collected from multiple references"],"weko_creator_id":"11","weko_shared_id":-1},"updated":"2025-03-21T05:07:17.041278+00:00"}